Metasurface-assisted optical transparency of a continuous metal film

Yifei Wang^{1,2,†}, Jinyu Guo^{2,3,†}, Yifang Chen^{2,3,*}, Qiong He^{1,2,*} and Lei Zhou^{1,2,*}

¹ State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Physics, Fudan University, Shanghai 200433, China.

² Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.

³ Nanolithography and Application Research Group, School of Information Science and Technology, Fudan University, Shanghai 200433, China

These authors contributed equally to this work.

Corresponding authors: Yifang Chen (yifangchen@fudan.edu.cn), Qiong He (qionghe@fudan.edu.cn) and Lei Zhou (phzhou@fudan.edu.cn)

15s-Summary

Question: Transparent conductors are useful, but conventional ITO film is expensive and not sustainable.

Task: Find a new design strategy of transparent conductors based on continuous metal film.

Results: A transparent metasurface/metal film/metasurface configuration is proposed based on Coupled Mode Theory (CMT).

- Theory -

- •Two SiN_x cavities support two F-P electromagnetic modes.
- •Max transmittance is mainly controlled by Radiation Loss Γ_r and Nearfield Coupling κ , with optimal condition $\kappa = \Gamma_r$.

Radiation Γ_r EM Mode 0.2(*) (*) (*) (*) (*) (*)

Free-standing samples were fabricated by the transmitted e-beam lithography technique. $T_{max} \approx 55\%$ is obtained for a 28nm thick Ag film.

-Introduction

Former realizations of transparent conductors

- Indium Tin Oxide (ITO): widely used, but expensive due to the scarcity of *indium*.
- Nanosturctures (cabon nanotube, Ag nanowire/mesh etc.) : low conductivity and high optical haze.
- Continuous metal film: good conductance, but hard to be made transparent.

Cu-doped Ag

ZnO

- A: κ and Γ_r are controlled by the geometry.
- • $h_{\rm m} \to \kappa; a, h_{\rm bar} \to T_{\rm grating} \to \Gamma_r.$
- B, C: κ, Γ, from theory (line, by Tight Binding Method and energy flow analysis) and simulation (scatter) agree well.

- Metasurface-assisted transparency of a continuous metal film with numerical and experimental verifications.
- Transparency is interpreted by CMT.
- Optoelectronic performance comparable to ITO.

•5-layer demo: Ag grating/SiN_x/Ag film/SiN_x/Ag grating.

Transmittance simulated and fitted by two-port two-mode

Transmitted e-beam lithography was applied to fabricate free-standing samples

- References

[1] D. J. Lipomi et al., Nat. Nanotech. 6, 788 (2011).
[2] C. Ji et al., Nat. Commun. 11, 3367 (2020).
[3] J. Yun, Adv. Funct. Mater. 27, 1606641 (2017).

