Precise Raman Control of Spinor Matterwave with Nanosecond Composite Biased Rotations

Jiangyong Hu^{*},¹ Liyang Qiu[§],² and Saijun Wu^{† 1}

¹Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of

Education), Fudan University, Shanghai 200433, China.

²Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

*jyhu20@fudan.edu.cn, [§]liyang.qiu@mpq.mpg.de, [†]saijunwu@fudan.edu.cn

I. Introduction

We experimentally demonstrate precise Raman matterwave control at an intermediate single-photon detuning $\Delta = O(\omega_{hfs})$, where a balance between the optical power efficiency with the requirements on the control speed and the suppression of excited-state dynamics can be adjusted. The method is based on composite biased rotation^[1] that exploits the proportionality between the traditionally "unwanted" light shift δ with the Raman coupling $\Omega_{\rm R}$. At $\Delta \approx 4\omega_{hfs}$, mesoscopic samples of 10⁵ 87Rb atoms are uniformly controlled, within tens of nanoseconds, near a laser focus with merely ~10 mW power. The control is fast enough to be immune to low-frequency noises, so our system can be accurately modeled. The $\mathcal{F} > 99.2\%$ fidelity is estimated with standard single-qubit QPT^[2] and RB^[3]. Our work suggests highly precise spinor matterwave controls are achievable for large atomic samples with moderate laser power, even in noisy environment.

II. Theoretical Model

• Multiple Zeeman-spins

III. Pulse shaping

IV. Experimental setup and results

Optimization algorithm-GRAPE

The experimental setup and measurement procedure

• Toward a practical large area atom interferometer for

 $|\chi|^{(\mathrm{R}_y(\pi/2))}$

 $|\chi|^{(\mathrm{R}_y(\pi))}$

Nexp = 4*4*4

 $P_{i} \in \mathcal{P}^{\otimes n}, \mathcal{P} = \{I, \sigma_{x}, \sigma_{y}, \sigma_{z}\}$

