

Different terminal capping of tau PHF6 displays distinct effects on the structural

復四大學

stability of membrane-bound PHF6 fibril and fibril-induced membrane disruption

Tong Pan, and Guanghong Wei*

State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China

Fibril/Protofibri

Stabilize

Top view

1 | Introduction

Abnormal aggregation of tau into amyloid fibrils is closely linked to Alzheimer's disease and other neurodegenerative diseases [1]. Tau interacting with membranes is experimentally reported to promote protein fibrillization and disrupt membrane integrity [2], thus causing neurotoxicity. The hexapeptide PHF6 is the crucial fibril-nucleating core and widely serves as a model system to study the aggregation of tau proteins [3], while the effect of terminal capping on its interaction with membranes and the underlying mechanisms remain elusive. Herein, we perform extensive all-atom molecular dynamics simulations to investigate the interactions between four capping variants of PHF6 fibrils and membranes, as well as the resulting fibril stabilization and membrane disruption.

2 | Materials & Methods

3 | **Results** (a) The fibrillar structures of

PHF6 capping variants display different stability in solution

Ranking of stability: Ac-PHF6-NH₂>Ac-PHF6 >>>PHF6~PHF6-NH₂ (2>1>>>3~4)

The structural stability and order of all capping variants increase in the presence of membrane

Fig. 2. Comparison of fibril stability in solution (blue) and in the membrane environment (red).

System		RMSD (nm)	β-sheet probability (%)	Order parameter
Ac-PHF6	/	0.4660 ± 0.0007	57.8 ± 3.2	0.5695 ± 0.0996
	+membrane	0.3729 ± 0.0006	60.2 ± 2.5	0.5715 ± 0.0822
Ac-PHF6-NH ₂	\	0.4020 ± 0.0007	63.1 ± 2.6	0.5715 ± 0.0848
	+membrane	0.3556 ± 0.0005	63.5 ± 1.4	0.6352 ± 0.0597
PHF6	\	0.6986 ± 0.0007	47.9 ± 4.9	0.2430 ± 0.0858
	+membrane	0.5872 ± 0.0004	54.4 ± 2.5	0.3043 ± 0.1568
PHF6-NH ₂	\	0.8281 ± 0.0033	48.8 ± 4.7	0.2669 ± 0.0689
	+membrane	0.6000 ± 0.0017	49.8 ± 2.6	0.3817 ± 0.1736

Table 1. Stability for each capping variant of Tau₃₀₆₋₃₁₁ fibril in the absence/presence of membrane.

■ N-ter acetylated: similar improvement in stability

N-terminal modification determines the *Distinct Binding Modes* of PHF6 on lipid bilayers

Distinct fibril-membrane interactions result in varying degree of membrane thinning and lipid packing

Fig. 5. Analysis of protein-membrane interactions.

Top view

Disrupt

disruption.

1 2 3

System

Membrane

0.6

0.3

Distance (nm)

4 | Conclusion

Our simulations emphasize the pivotal role of N-terminal capping in modulating the fibrilmembrane binding. N-terminal acetylated fibrils bind on the bilayer surface primarily through lysine-lipid electrostatic attraction, leading to the increased stability of global fibril structures and localized membrane disturbance. Meanwhile, the binding modes of Nterminal free systems, characterized by peptide N-termini inserting into membranes, result

5 | **References**

- [1] Fitzpatrick, Anthony WP, et al. Nature 547.7662 (2017): 185-190.
- [2] Fanni, Adeline M., et al. Journal of Biological Chemistry 294.42 (2019): 15304-15317.

[3] Pretti, Evan, and M. Scott Shell. *Proceedings of the National*

Academy of Sciences 120.48 (2023): e2309995120.