

Reconfigurable, zero-energy, and wide-temperature loss-assisted thermal non-reciprocal metamaterials

Min Lei¹, Peng Jin¹, Yuhong Zhou¹, Ying Li², Liujun Xu³, Ji-ping Huang¹

¹Department of Physics, Fudan University, Shanghai 200438, China

²College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China ³Graduate School of China Academy of Engineering Physics, Beijing 100193, China

Abstract. Thermal non-reciprocity plays a vital role in chip heat dissipation, energy-saving design, and high-temperature hyperthermia, typically realized through the use of advanced metamaterials with nonlinear [1, 2], advective [3], spatiotemporal [4, 5], or gradient properties [6]. However, challenges such as fixed structural designs with limited adjustability, high energy consumption, and a narrow operational temperature range remain prevalent. Here, a systematic framework is introduced to achieve reconfigurable, zero-energy, and wide-temperature thermal non-reciprocity by transforming wasteful heat loss into a valuable regulatory tool. This research presents a different approach to achieving non-reciprocity, broadening the potential for non-reciprocal devices such as thermal diodes and topological edge states, and inspiring further exploration of non-reciprocity in other loss-based systems.

Fig.1. (A) Application of general thermal non-reciprocity. Asymmetric heat transfer achieved through thermal non-reciprocity enables effective thermal management in enclosed spaces, reducing external heat flow into the interior and precisely dissipating heat from internal sources. (B) Schematic of the loss-assisted non-reciprocal metamaterials. In asymmetric structures made from natural bulk materials, natural convection-induced asymmetric thermal losses disrupt the inherent spatial symmetry of thermal conduction.

Fig. 2. (A) The asymmetric structure made of natural materials has multi-parameter control characteristics. The reconfigurable rectification ratio γ changes with the thermal conductivity κ and number N of vertical plates (B), the position a and height L of the vertical plates (C), the ambient temperature T_{amb} and the temperature difference $\delta T = |T_1 - T_2|$ between hot and cold sources (D).

Fig. 3. (A) Structural diagrams of four material configurations: stainless steel ($\kappa = 16.3 \text{ W m}^{-1} \text{ K}^{-1}$), brass ($\kappa = 116.7 \text{ W m}^{-1} \text{ K}^{-1}$), aluminum alloy ($\kappa = 209 \text{ W m}^{-1} \text{ K}^{-1}$), copper ($\kappa = 386.4 \text{ W m}^{-1} \text{ K}^{-1}$). (B) The variation of rectification ratio with thermal conductivity (γ_1 -inflow, γ_2 -outflow). (C) A comparative analysis of the temperature distribution along the base plate centerline between experimental results and simulation data. (D)-(F) correspond to structural configurations: N = 1, 2, 3, 4.

Conclusion.

• We demonstrate heat loss-induced non-reciprocal metamaterials on asymmetric structures made of natural bulk materials.

Reference.

F. Yang, et al., Rev. Mod. Phys. 96, 2024, 015002.
Y. Li, et al., Phys. Rev. Lett. 115, 2015, 195503.

