A theoretical study on the conversion efficiencies of gradient meta-surfaces

Che Qu1, Shiyi Xiao1, Shulin Sun2, Qiong He1, and Lei Zhou1*

1. State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Physics Department, Fudan University, Shanghai, 200433, China
2. National Center for Theoretical Sciences at Taipei (Physics Division) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan

Motivations:
In a recent work (Sun S. et al., Nat. Mater., 11 (2012) 426), nearly 100\% efficiency of the conversion of an incident propagating wave (PW) to an obliquely outgoing PW or even a surface wave (SW) is demonstrated in an ideal gradient meta-surface (GM).

However, practical systems might have non-equal and \(\varepsilon_r(x) \) and \(\mu_r(x) \) profiles and sometimes use supercells to truncate the profiles to avoid using too large values of \(\varepsilon \) and \(\mu \).

Here, based on non-ideal GM systems, we systematically studied the factors that influence the efficiencies of such conversion processes (both PW-PW and PW-SW).

I. Efficiency issues of model GMs

(A) Methods

\[R_{\text{PW-PW}} = \sin^2 \left(\frac{k_d}{\varepsilon_r/k_\theta} \right) \]

- To study the conversion efficiency for the PW-PW process, we calculate the reflectance:

\[R_{\text{PW-PW}} = \rho_k \sqrt{1 - \left(\frac{k_d}{k_\theta} \right)^2} \]

- For the PW-SW process, \(k_{SW} = \xi > k_\theta \).

Use an eigen-SPP guide material with \(k_{SW} = k_{GM} \) and calculate the power flow ratio as the PW-SW conversion efficiency.

(B) PW-PW conversion efficiency

- How to generate the systems we want to study:

We assume \(\varepsilon_r(x) = 1 + \alpha \cdot \varepsilon_\theta x / 2k_\theta d \) and then retrieve \(\mu_r(x) \) by letting the calculated reflection phase

\[\Phi(x) = \cos^{-1} \left(\frac{\varepsilon_r(x) + \mu_r(x)}{\varepsilon_r(x) \mu_r(x)} \right) \]

satisfy the given

\[\Phi(x) = \Phi_0 + \xi x \]

\(\alpha \in [0, 1] \), a parameter to measure the degree of impedance mismatch: from completely impedance-mismatched to impedance-matched

(C) PW-SW conversion efficiency

\[R_{\text{PW-SW}} = \frac{1}{2} \cdot \frac{1}{1 + \beta} \cdot \frac{1}{1 - \beta} \]

Where \(\beta = \frac{\mu_r(x)}{\varepsilon_r(x)} \)

II. An improved model GM with enhanced efficiency

- The GM system working as a PW-SW converter can work even with a very small total length.

III. Conversion efficiencies of realistic GM systems

The PW-PW conversion efficiency for a realistic GM

\[R_{\text{PW-PW}} = \frac{\int_{\Omega} P_i(\Omega) d\Omega}{\int_{\Omega} P_0(\Omega) d\Omega} \]

Conclusions:

- We know the key factor affecting the conversion efficiency is the super periodicity scattering through the study of model GM.
- Our improved model GM can describe the realistic GM better.
- Probable application in miniaturized situations where a grating coupler is not suitable.

We found that while intra-supercell impedance-mismatch can hardly affect the conversion efficiencies, the scatterings caused by inter-supercell discontinuities can have non-negligible effects on the PW-SW conversion efficiency.

References: