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• Novel quantum optics research requires precise, arbitrary control of optical dipoles.

• Nanophotonic interfaces: Strong interaction between confined photons and atoms.

• Challenge: How to perfect optical control in the near field, despite the field inhomogeneity?

• This work: We demonstrate geometric phase control of optical dipoles at a nanoscale atom-

fiber interface with a high efficiency agreeing with theoretical prediction. The robust

technique can be perfected to support near-field-lattice based 1D quantum optical researches.

➢ Evanescent coupling and control at the cold atom-nanofiber interface

➢ Geometric phase control of optical dipoles 
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Introduction:

Experimental Setup:

Geometric control of optical dipole:

Robust population inversion:

Principle demonstration: 
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➢ Evanescent attenuation of guided probe by cold atoms
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➢What happens if the relative phase between the dipole and probe suddenly jumps?
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: normalized intensity at the atom location

• Single atom optical depth: 𝑂𝐷1 =
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Optical theorem: The scattering of the guided 

probe by the atoms is proportional to the 

imaginary part of the coherent forward 

scattering into the same mode.
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• Electric dipole moment for 2-level atom: 

• The geometric phase 𝛾 can be written to the ground state |𝑔ۧ by cyclically driving the auxiliary 

|𝑔ۧ ⟶ |𝑎ۧ transition. 𝜼𝒅: dipole control complex coefficient. 

𝒅 = 𝒅𝑒𝑔𝜌𝑔𝑒 + 𝑐. 𝑐 ⇒ 𝒅𝑒𝑔𝜌𝑔𝑒𝜼𝒅𝑒
−𝑖𝛾 + 𝑐. 𝑐

• Depending on the fiber diam-

eter, 𝑑 < 𝜆, ~20% of guided 

light propagates evanescently 

in vacuum to interact with cold          

atoms (The HE11 mode).

• Strong and efficient coupling, 

“infinite range’’ interaction.
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➢ Cold atom + ONF interface with 2D+MOT loading

(𝑎)

z

x
y

SPCM

grating 
filter

Probe 
pulse(D2)

87Rb atoms

block

ONF

PBS
HWP

QWP

𝜀𝑖𝑛

• Control and probe pulses: wideband pulse 

shaping

• >105 measurement/sec: background free, 

accurate transmission measurements. 
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➢ Probe and control waveforms
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• Efficient D1 population inversion can be driven by either composite[2] or adiabatic[1] pulses within a 

nanosecond at ONF interface.

• The experimental observations agree excellently with full-level numerical simulation in the near field.
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Summary & outlook
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• We demonstrate geometric phase control of optical

dipoles at a cold atom-nanofiber interface, for the first

time. Ensemble-averaged efficiency 𝜂𝑑 ≈ 50% is

retrieved with a phase-jump spectroscopy. The result is

agreeable with theoretical expectations for the nano-

scale quantum control.

• Novel 2DMOT-ONF interface with ~field-free line.

• In our next step, by loading atoms into a near-field

lattice and by sending geometric-phase-writing ONF-

guided pulses from opposite directions, the D2

collective dipole excitation can be coherently shifted

into sub-radiant domain, potentially enabling highly

nontrivial many-body quantum optical researches.
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• Compact setup with low power consumption

• 2D MOT geometry naturally support ONF 

interface with suppressed on-axis field.

Population measurement

Coherence measurement
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• By successively applying two optimally chirped pulses with 𝜙21 phase difference, the optical phase is 

transferred to the near-field atomic dipoles, 𝛾 = 𝜙12 + 𝜋, reflected in the transient probe transmission. 

• A probe phase-jump globally induces the same  𝜙21 relative to 𝐄𝐬
𝐟, leading to similar transmission signal.

• According to 𝐄𝑠 𝑟 ∼ ∑𝐆 r, 𝑟𝑗 ⋅ 𝐝𝑗, we estimate the dipole control efficiency by observing the 

𝐄𝑠-transient within nanoseconds. 
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To characterize a dipole 

control sequence, three 

measurements are 

performed to fix the 𝐄𝑠
phase relative to 𝐄𝑝

➢ Numerical model
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• Exp geometric phase control via evanescent couplings with an 

efficiency averaged over the near field dipoles to be above 50%.

• Exp performance is about 20% lower than numerical expectation, 

likely related to inaccurate near-field  modeling of distributions.

• Numerical model predicts atomic dipole control with 90% fidelity at 

specific locations with linear local polarization and mF=0.

➢Experimental results
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• A weak resonant probe 𝐄𝑝 for 150 ns to 

establish steady-state dipoles and 𝐄𝑠.
• A pair of 𝜏𝑐 = 0.6 ns chirped pulses to 

write in geometric phase with 𝜂𝑑𝐄𝑠.

• 𝑇1 = 𝐄𝑝 + 𝜂𝑑𝐄𝑠
2
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• Keep it simple: uniform, non-interacting 

atoms in the near field.

• HE11 mode, evanescent full-level OBE.

• Parameters match the experiment.
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