

Field-induced quantum critical point and nodal superconductivity in the heavy-fermion superconductor Ce₂PdIn₈

Jinkui Dong,¹ H. Zhang,¹ X. Qiu,¹ B. Y. Pan,¹ Y. F. Dai,¹ T. Y. Guan,¹ S. Y. Zhou,¹ D. Gnida,² D. Kaczorowski,² and Shiyan Li¹

¹Department of Physics, Fudan University, Shanghai, China

²Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland

The interplay between magnetism and superconductivity has been a central issue on unconventional superconductors. The Ce-based series $Ce_n T In_{3n+2}$ (T = Co, Rh, Ir) heavy-fermion superconductors have quasi-2D crystal structure and an enhanced Maki parameter α [1, 2]. The best candidate for an FFLO state known to date has been identified in CeCoIn₅ with $T_c = 2.3$ K at ambient pressure [3]. The possible FFLO state at the low-temperature-high-field (LTHF) corner of the *H-T* phase diagram has stimulated extensive studies.

Recently, it was found that Ce₂PdIn₈ is also a heavy-fermion superconductor with $T_c = 0.68$ K. Ce₂PdIn₈ may also fulfill the requirements for the formation of FFLO state. Our low temperature transport results suggest that Ce₂PdIn₈ may also have exotic superconducting state as in $CeCoIn_{5}$ [3].

Fig. (a) shows the in-plane resistivity of Ce₂PdIn₈ single crystal in zero field. The curve is very smooth below 20 K, showing no impurity phases in the sample, especially the antiferromagnetic CeIn₃ with $T_N \sim 10$ K.

In Fig. (b), the low-temperature $\rho(T)$ in magnetic fields H||c up to 11 T are plotted. From the zero-field data, $T_c = 0.68$ K is obtained, which is defined at the 10% of the normal-state value. The 10%-90% transition width is only 20 mK. It is found that $\rho(T)$ obeys T-linear dependence nicely above $T_c = 0.68$ K, up to about 2 K. A linear fit of the data between 0.7 and 1.5 K gives a residual resistivity $\rho_0 = 2.41 \ \mu\Omega \ cm$.

In zero field, k/T of Ce₂PdIn₈ behaves similarly to that of CeCoIn₅ [5], increasing

With increasing field, T_c gradually decreases, to 50 mK at H = 2.32 T. This field is determined as the bulk H_{c2} for H||c. In slightly higher field H = 2.4 T, the resistive transition is completely suppressed, and the *T*-linear behavior of normal-state $\rho(T)$ persists all the way down to 50 mK. In H > 2.4 T, The curves show clear deviation from the *T*-linear dependence. The data of *H* = 2.4, 3, 4, 5, 6, 8, and 11 T are plotted as ρ vs T² in Fig. (c). It is clearly seen that a Fermi liquid behavior of resistivity, $\rho \sim AT^2$, develops with increasing field. The inset of Fig. (d) plots the field dependence of the coefficient A, which tends to diverge towards H_{c2} = 2.32 T. The fitting of $A = A_0 (H - 2.32)^{\alpha}$ gives $\alpha = -0.57 \pm 0.02$.

Based on these resistivity results, we have constructed an *H*–*T* phase diagram for Ce₂PdIn₈ in the main panel of Fig. (d). Such a phase diagram is very similar to that of CeCoIn₅ [4], showing that there is also a field-induced QCP at H_{c2} .

below T_c , showing a broad peak at ~ 0.45 K, then decreasing towards T = 0. Below 250 mK, $k/T \propto T$ and extrapolates to $k_0/T = 2.09 \pm 0.02$ mW K⁻² cm⁻¹, more than 20% of the normal-state value. The significant k_0/T of Ce₂PdIn₈ is a strong evidence for nodes in the superconducting gap. The H = 2.4 T curve is fitted to k/T = 1/(a + bT). The extrapolation gives k_0/T (2.4 T) = $1/a \approx 9.28$ mW K⁻² cm⁻¹. This value is about 94% of the WF law expectation. The rough satisfaction of WF law in the normal state shows that our thermal conductivity data are reliable.

We plot k/T at 60 mK, normalized to its normal-state value, vs H/H_{c2} in Fig. (f). At low field $(H/H_{c2} < 0.5)$, k(H)/T of Ce₂PdIn₈ shows downward curvature as in TI-2201 [6], providing further support for the nodes. A sharp jump of k(H)/T is found near H_{c2} , which hints that the superconducting to normal state transition at very low temperature is first-order-like.

Conclusions

- \blacktriangleright Resistivity measurements of the Ce₂PdIn₈ show a field-induced quantum critical point occurrs at the upper critical field H_{c2} .
- \succ Large residual linear term κ_0/T at zero field and the rapid increase of $\kappa(H)/T$ at low field give evidences for nodal superconductivity in Ce₂PdIn₈. The jump of $\kappa(H)/T$ near H_{c2} suggests a first-order-like phase transition at low temperature.

[1] S.Raj et al., Phys. Rev. B 71, 224516 (2005). [2] Christian Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009). [3] Y. Matsuda, H. Shimahara, J. Phys. Soc. Jpn. 76, 051005 (2007). [4] J. Paglione et al., Phys. Rev. Lett. 91, 246405 (2003). [5] G. Seyfarth et al., Phys. Rev. Lett. 101, 046401 (2008).

[6] C. Proust et al., Phys. Rev. Lett. 89, 147003 (2002).

