
Abstract
Strong coupling between vacuum fields and quantum matter occurs at the nanoscale and broadens the horizon of light-matter interaction. Nanoscale Casimir force, as an exhibition of
vacuum fields, inevitably experiences the influence of surface electrons due to their quantum character, which are ignorable in micron Casimir force. Here, we develop a three-
dimensional conformal map method to tackle typical experimental configurations with surface electron contributions to Casimir force purposely and delicately included. Based on this
method, we reveal that surface electrons can either enhance or suppress the nanoscale Casimir force, depending on materials and crystal facets. The mechanism is demonstrated to be
the Casimir force softening, which results from surface electrons effectively altering the distance seen by the Casimir interaction. Our findings not only highlight the interaction
between surface electrons and vacuum fields but also provide a recipe for theoretical and experimental investigation of nanoscale fluctuation-type problems.
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Motivation: Nanoscale Casimir Force? 
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Enhancement/suppression of Casimir force Casimir softening under PFA

Extend to bi-sphere 

Conclusions
 A three-dimensional conformal map (3D-CM) method can handle typical experimental geometries, such as sphere-plate and bi-sphere. 
 Our 3D-CM method is efficient and accurate whether it is compared with FEM or MEM. 
 Enhancement/suppression of nanoscale Casimir force.
 Casimir softening distance 𝐿ఎ = 𝐿 + 𝛴. Hewan Zhang and Kun Ding†, arXiv:2403.11849
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Typical experimental setups

Feibelman d-parameters (𝒅ୄ, 𝒅∥)

 Key: transform mesoscopic BCs 
to the auxiliary space.

 Obtain scatterings of full EM 
waves efficiently and accurately.

Response matrix equation
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 MEM: multipole expansion method 
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 In the nanoscale, 𝑳 → 𝑳𝜼: nanoscale Casimir force softening distance [the Full markers]
 Assume that 𝑑ఙ is weakly dispersive and 𝑑ఙ ≪ 𝐿, 𝑳𝜼 is [Approx. lines]

𝑳𝜼 = 𝐿 + Σ, 𝜮 = 𝐶ୄ𝑑ୄ 𝑖𝜉 = 0 + 𝐶∥𝑑∥ 𝑖𝜉 = 0 , 𝑪𝝈: determined by ε and >0
 𝜮 only depends on 𝑑ୄ and 𝑑∥

 𝒅ୄ: centroid of induced surface electrons; 𝒅∥: total surface electrons

Casimir formula: 𝐸 =
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Challenges: Scattering matrix of all EM modes (to obtain 𝒇𝒎)
 Handle such experimental structures (not only planes) 
 Include the response of surface electrons (beyond ε and µ) 
 Require calculations to be reliable and efficient (all ω and k) 


