Guidelines for Undergraduate Physics Labs

The undergraduate laboratory is an essential part of the physics curriculum because physics is inherently an experimental science. There are various documents discussing the goals and purpose of the undergraduate lab; however, the last AAPT policy statement on Introductory Lab Goals was approved in 1997.¹ During the last several years, increasing attention has been paid to the importance of the laboratory in physics instruction. The Physics Education Research Community has begun looking at the goals of the advanced undergraduate lab;²⁻⁹ laboratory practices are being incorporated into the new AP Physics 1 and 2 courses for high school students;¹⁰ and there are new high school science standards (Next Generation Science Standards) likely to be implemented in many states in the near future.¹¹ The Advanced Laboratory Physics Association (ALPhA) has brought focus to the undergraduate laboratory beyond the first year with topical conferences and its laboratory immersions, since its inception in 2007.¹² The topic of the 2010 Gordon Research Conference on Physics Education was on Experimental Research and Laboratories in Physics Education.¹³ In the past three years there have been several sessions, including four panels, at AAPT meetings on the pedagogy, goals, and assessment of the instructional labs. There has also been an effort within the AAPT to review the undergraduate curriculum, and this will soon turn into a joint review of the undergraduate physics curriculum.

In this laboratory guidelines document, thinking like a physicist and constructing knowledge pervades all of the specific lab goals articulated since the enterprise of physics is the construction of new knowledge. Physics is not just a subject; rather, it is a way of approaching problem solving, which requires direct observation and physical experimentation. Being successful in this endeavor requires one to synthesize and use a broad spectrum of knowledge; mathematical, computational, experimental, and practical skills; and particular habits of mind that might be characterized as thinking like a physicist. While there cannot be either a unique or exhaustive description of this behavior, the laboratory should contain experiences that explicitly support a department's goals for helping students think like physicists as it is locally conceived. Moreover, specific laboratory work often involves a wide variety of technologies, and students should become confident that they can quickly develop a working knowledge of a technology and/or seek appropriate expert technical advice. To this end, J.M. Pimbley wrote: "These days, a physics education ... offers the discipline and important tools for tackling new issues. Physics is the liberal arts education for a technological society."¹⁴

This document provides five focus points for the undergraduate lab curriculum. The first focus point, Constructing Knowledge, captures some of the overarching goals of the undergraduate lab curriculum while the remaining four focus points -- Modeling, Design, Technical Lab Skills, and Communication – provide concrete recommendations that will (1) train physics majors to think like physicists and perform experimental investigations at an appropriate level for graduate school or a research job in industry, (2) train future physics teachers in essential laboratory skills that they can use to develop rich courses and laboratory experiences for their students, and (3) train the introductory non-physics major to perform experimental investigations from a physicist's perspective which will broaden and strengthen their scientific endeavors in their own diverse fields.

A high-level discussion of each of these focus areas is given first followed by specific recommendations for implementation in undergraduate labs at the introductory and advanced lab levels. Some examples are also given; however, implementation of these recommendations will vary to some extent from one institution to another. Therefore, this document does not list specific equipment or software that the students must use or specific experiments that students must complete.

1. Constructing knowledge^{5,6,15,16}

The lab should get students to start thinking like physicists by constructing knowledge without relying on an outside authority. Through laboratory work, students should gain the awareness that they are able to do science and build confidence in their ability to do so. Students should be able to collect, analyze, and interpret real data from personal observations of the physical world as responsible scientists.

While direct instruction can have an appropriate and justifiable use (like teaching the students how to use a measuring device properly), laboratories that consist only of following cookbook instructions or verifying well-known constants do not provide students with experiences that support the student-centered construction of knowledge based on observation. Cookbook instructions do not provide an accurate representation of the experimental process. Activities that verify well-known constants should only be employed as a component of a carefully constructed curriculum. It should be evident to the student how the activity explicitly supports one of the experience categories below.

2. Modeling^{1,2,7-9}

Modeling entails developing a "conceptual representation of a real system." A model provides a link between theory and experiment and between a qualitative and quantitative understanding of a system. Models in physics tend to be

mathematical in nature, but often have a computational component as well. Simulation and numerical analysis, for example, are important parts of modeling. Modeling should also make explicit the "math-physics-data connection," statistical and systematic error analysis, and understanding sophisticated equipment (i.e. demystifying so-called "black-boxes").

3. **Design**^{1,3-6,8}

Guided inquiry or properly scaffolded open-inquiry-based labs better promote scientific reasoning than cookbook labs. Students should be capable of posing scientific questions and should be able to develop and engineer experiments to test models and hypotheses, often with certain constraints such as cost, time, and available equipment. And students should be able to troubleshoot systems using a logical, problem-solving approach. The hands-on experience of constructing an experimental set-up or apparatus and of troubleshooting it is a very important part of a laboratory experience.

4. Technical lab skills^{1,8}

Students should learn to make measurements using basic test equipment, correctly record these measurements, and to determine the appropriate equipment to use for particular measurements. Students should be able to use computers to acquire and to analyze data and should be able to critically interpret the validity and limitations of the data displayed. Students should develop practical laboratory skills throughout the undergraduate experience.

5. Communication^{8,17}

Communication is a process that involves creating and presenting results and ideas to others who are listening or reading, interpreting, and evaluating. Laboratory courses are excellent places to develop scientific communication skills, though scientific communication should be fostered throughout the curriculum as well. Students should learn to present reasoned arguments backed up by experimental evidence. Those arguments should include elements such as plots, tables, numerical results with uncertainties, and diagrams. Further, the overall format any style of presentation should be in forms authentic to the discipline: technical reports and journal-style articles, conference-style oral presentations, and scientific posters. Intrapersonal communication skills should also be developed in the lab through teamwork and collaboration.

Recommendations

Recommendations for student learning outcomes and experiences in the lab are given here for introductory and advanced lab levels. The outcomes and experiences defined at the introductory level are intended for majors and non-majors in their

introductory physics sequences. It is expected that advanced lab courses will meet and reinforce the recommendations for the introductory labs and add (and reinforce whenever possible) the next layer of skills. "Advanced lab" is defined as any lab beyond the introductory lab sequence, not just for labs titled "Advanced Lab." All of these recommendations need not be built into every laboratory course. Rather, the laboratory curriculum over the course of the major should include all of these recommendations at some point. The laboratory curriculum should be a spiral or scaffolded curriculum such that students develop and reinforce their skills throughout their undergraduate years, building from the introductory labs through the advanced lab curriculum. The recommendations for Constructing Knowledge are goals to strive for and build toward throughout the entire laboratory curriculum. Some of these recommendations can be introduced in the introductory sequence, but it may not be possible to build all of these recommendations into a non-majors introductory sequence. The recommendations for the other four focus points are broken into introductory and advanced lab recommendations in tables below. Some examples and discussion are also given in the table for these recommendations.

1. Constructing Knowledge	Recommendation	Discussion/Examples
The lab should get students to start	Students should be able to generate	Students should be provided multiple
thinking like physicists by constructing	questions that they would like to	instances during the four year
knowledge that does not rely on an	explore, determine which questions can	curriculum where they clearly see the
outside authority. Through laboratory	be answered through the development	entire cycle from asking a question to
work, students should gain the	of appropriate experiments, and	deciding between alternate explanations
awareness that they are able to do	understand the limits of	or models based on observation. When
science and build confidence in their	experimentation. When questions are	results are inconclusive, students should
ability to do so. Students should be able	poorly designed or not testable,	be given opportunities to revise either
to collect, analyze, and interpret real	students should be able to revise them.	their question or their experiment. This
data from personal observations of the		may be done either individually or in
physical world as responsible scientists.		groups.
	Students should be able to devise	
	falsifiable models or hypotheses	
	covering observable features of nature.	
	Students should be able to describe	
	experimental observations clearly,	
	accurately, and succinctly and identify	
	the most important physics concepts in	
	an experiment.	
	Students should be able to construct	
	arguments and identify trends based on	
	experimentally controlled observations.	
	Students should be able to transfer	For example, while students may learn
	knowledge between different contexts,	to use an oscilloscope in one setting,
	recognize connections between different	they should be able to apply their
	concepts, and reason by induction to	working knowledge of oscilloscopes in
	produce generalizations.	various contexts in order to make a
		range of measurements.

		T , 1			17 1
			tory Level		ced Level
2. Modeling		Recommendations	Examples	Recommendations	Examples
	Conceptual	Students should be	Students can use	Students should be	A particular
Modeling entails	Framework	able to choose the	Newton's Laws or	able to choose the	interpretation of
developing a "conceptual		appropriate	energy conservation	appropriate	quantum mechanics
representation of a real		conceptual	as a conceptual	conceptual	might motivate a single
system." A model		framework for the	framework to	framework for the	photon experiment or
provides a link between		(physical) situation	describe the motion	(physical) situation	the interpretation of
theory and experiment		being modeled.	of an object sliding	being modeled.	the results.
and between a qualitative			down an incline.		
and quantitative		Students should be	Such representations	Students should be	In a non-linear
understanding of a		able to switch	include verbal and	able to switch	dynamics experiment,
system. Models in physics		between model	written descriptions,	between model	students should be
tend to be mathematical in		representations.	analytical	representations and	able to provide a
nature but often have a			(mathematical)	apply multiple model	theoretical model and
computational component			models,	representations to a	construct a computer
as well. Simulation and			computational	given investigation.	model of the system
numerical analysis, for			models, physical		being investigated
example, are important			constructions		experimentally.
parts of modeling.	Assumptions	Students should	A student modeling	Students should	
Modeling should also	and	understand the	an object's motion	understand the	
make explicit the "math-	Simplification	assumptions,	without friction	assumptions,	
physics-data connection,"		limitations, and	should be able to	limitations, and	
statistical and systematic		simplifications	identify that friction	simplifications	
error analysis, and		inherent in their	has been neglected	inherent in their	
understanding		model and the	and what the	model and the errors	
sophisticated equipment		errors that might be	consequences of	that might be	
(i.e. demystifying so-called		introduced by these.	making this	introduced by these.	
"black-boxes").			simplification are.		

	Students should be aware that instruments need to be calibrated for proper use.		Students should calibrate their apparatus or ensure that their apparatus/ instrumentation is calibrated.	Students might use calibration standards to ensure an instrument is working as expected.
			Students should understand the instrumentation used in an experimental investigation, including any systematic errors or biases that might be introduced by these.	
Units and Estimation	Students should be able to estimate using appropriate units both inputs to and outputs from a	A student should have some understanding of what a quantity means physically	Students should be able to estimate using appropriate units both inputs to and outputs from a	A student might provide a back-of-the- envelope or order of magnitude estimate of the expected results of
	model of a system.	(<i>e.g.</i> what it means for a length to be 1 cm, 1 m, or 1 km) and a sense of scale in order to determine if a physical quantity is reasonable given	model of a system.	an experiment and do a preliminary analysis of the data to see if results seem reasonable before doing a full run.
		the system being modeled.)		

		Introduct	tory Level	Advanc	ed Level
3. Design		Recommendations	Examples	Recommendations	Examples
	Experimental	Students should	The student may be	Students should	The students are
Guided inquiry or properly	design	design a procedure	given an open-ended	define the scope of a	given some
scaffolded open-inquiry-		to test a model or	question (or have to	project or refine a	autonomy to ask a
based labs better promote		hypothesis or make a	ask a question about	question such that it	question (relevant to
scientific reasoning than		measurement of	a concept covered in	can be answered	the course), develop
cookbook labs. Students		something unknown,	class) and design an	feasibly given the	a hypothesis, and
should be capable of posing		accounting for the	experiment to test	available resources	design an experiment
scientific questions and		types, amount, range,	their hypothesis	or define the scope of	to test their
should be able to develop		and accuracy of data	given the equipment	a problem to be	hypothesis.
and engineer experiments		needed to give	available from the	investigated.	
to test models and		reproducible and	instructor.		
hypotheses, often with		accurate results.			
certain constraints such as				Students should	Students running a
cost, time, and available				plan/design an	counting experiment
equipment. And students				experimental	might consider the
should be able to				investigation, taking	source activity and
troubleshoot systems using				into account the	the \sqrt{N} statistical
a logical, problem-solving				types, amount, and	error associated with
approach. The hands-on				accuracy of data	a counting
experience of constructing				needed to give	experiment to
an experimental set-up or				reproducible and	determine how long
apparatus and of				accurate results.	to collect data.
troubleshooting it is a very				Students should read	Students can use the
important part of a				the literature to hone	literature to refine a
laboratory experience.				ideas for their	question or improve
				experimental design.	an experimental
					design.

Apparatus	Students should have		Students should	
Apparatus construction	a hands-on			
			design and construct	
and testing	opportunity to		an apparatus to carry	
	construct and/or set		out an experimental	
	up an apparatus, and		investigation given	
	then make		various constraints	
	measurements and	· ·	(time, cost, available	
	collect data using		materials, etc).	
	that apparatus to test			
	a model or			
	hypothesis. 👞			
Design	Students should do	Examples may	Students should take	This may include
assessment	basic	include ensuring	an iterative, logical	troubleshooting
and	troubleshooting.	apparatus are	approach to	electronics, ensuring
improvement		properly leveled or	troubleshooting their	proper alignment of
improvolitorio		balances / sensors	apparatus and	optics, or correcting
		are zeroed	refining their	for vacuum leaks.
			measurements and	for vacuum reaks.
			apparatus design.	
	Chudanha ahaadd		Students should	If a month and an light
	Students should			If a particular light
	understand the		understand the	detector has a
	limitations of their		limitations of their	wavelength
	experimental design,		experimental design,	dependent efficiency,
	including potential		including potential	students should
	sources of error.		sources of systematic	understand and
			error.	account for this when
				measuring a
				spectrum.
	*			

		Students should reflect on their results, consider how their experimental design (apparatus, data collection methods, etc) might have impacted the results, and suggest	At the introductory level, students might not have the time in lab to re-design and re-run an experiment, but it is worthwhile for them to think about possible refinements.	Students should reflect on their results and have an opportunity to improve their design.	
_	Collaboration	ways to improve their design. Students should	Students should	Students should	Students can divide
		work together in small groups to design and construct an experiment.	begin to collaborate in small groups to effectively design and construct an experiment.	work together in small groups to design and construct an experiment.	pieces of a project among themselves, but students should see and understand every part of the design and experimentation process.

		Introducto	ry Level	Advanced Level	
4. Technical Lab Skills		Recommendations	Examples	Recommendations	Examples
	Measuring	Students should be	During the course	Students should be	In an optics lab,
Students should learn to	devices and	able to use	of an introductory	able to understand	students should make
make measurements using	apparatus	measuring devices	lab, students	the measuring devices	relevant optics
basic test equipment,		and apparatus to	should, minimally,	and apparatus and	measurements (eg
correctly record these		make measurements	be able to measure	make measurements	beam quality and
measurements, and to		consistent with the 🐂	time, distance,	appropriate to the	characterization) and
determine the appropriate		content covered in	mass,	content of the course	constructing optical
equipment to use for		class	temperature,		systems (e.g.
particular measurements.			voltage, and		interferometers,
Students should be able to			current.		quantum optics/single
use computers to acquire					photon experiments)
and to analyze data and		Students should be	When making a	Students should be	An example would be
should be able to critically		able to understand	length	able to use and	determining the
interpret the validity and		the limitations of	measurement,	understand the	optimal device for light
limitations of the data		measuring devices	students can select	limitations of	collection based on
displayed. Students should		and choose an	an appropriate	measuring devices	wavelength of light:
develop practical		appropriate device	device (e.g. ruler,	and sensors.	InGaAs photodiode,
laboratory skills		for making the	caliper, or		Silicon photodiode,
throughout the		measurement.	micrometer).		PMT, NaI crystal, etc.
undergraduate experience.					
		Students should	Students should	Students should make	These could include:
		make measurements	understand that	several different types	1) Counting
		with various analog	every measuring	of standard	measurement (e.g.,
		and digital devices	device has an	laboratory	photons or particles)
		and determine errors	associated	measurements.	2) Small signal
		on those	uncertainty.		measurement (e.g,
		measurements.			using lock-in amps or

omputation kills	Students should use a computer to do basic data analysis.	Students should be able to make plots and tables as well as perform basic curve fitting and statistics (e.g. mean and standard deviation) using a computer.	Students should use a computer to do sophisticated data analysis.	interferometry) 3) Resonance measurement (e.g., atomic or NMR) 4) Time-series measurement (e.g., power spectral density) 5) Precision measurement (e.g., precision well beyond the typical laboratory uncertainty of ~1%) Students should be able to make plots and tables, do curve-fitting, do basic statistical analysis proficiently, and do some higher- level statistical analyses (e.g. Poisson statistics, correlations, Baysian analysis, design of experiment, confidence intervals)
			Students should use a	confidence intervals). Examples may include
			computer to interface	using commercial
			to experimental	software and data
			apparatus for data	collection tools to
			acquisition.	interface with an
			acquisition.	

Practical skills	Students should begin developing some practical, hands-on lab skills.	be constructing the op and analyzing devel	ents should have opportunity to lop some tical, hands-on kills.	apparatus. Examples may include soldering, machining, building and/or troubleshooting a vacuum system, aligning optics, computer interfacing to system for automation and/or
				data acquisition.

		Introdu	ictory Level	Advan	ced Level
5. Communication		Recommendations	Examples	Recommendations	Examples
	Creation/	Students should	Students should be able	Students should	
Communication is a	Presentation	develop clearly	to use their data to	develop clearly	
process that involves		stated scientific	generate claims and	stated scientific	
creating and		arguments that	back up the stated	arguments that	
presenting results and		proceed from a	conclusions.	proceed from a	
ideas to others who		clearly stated		clearly stated	
are listening or		question to the		question to the	
reading, interpreting,		presentation of		presentation of	
and evaluating.		evidence, the		evidence, the	
Laboratory courses		evaluation of that		evaluation of that	
are excellent places to		evidence, and the		evidence, and the	
develop scientific		conclusions.		conclusions.	
communication skills,		Students should	Students should:	Students should	Students should:
though scientific		make scientific	i. Use technical	make scientific	i. Use technical
communication should		arguments using a	vocabulary	arguments using a	vocabulary
be fostered throughout		number of standard	appropriate for the	number of standard	appropriate for the
the curriculum as well.		elements of	physics content and	elements of technical	physics content
Students should learn		technical	apparatus used in	communication.	and apparatus used
to present reasoned		communication.	the introductory lab.		in the advanced lab.
arguments backed up			ii. State measurement		ii. State measurement
by experimental			and analysis data		and analysis data
evidence. Those			with significant		with significant
arguments should			digits and		digits and
include elements such			uncertainty.		uncertainty.
as plots, tables,			iii. Present data in		iii. Present data in

numerical results with uncertainties, and diagrams. Further, the overall format any style of presentations should be in forms authentic to the discipline: technical memos and/or reports and journal-style articles, conference- style oral presentations, and scientific posters. Intrapersonal communication skills should also be developed in the lab through teamwork and collaboration.	Students should able to communicate the results effectivel oral and written forms that can smoothly transit to more authenti forms of scientifi communication i	eir y in ion ic ic	Students should be able to communicate their results effectively in forms authentic to the discipline.	tables and plots. iv. Use a variety of plot formats and styles relevant to their experiments (lin-lin, log-lin, polar, Bode, etc.) v. Make basic scientific diagrams or schematics of apparatus. Students should be able to write technical memos and/or reports for a research group, basic journal-style articles, short oral presentations, and poster presentations.
	advanced labs. Students should begin using a lab notebook to reco significant aspec of their experime	description/sketch of the apparatus, procedure, data, and	Lab notebooks should be of sufficient quality for beginning PhD-level research.	The format of notebook entries, the handling of mistakes, and the use of the notebook should be more sophisticated and authentic to the discipline than in

			introductory labs.
Interpretat	tion Students should be	Students should be	
and	able to identify the	able to identify the	
Evaluation	claims, theoretical	claims, theoretical	
	background,	background,	
	experimental	experimental	
	evidence, and logical	evidence, and logical	
	connections that	connections that link	
	link their own	their own argument	
	argument together.	together.	
	Students should be	Students should be	
	able to interpret a	able to interpret a	
	number of standard	number of standard	
	components of	components of	
	technical	technical	
	communication,	communication,	
	including	including advanced	
	vocabulary,	vocabulary,	
	numerical results	numerical results	
	with uncertainty,	with uncertainty,	
	tables, and figures.	tables, plots, and	
		figures.	
	Students should be	Students should be	
	able to evaluate	able to evaluate and	
	their own	critique their own	
	presentations for	work, which includes	
	both the quality of	evaluation of the	
	the scientific	quality of the	
	arguments and the	scientific argument	
	style.	and overall	

			presentation style.	
		Students should be	Students should be	Students could
		able use their lab	able to evaluate the	participate in a
		notebook as a	work of others and	simulated peer review
		record for	provide constructive	process.
		explaining the	feedback that could	_
		details of their work	be used to improve	
		in any written	the quality of their	
		summaries.	peers' scientific	
			investigations and	
			presentations.	
			Students should be	
			able use their lab	
			notebook as a tool	
			for organizing more	
			complex	
			experimental	
	-		investigations and	
			for recording	
			experimental details	
			that will be referred	
			to in oral or written	
			presentations.	
Co	ollaboration	Students should be	Students should be	
		able to effectively	able to effectively	
		plan and carry out	plan and carry out	
		experiments and	experiments and	
		discuss ideas in	discuss ideas in small	
		small groups as part	groups as part of the	
		of the overall	overall scientific	

	scientific process.	process.	
	-		

As mentioned above, these recommendations represent the minimum exposure to laboratory skills and habits that an undergraduate physics student should develop during the course of the physics major. How these recommendations are implemented will vary from institution to institution depending on things like resources available; however, they are general enough that they are universally accessible. Universities that have the expertise or resources to go above and beyond these recommendations are encouraged to do so in order to provide their majors an even richer laboratory experience. In the end, there are several reasons for embedding these recommendations in the laboratory curriculum. They give non-physics majors exposure to thinking like a physicist and introduce them to the skills and methods of physics, which are transferrable to their own disciplines. Moreover, implementing these recommendations will improve the training of the next generation of physicists and prepare them well for graduate school and for employment in the technology job sector and many other employment sectors. Students will come out of the physics major with the ability to think like a physicist and construct knowledge and will have a variety of highly transferrable skills.

This document was prepared by a subcommittee of the AAPT Committee on Labs:

Nancy Beverly (Mercy College); Duane Deardorff (University of North Carolina); Richard Dietz (University of Northern Colorado); Melissa Eblen-Zayas (Carlton College); Robert Hobbs (Bellevue College); Dean Hudek (Brown University); Joseph Kozminski, Chair (Lewis University); Heather Lewandowski (University of Colorado); Steve Lindaas (Minnesota State University Moorhead); Ann Reagan (IEC Services); Randy Tagg (University of Colorado Denver); Jeremiah Williams (Wittenberg University); Benjamin Zwickl (Rochester Institute of Technology)

¹American Association of Physics Teachers, "Goals of the Introductory Physics Laboratory" Phys. Teach. **35**, 546-548 (1997)
²E. Brewe, "Modeling theory applied: Modeling Instruction in introductory physics" Am. J. Phys **76** (12) 1155-1160 (2008).
³E.Etkina, et al., "Design and Reflection Help Students Develop Scientific Abilities: Learning in Introductory Physics Laboratories" I. Learn. Sci., **19** (1) 54-98 (2010).

⁴E. Etkina, A. Murthy, and X. Zou, "Using introductory labs to engage students in experimental design" Am. J. Phys. **74**(11) 979-986 (2006).

⁵A. Hofstein and V. Lunetta, "The Laboratory in Science Education: Foundations for the Twenty-First Century" Sci. Educ. 88 (1) 28-54 (2004).

⁶A. Karalina and E. Etkina, "Acting like a physicist: Student approach study to experimental design" Phys. Rev. ST Phys. Educ. Res. **3**, 020106-1 – 020106-12 (2007).

⁷S. Pillay, et al., "Effectiveness of a GUM-compliant course for teaching measurement in the introductory physics laboratory" Eur. J. Phys. **29** 647-659 (2008).

⁸B.M. Zwickl, N. Finkelstein, H.J. Lewandowski, "Transforming the advanced lab: Part I - Learning goals" AIP Conf. Proc. **1413**, 391 (2012).

⁹B.M. Zwickl, N. Finkelstein, H.J. Lewandowski, "Incorporating learning goals about modeling into an upper-division physics laboratory experiment" arXiv:1301.4414v2 (2013).

¹⁰CollegeBoard, "AP Physics 1: Algebra-based and AP Physics 2: Algebra-based Curriculum Framework 2014–2015" (2012) < http://advancesinap.collegeboard.org/math-and-science/physics>.

¹¹NGSS Lead States, *Next Generation Science Standards: For States, By States* (National Academies Press, Washington D.C., 2012).

¹²Advanced Laboratory Physics Association, <http://www.advlab.org>

¹³Gordon Research Conference on Physics Research & Education: Experimental Research and Labs in Physics Education

<http://www.grc.org/programs.aspx?year=2010&program=physedu>

¹⁴J.M. Pimbley, "Physicists in Finance" Phys. Today **50** (1) 46 (1997).

¹⁵P. Blanton, "Constructing Knowledge" Phys. Teach. **41**, 125-126 (2003)

¹⁶Ethics and Values: APS Guidelines for Professional Conduct, <http://www.aps.org/policy/statements/02_2.cfm>

¹⁷I. Rodriguez, "Communicating scientific ideas: One element of physics expertise" AIP Conf. Proc. **1413**, 319-322 (2012)