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Introduction

In pursuing an enhanced understanding of high-energy collisions, the examination of jet 
production within proton-proton (pp) and proton-nucleus (pA) contexts emerges as a crucial 
endeavor. These collisions serve as probes into the Standard Model’s predictions and seek out new 
physics through the intricate dynamics orchestrated by quantum chromodynamics (QCD). Our 
study uniquely explores these decorrelations through two jet recombination methods: the 
Standard Jet Axis (SJA) and the Winner-Take-All (WTA) scheme. Employing soft-collinear 
effective theory, we establish a factorization and resummation formalism, achieving next-to-
leading logarithmic (NLL) accuracy for SJA and next-to-next-to-leading logarithmic (NNLL) 
accuracy for WTA, specifically in the back-to-back limit.

Photon-jet decorrelations in high energy pp and pA collisions 

Factorization and resummation for the standard jet axis 

• RG and RRG consistence relation:

Factorization and resummation for the winner-take-all axis 

Scale uncertainties in the WTA scheme

Resummation formula

RG evolution

         

Dijet azimuthal decorrelations in high energy pp and pA 
collisions 

Nuclear modification and the extraction of   uncertaintiesaN

• To quantify the nuclear modification, we 
employ the standard definition for the 
nuclear modification factor  and its 

normalized form :

RpA

R̂pA

• At leading order (LO), two partonic channels: 

• quark-antiquark annihilation ( );

• Compton process ( ).

• QCD emissions from initial and final states leads to the 
azimuthal decorrelations .

• To avoid logarithmic singularities occurring in the back 
to back region ( ), perturbative convergence 
necessitates all-order resummation over large 
logarithmic terms in the azimuthal angle (and jet 
radius).

qq̄ → γg
qg → γq

δϕ

δϕ → 0

p(P1) + N(P2) → γ(pγ) + J(pJ) + X
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ni collinear : p

μ
ci

∼ pT(δϕ2,1,δϕ)i ,

nj collinear : p
μ
cj

∼ pT(δϕ2,1,δϕ)j ,

nk collinear : p
μ
ck

∼ pT(R2,1,R)k ,

nk collinear-soft : p
μ
csk

∼ pTδϕ/R(R2,1,R)k ,
 soft : pμ

s ∼ pT(δϕ, δϕ, δϕ) .
renormalization and rapidity scale

• Factorization formula:

• Resummation formalism at NLL:

• Kinematic modes:

ni collinear : pμ
ci

∼ pT(δϕ2,1,δϕ)i ,

nj collinear : pμ
cj

∼ pT(δϕ2,1,δϕ)j ,

nk collinear : pμ
ck

∼ pT(δϕ2,1,δϕ)k ,
 soft  : pμ

s ∼ pT(δϕ, δϕ, δϕ) .
renormalization and rapidity scale

• Factorization formula:

• Resummation formalism at NNLL:

The theory uncertainties 
are reduced from NLL to 
NNLL
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dyJdyγdpTdΔϕ /
d4σpp
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σpp
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• Compared with , the normalized ratio  can effectively eliminate dependence on 
the nPDFs, leaving only the uncertainty of aN unchanged.

RpA R̂pA

p(P1) + N(P2) → J(p3) + J(p4) + X
• Divergence due to logarithmic singularities at .
• Factorization and resummation: necessary in the 

nearly back-to-back region.
• Challenges:

• Multiple partonic channels;
• Complex color structure;
• Standard factorization formula invalidation in high-

logarithmic order calculation resulting from Glauber 
effect and spectator interaction.  

δϕ → 0

• Renormalization group (RG) equation of hard function: 

• The anomalous dimension of hard function:

where CH = nqCF + ngCA, γH = nqγq + ngγg

• Diagonalization of the anomalous dimension in color space:

• NLL expression for azimuthal angular distribution in the SJA scheme:

Comparison between theoretical calculations 
of the azimuthal decorrelations with the 
CMS data


