Geometric control of optical dipoles at a cold atom--nanofiber interface

Ruijuan Liu^{1,*}, Jinggu Wu¹, Yudi Ma¹, Yanting Zhao^{2,†}, Saijun Wu^{1,§}, ¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, People's Republic of China ²State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China

Introduction:

- Novel quantum optics research requires precise, arbitrary control of optical dipoles.
- Nanophotonic interfaces: Strong interaction between confined photons and atoms.
- Challenge: How to perfect optical control in the near field, despite the field inhomogeneity?
- This work: We demonstrate geometric phase control of optical dipoles at a nanoscale atomfiber interface with a high efficiency agreeing with theoretical prediction. The robust technique can be perfected to support near-field-lattice based 1D quantum optical researches.

> Evanescent coupling and control at the cold atom-nanofiber interface

Robust population inversion:

- Efficient D1 population inversion can be driven by either composite[2] or adiabatic[1] pulses within a nanosecond at ONF interface.
- The experimental observations agree excellently with full-level numerical simulation in the near field.

Electric dipole moment for 2-level atom: $\langle d \rangle = d_{eg}\rho_{ge} + c.c \Rightarrow d_{eg}\rho_{ge}\eta_d e^{-i\gamma} + c.c$ The geometric phase γ can be written to the ground state $|g\rangle$ by cyclically driving the auxiliary $|g\rangle \rightarrow |a\rangle$ transition. η_d : dipole control complex coefficient.

Measurement Principles:

> Evanescent attenuation of guided probe by cold atoms

> What happens if the relative phase between the dipole and probe suddenly jumps?

Geometric control of optical dipole:

• By successively applying two optimally chirped pulses with ϕ_{21} phase difference, the optical phase is transferred to the near-field atomic dipoles, $\gamma = \phi_{12} + \pi$, reflected in the transient probe transmission. • A probe phase-jump globally induces the same ϕ_{21} relative to \mathbf{E}_{s}^{f} , leading to similar transmission signal. • According to $\mathbf{E}_s(r) \sim \sum \mathbf{G}(\mathbf{r}, r_j) \cdot \mathbf{d}_j$, we estimate the dipole control efficiency by observing the \mathbf{E}_{s} -transient within nanoseconds.

>Experimental results

Experimental Setup:

Reference

Summary & outlook

We demonstrate geometric phase control of optical dipoles at a cold atom-nanofiber interface, for the first time. Ensemble-averaged efficiency $|\eta_d| \approx 50\%$ is retrieved with a phase-jump spectroscopy. The result is agreeable with theoretical expectations for the nanoscale quantum control.

• Novel 2DMOT-ONF interface with ~field-free line. • In our next step, by loading atoms into a near-field

lattice and by sending geometric-phase-writing ONFguided pulses from opposite directions, the D2

