Signatures of Kitaev interactions in van der Waals ferromagnet VI₃

Yiqing Gu^{1,2}, Yimeng Gu¹, Feiyang Liu¹, Seiko Ohira-Kawamura³, Naoki Murai³, Jun Zhao^{1,2,4,*}

¹State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China ²Shanghai Research Center for Quantum Sciences, Shanghai 201315, China ³Materials and Life Science Division, J-PARC Center, Tokai, Ibaraki 319-1195, Japan ⁴Institute of Nanoelectronics and Quantum Computing, Fudan University, Shanghai 200433, China

Materials manifesting the Kitaev model, characterized by bond-dependent interactions on a honeycomb lattice, can host exotic phenomena Abstract: like quantum spin liquid states and topological magnetic excitations. However, finding such materials remains a formidable challenge. Here, we report high-resolution inelastic neutron scattering measurements performed on VI₃, a van der Waals ferromagnetic Mott insulator, covering a wide range of reciprocal space. Our measurements unveil highly anisotropic magnetic excitations in momentum space. Through a comprehensive comparative analysis of various models that incorporate diverse symmetry-allowed magnetic interactions, we find the observed excitations are well captured by a model with a large bond-dependent Kitaev interaction. These results not only help to understand the intriguing properties of VI₃, such as the pronounced anomalous thermal Hall effects and strong pressure/structure dependence of magnetism, but also open a new avenue for exploring Kitaev physics.

The low-energy magnetic excitations in VI₃

← Constant energy slices of magnetic excitations in VI_3 within the (H, K) plane at T = 5 K. (a)–(f) Measured constant energy slices with energy transfer E = 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 meV which are integrated over $E \pm 0.5$ meV and $-3 \leq L \leq 3$. The incident neutron energy is $E_i = 15.1 \text{ meV}$. (g)–(l) Constant energy slices at the specified energies generated through simulations using the $J-K-\Gamma-\Gamma'-A$ model.

Kitaev interactions

Bond-dependent Kitaev interactions in the local coordinates of VI₃. In materials featuring a honeycomb lattice and edgeshared ligand octahedra, the Kitaev interaction manifests as three kinds of bonds, each associated with bond-dependent Ising axes that are orthogonal to one another.

Intensity (arb. (meV) (arb. unit) unit) 0.02 (*H*, 0, 0) (r.l.u.) ↑ Dispersion of magnetic excitation spectra of VI₃ at 5 K. (a) The momentumdependent magnetic excitations along the $M-\Gamma_1^*$ -M path at 5 K. A distinct bend anomaly is observed at ~ 5.5 meV in the low-energy branch. (b) Simulated magnetic excitations along the M- Γ_1^* -M

Intensity

Conclusion

- Inelastic neutron scattering measurements on VI₃ uncover distinct anisotropic magnetic excitations that are well captured by a model with large bond-dependent Kitaev interactions
- This model suggests that VI₃ resides near the S = 1 Kitaev spin liquid phase despite having a ferromagnetic ground state
- Vanadium magnets could be a new platform for the exploration of Kitaev spin liquid physics

Acknowledgments

We thank Hua Wu, Changsong Xu, Yang Qi, Wei Li, Gang Chen, Han Li, Ke Yang and Weiqin Zhu for helpful discussions.

References

Yiqing Gu, Yimeng Gu, Feiyang Liu, Seiko Ohira-Kawamura, Naoki Murai, Jun Zhao. Phys. Rev. Lett. (accepted) (2024) (Editors' Suggestion)

