

Spintronic Terahertz Self-Focusing Emission Modulated by Zone Plate Metasurfaces

W.T. Qin¹, S.X. Chen², J.Y. Liu², X.K. Wang², Y. Zhang², Y.Z. Wu¹

¹ Department of Physics, Fudan University, Shanghai, China ² Department of Physics, Capital Normal University, Beijing, China

Introduction

THz Emission Controlled by Metasurfaces

THz Longitudinal Polarization Focusing

Designs for Enhanced Focusing Efficiency

→ Constructive Interference

at the Focal Point

D2DZonePlateMetasurface

Metasurface heterostructure: W(2nm)/CoFeB(1.6nm)/Pt(2nm)

■**The spatial distribution of THz Intensity** Terahertz Propagation Simulation: **Fresnel Diffraction Integral Formula**

■1D Zone Plate Metasurface

The spatial distribution of THz Intensity

Special Magnetic Moment Distribution

- Vortex Distribution
- Vertical Electric Field Pulse
- Radial THz Beam

Radial Distribution

- Vertical Magnetic Field Pulse
- Azimuthally Polarized THz Beam

Summary

- Spintronic THz emitters utilizing zone plate metasurfaces enable THz self-focusing emission without the need for additional optical elements.
- On the basis of zone plates, we propose several sample configuration

capable of achieving longitudinal polarization focusing or vertical electromagnetic field pulses at THz frequency.