Growth of $La_4Ni_3O_{10-\delta}$ Single Crystals Using the High-Pressure Optical-**Image Floating Zone Technique**

Enkang Zhang¹⁺, Lixing Chen¹, Yinghao Zhu¹⁺, Feiyang Liu¹, Hongliang Wo¹, Yiqing Gu¹, Yimeng Gu¹, Jun Zhao^{1*}

¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China

Abstract: The quest to discover new high-temperature superconductors has ignited significant scientific interest. La₄Ni₃O_{10-δ} offers a unique opportunity to explore the fundamental mechanisms of superconductivity in nickelates. In this study, we report the successful growth of La₄Ni₃O_{10-δ} single crystals using the high-pressure optical-image floating zone technique. Our investigation into the physical properties of these crystals reveals their high quality, underscoring their potential for further research.

Polycrystalline La₄Ni₃O_{10-δ} synthesis

The precursor powder for the $La_4Ni_3O_{10-\delta}$ compound was prepared using the conventional solid-state reaction method. First, La_2O_3 (Aladdin, 99.99%) and NiO (Aladdin, 99.99%) were calcined at 1273K for 12h to remove the absorbed water. Then, they were mixed stoichiometrically and ground while an additional 0.5% of NiO was added to prevent potential NiO volatilization. The powder mixture was calcined in a box furnace at 1373K for 24h; this calcination process was repeated twice to ensure complete and homogeneous reaction. In-situ lab-based XRD measurements on powder were carried out on a Bruker D8 Venture diffractometer to prove the high quality of $La_4Ni_3O_{10-\delta}$ polycrystalline. The obtained powder was reground and stored in a rubber tube for isotropically pressed at 300 MPa to form a cylindrical feed rod.

Growth of La₄Ni₃O_{10- δ} single crystals

The cylindrical rod, approximately 13cm in length and 6mm in diameter, was then underwent once sintering at 1673 K for 12h in air. Single crystals were grown using a vertical optical-image floatingzone furnace (Model HKZ, SciDre). During the crystal growth process, we carefully maintained an oxygen pressure of 18–22 bar, and used a 5-kW Xenon arc lamp as the light source. The rod was rapidly traversed through the growth zone at a speed of 15mm h⁻¹ to enhance the density, after which a growth rate of 3 mm h^{-1} was maintained to get high quality single crystal.

a, Crystal structure of La₄Ni₃O_{10- δ} at ambient pressure $P2_1/a$ and the Ni–O–Ni angle between adjacent NiO₂ layers is 180°. **b**, Magnetic susceptibility of $La_4Ni_3O_{10-\delta}$ measured from 2K to 300K with an applied field of 0.4T, parallel and perpendicular to the ab plane. The SDW/CDW transition characterized by a kink in the $\chi(T)$ curve occurs at $T_N \approx 136K$. c, Resistivity profile of $La_4Ni_3O_{10-\delta}$ in the ab plane at ambient pressure, using a current of $100\mu A$. **d**, Specific heat of $La_4Ni_3O_{10-\delta}$ near T_N . All of the fundamental physical properties indicate the **nearly same T_N. e,** X-ray Laue pattern of $La_4Ni_3O_{10-\delta}$ single crystal along ab plane.

a, Vertical optical-image floating-zone furnace (Model HKZ, SciDre). **b**, Single crystal growing in a floating zone furnace. c, XRD measurements of a $La_4Ni_3O_{10-\delta}$ single crystal along the ab plane, revealing no detectable impurity phases. d, Rietveld refinement of a lab-based XRD pattern for powdered La4Ni3O10-δ single crystals at ambient pressure and room temperature. This dataset fits well with the P2₁/a space group. The inset shows the details near 32.2° , where the $(1\ 1\ 3)_{M}$ and $(-1\ 1\ 4)_{M}$ peaks are captured by the P2₁/a model.

Schematic drawing of Ruddlesden-Popper phase predominance as a function of pO₂ and temperature.

Reference

Y. Zhu, D. Peng, E. Zhang, B Pan, X. Chen, L. Chen, H. Ren, F. Liu, Y. Hao, N. Li, Z. Xing, F. Lan, J. Han, J. Wang, D. Jia, H. Wo, Y. Gu, Y. Gu, L. Ji, W. Wang, H. Gou, Y. Shen, T. Ying, X. Chen, W. Yang, H. Cao, C. Zheng, Q. Zeng, J. Guo & J. Zhao, arXiv: 2311.07353, (2023).

