

Magnon-Magnon Coupling in Permalloy Stripes

Nan Jiang, Zhicheng Jin, Haoran Chen, Hongyue Xu, Yunzhuo Wu, Wentao Qin, Yizheng Wu* Department of Physics, Fudan University, Shanghai, China

Sample and measurement system

Micromagnetic simulation

□ Sample morphology **C** Schematic diagram

$3\mu m$

 $MgO(001)|Py(50nm)|Al_2O_3(5nm)|$ **FMR measurement based on VNA Two types of placement positions**

VNA-FMR measurement

Magnetic field dependent(fix θ) lacksquare

gap

□ Micromagnetic simulation through mumax3

Model and parameters \bullet

Magnetic field dependent(fix θ)

saturation magnetization $M_s = 866 \text{ k A/m}$ exchange strength coefficient $A = 13 \times 10^{-12} \text{ J} / \text{m}$ damping coefficient $\alpha = 0.01$ single stripe size : $10\mu m \times w \times 40nm$, $w = 2 \mu m$ $d = 2.2 \mu m$

Conclusion

- ✓ Measured **high-resolution FMR** of Py stripes.
- Discovered magnon-magnon coupling (FMR and SWW) in single \checkmark

ferromagnetic material between different modes, which is **beneficial for** particle-less technology, where information will be carried and processed by magnons rather than by electrons.

✓ Verified the experimental results through **micromagnetic simulation** by

Magnon-Magnon Coupling in Permalloy Stripes

Nan Jiang, Zhicheng Jin, Haoran Chen, Hongyue Xu, Yunzhuo Wu, Wentao Qin, Yizheng Wu* Department of Physics, Fudan University, Shanghai, China

Sample and measurement system

Micromagnetic simulation

VNA-FMR measurement

- Magnetic field dependent(fix θ) \bullet
- gap

□ Micromagnetic simulation through mumax3

Model and parameters \bullet

Magnetic field dependent(fix θ) \bullet

saturation magnetization $M_s = 866 \text{ k A/m}$ exchange strength coefficient $A = 13 \times 10^{-12} \text{ J} / \text{m}$ damping coefficient $\alpha = 0.01$ single stripe size : $10\mu m \times w \times 40nm$, $w = 2 \mu m$ $d = 2.2 \mu m$

Conclusion

- ✓ Measured **high-resolution FMR** of Py stripes.
- Discovered magnon-magnon coupling (FMR and SWW) in single \checkmark

ferromagnetic material between different modes, which is **beneficial for** particle-less technology, where information will be carried and processed by magnons rather than by electrons.

✓ Verified the experimental results through **micromagnetic simulation** by

