Temperature Control the Ptoton-Exciton Coupling for a

Quantum Dot Embedded in Pillar Microcavity

Jian Lu¹, Qijun Ren¹, H. Tan², Shan Wu³, Liaoxin Sun¹, Hongxing Dong¹, Weihang Zhou¹, Wei Xie¹, Yanjing Lin¹, C.Jagadish², Xuechu Shen¹ and Zhanghai Chen¹

¹Surface Physics Laboratory, Department of Physics, Fudan University, Shanghai, 200433, China

²Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian, National University, Canberra, ACT 0200, Australia
³National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

Semiconductor microcavity that provide non-classical light states, offer unique means of controlling light-matter interactions in confined geometries and have a broad range of applications in quantum information science including single-photon sources, quantum computation and quantum communication. In recent years, cavity quantum electrodynamics (QED) effects have been studied in varieties of solid-state systems. Here, we present a direct approach for the fabrication of self-assembled III-V quantum dots embedded in a pillar microcavity utilizing focused ion beam (FIB) etching. By tuning the temperature to control the coupling of the quantum dots with a discrete cavity mode, we observe a considerable Purcell enhancement effect and the temperature dependent behavior of single quantum dot is also studied.