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Acousto-optical modulation (AOM) is a powerful, widely applied
technique for rapidly controlling frequency, phase, intensity and
direction of light. Based on Bragg diffraction by sound, AOM is not
known for its moderate diffraction efficiency, typically about 90% at
best. In this work, we demonstrate beyond 99% efficiency in a
composite-modulation (CPM) setup. The high efficiency 1st-order
diffraction is accompanied by more than 30 dB single-mode suppression
of the 0th−order beam. We discuss the underlying physics for the
exceptional performance associated with optical rephasing. The two
effects, referred to as “momentum echo” and “high-order rephasing”
respectively, can be optimized almost simultaneously by tuning the
relative distance between the two daughter-AOMs in the CP-AOM
setup. We in addition demonstrate the highly efficient CP-AOM with a
single AOM, using a Sagnac interferometer with a suitable round-trip
optical delay. The exceptional performance enables CP-AOM as a high-
contrast beam splitter with rapidly tunable splitting amplitude and
phase. The device may find novel applications at the frontiers of laser
physics and quantum optics.[1]

[1] C. E. Rogers and P. L. Gould, Opt. Express, 24, 2596 (2016).
[2] R. Liu, Y. Ma, et al, Opt. Express 30(15), 27780-27793 (2022).
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II. Modeling AOM interaction [2]

• Paraxial equation Moving index grating:
𝛿𝛿𝑛𝑛 = 𝜂𝜂 𝑝𝑝 cos 𝑘𝑘𝑠𝑠𝑥𝑥 − 𝜔𝜔𝑠𝑠𝑡𝑡 + 𝜑𝜑

• Raman-Nath equation
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V. Experiment Results

III. Momentum echo
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IV. High-Order Rephasing

Expansion under Bloch basis:
ℰ = ∑𝐶𝐶𝑚𝑚𝑒𝑒𝑖𝑖 𝒌𝒌⊥+𝑚𝑚 𝒌𝒌𝑺𝑺 𝑧𝑧

• CP-AOM Propagator

𝑈𝑈 = 𝑈𝑈2𝑈𝑈0−1𝑈𝑈1

AOM1:𝑈𝑈1 = 𝑒𝑒−𝑖𝑖𝐻𝐻1𝐿𝐿

AOM2:𝑈𝑈2 = 𝑒𝑒−𝑖𝑖𝐻𝐻1𝐿𝐿

4-f imaging:𝑈𝑈0−1 = 𝑒𝑒𝑖𝑖𝐻𝐻0(𝐿𝐿+𝛿𝛿𝐿𝐿)

• Nearest order coupling

• Fine adjustment of 𝛿𝛿𝐿𝐿 suppress specific high order m.

• Small relative displacement between AOM12
rephase 𝒌𝒌⊥ -mismatched (i.e., “momentum 
spreading”) at vicinity of specific incidence.

• Choice of  𝛿𝛿𝐿𝐿 depending on central incident Bragg-
mismatch.

• Sagnac Configuration

• Straightforward implementation with 

single-AOM rf electronics. 0
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• Bloch-sphere representation 
of momentum echo at various 
𝛿𝛿𝐿𝐿.
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• Wideband operation:

• Excellent diffraction 
efficiency(>99%)

• Efficient suppression of the 0th

order (20dB free space, >35dB
single mode fiber) supports
optical routing on demand.

Aligned at 80MHz, efficiency 
beyond 80% is achieved with a 
50MHz bandwidth (+1 order).

• Suppressed high-order 
diffraction

• Propagation phase of higher-order diffraction is approximately quantized by 𝑘𝑘𝑆𝑆
2
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• m=-1, 2 almost rephase at the same 𝛿𝛿𝐿𝐿

• For 𝑘𝑘⊥ → 0，𝛿𝛿𝐿𝐿 = −1 + 𝜋𝜋/4.
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