Composite Acousto-Optical Diffraction with Efficiency Exceeding 99\%

Yuxiang Zhao ${ }^{1}$, Jiangyong Hu^{1}, Ruijuan Liu^{1}, Ruochen Gao ${ }^{2}$, Saijun Wu*1

${ }^{1}$ State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, People's Republic of China ${ }^{2}$ Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China

I. Introduction

Acousto-optical modulation (AOM) is a powerful, widely applied technique for rapidly controlling frequency, phase, intensity and direction of light. Based on Bragg diffraction by sound, AOM is no \dagger known for its moderate diffraction efficiency, typically about 90% at best. In this work, we demonstrate beyond 99% efficiency in a composite-modulation (CPM) setup. The high efficiency $1 s t$-order diffraction is accompanied by more than 30 dB single-mode suppression of the Oth-order beam. We discuss the underlying physics for the exceptional performance associated with optical rephasing. The two effects, referred to as "momentum echo" and "high-order rephasing" respectively, can be optimized almost simultaneously by tuning the relative distance between the two daughter-AOMs in the CP-AOM setup. We in addition demonstrate the highly efficient CP-AOM with a single AOM, using a Sagnac interferometer with a suitable round-trip optical delay. The exceptional performance enables $C P-A O M$ as a highcontrast beam splitter with rapidly tunable splitting amplitude and phase. The device may find novel applications at the frontiers of laser physics and quantum optics. ${ }^{[1]}$

II. Modeling AOM interaction ${ }^{[2]}$

- Paraxial equation

$$
i \partial_{z} \varepsilon=-\frac{1}{2 \bar{n} k_{0}} \nabla_{\perp}^{2} \varepsilon-\delta n k_{0} \varepsilon
$$

Moving index grating: $\delta n=\eta p \cos \left(k_{s} x-\omega_{s} t+\varphi\right)$

Expansion under Bloch basis: $\varepsilon=\sum C_{m} e^{i\left(k_{\perp}+m k_{s}\right) z}$

- Raman-Nath equation

$i \partial_{z} C_{m}\left(\boldsymbol{k}_{\perp}, z\right)$

$$
\begin{aligned}
& i \partial_{z} C_{m}\left(\boldsymbol{k}_{\perp}, z\right) \\
& =\frac{\left[\boldsymbol{k}_{\perp}+\left(m-\frac{1}{2}\right) \boldsymbol{k}_{s}\right]^{2}}{2 \bar{n} k_{0}} C_{m}\left(\boldsymbol{k}_{\perp}, z\right)-\frac{K}{2} e^{i \varphi} C_{m-1}\left(\boldsymbol{k}_{\perp}, z\right) \\
& -\frac{K}{2} e^{-i \varphi} C_{m+1}\left(\boldsymbol{k}_{\perp}, z\right)
\end{aligned}
$$

- Hamiltonian

- Nearest order coupling
- CP-AOM Propagator
$U=U_{2} U_{0}^{-1} U_{1}$
$\mathrm{AOM}_{1}: U_{1}=e^{-i H_{1} L}$
4-f imaging: $U_{0}^{-1}=e^{i H_{0}(L+\delta L)}$
$\mathrm{AOM}_{2}: U_{2}=e^{-i H_{1} L}$

III. Momentum echo

- Small relative displacement between AOM $_{12}$ rephase \boldsymbol{k}_{\perp}-mismatched (i.e., "momentum spreading ${ }^{\prime \prime}$) at vicinity of specific incidence.
- Choice of δL depending on central incident Braggmismatch.
- For $k_{\perp} \rightarrow 0, \delta L=-1+\pi / 4$.

$$
K=\eta p k_{0}
$$

- Bloch-sphere representation of momentum echo at various δL.

V. Experiment Results

 Aligned at 80 MHz , efficiency beyond 80% is achieved with a 50 MHz bandwidth (+1 order).

Efficient suppression of the $0^{\text {th }}$ order (20dB free space, $>35 \mathrm{~dB}$ single mode fiber) supports optical routing on demand.
VI. Single-AOM implementation

- Sagnac Configuration
- Straightforward implementation with single-AOM rf electronics.

0.04
0.02

VII. Reference

[1] C. E. Rogers and P. L. Gould, Opt. Express, 24, 2596 (2016).
[2] R. Liu, Y. Ma, et al, Opt. Express 30(15), 27780-27793 (2022).

