Derivation of an effective model for plasmonic coupling

Meng Qiu*, Bin Xi, Shiyi Xiao, Hao Xu, and Lei Zhou
State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, 200433, China qium@fudan.edu.cn

Abstract

Based on a recently developed tight-binding theory for dispersive photonic systems, we rigorously derived an effective model to describe the plasmonic couplings between nanoparticles of general shape. The effective model was justified by full-wave simulations in different plasmonic coupled systems with distinct geometry. We show that the coupling strength between certain plasmonic nanoparticles can be tuned through changing the orientations of nanoparticles, leading to many fascinating physical phenomena such as ultra-slow-wave plasmon propagation and Rabi-like oscillations.

Motivations:

Couplings are essential in many fascinating physical phenomena [2-4].

Problems

- Physical understandings are mostly based on full-wave simulations.
- Available theories are empirical (parameters from simulation) restricted to certain geometries

Question

PFind a complete effective model

- From "ab-initio" theroy
- Describing both electric and magnetic interactions

I. Theroy

, Tight-binding method (TBM) [5] Hamiltonian operator:

$$
\hat{\mathrm{H}}=\left(\begin{array}{cccc}
0 & i \mu^{-1} \nabla \times & 0 & 0 \\
i \varepsilon_{\infty}^{-1} \nabla \times & 0 & 0 & i \varepsilon_{\infty}^{-1} \\
0 & 0 & 0 & -i \\
0 & -i \omega_{p}^{2} \varepsilon_{\infty} & i \omega_{e}^{2} & i \Gamma
\end{array}\right),|\varphi\rangle=\left(\begin{array}{c}
\vec{E} \\
\vec{H} \\
\vec{V} \\
\vec{P}
\end{array}\right)
$$

For single particle:
$\left(\hat{\mathbf{H}}_{n}+\hat{\mathbf{V}}_{1}\right)|\Phi(\vec{r})\rangle=2 \pi f_{0}|\Phi(\vec{r})\rangle$
(2)

Eigen frequencies of coupled system: $\operatorname{det}\left[f_{0} \delta_{i j}+t_{i, j}-f \delta_{i j}\right]=0$
(3)

Where
$t_{i, j}=\left\langle\varphi_{i}\right| \sum_{l \neq j} \hat{\mathbf{V}}_{i}\left|\varphi_{j}\right\rangle /(2 \pi\langle\Phi \mid \Phi\rangle),\left(\left|\varphi_{i}\right\rangle=\left|\Phi\left(\vec{r}-\vec{R}_{i}\right)\right\rangle\right)$
Eq.(3) gives the frequency splitting: $\Delta f=f_{+}-f_{-}=2 t_{1,2}$
From eq.(4) using multiple expansion:
$t_{1,2}=\frac{f_{r}}{2\langle\Phi \mid \Phi\rangle_{\text {СІвМ }}} \int_{S 1} d \vec{r}\left[\left(\varepsilon_{h}-\varepsilon_{s}\left(\omega_{r}\right)\right) \vec{E}_{r}^{*}\left(\vec{r}-\vec{R}_{1}\right) \cdot \vec{E}_{r}\left(\vec{r}-\vec{R}_{2}\right)\right]$
$=-\frac{f_{0}}{2} \int_{s 1} d \vec{r}\left[\vec{P}_{1}^{*}(\vec{r}) \cdot\left(-\nabla \varphi_{2}(\vec{r})+\left(i \omega_{0}\right) \vec{A}_{2}(\vec{r})\right)\right]=t_{1.2}^{(E)}+t_{1.2}^{(H)}$
$=t_{n}$
$f_{0}(k d)^{2}\left(\vec{p}_{p}^{*} \cdot \vec{p}_{2}+(\vec{p} \cdot \vec{d})(\vec{p}, \vec{d})\right)$
$=t_{p p}-\frac{f_{0}}{2} \frac{(k d)^{2}}{8 \pi \varepsilon_{0}}\left(\frac{\vec{p}_{1}^{*} \cdot \vec{p}_{2}+\left(\vec{p}_{1}^{*} \cdot \hat{d}\right)\left(\vec{p}_{2} \cdot \hat{d}\right)}{d^{3}}\right)+i \frac{f_{0}}{2} \frac{\omega_{0}}{4 \pi \varepsilon_{0} c^{2} d^{3}} \vec{p}_{1}^{*} \cdot\left(\vec{m}_{2} \times \vec{d}\right)+t_{m n}$ $t_{1,2}=t_{p p}+t_{p p}^{r a d}+t_{p m}+t_{m m}$
(7)

Electric dipolar

Radiation	Interaction

Magnetic dipolar
interaction
correction between
P and M
[1] B. Xi, et al. unpublished
[2] N. Liu, et al., Nature Photonics, 3, 157 (2009)
[3] S.-C. Yang, et al., Nano Lett., 10, 632 (2010)
[4] S. Kim, et al., Nature, 453, 757 (2008)
[5] B. Xi, et al., Phys. Rev. B, 83, 165115 (2011)
[6] R. Marqués, et al., IEEE Trans. Antennas Propag, 51,2572 (2003)

II. Simulation

- Frequency splitting
$\Delta f=f_{+}-f_{-}=2 t_{1,2}$

- TEM mode $\longrightarrow f_{0} f_{+}$

TE10 mode $\rightarrow f$.

- Get two modes independently
- Electric dipolar interaction

- gold nanorods deep subwavelength (16nm long and 8 nm wide)
- Coupling strength depends on: Orientations distance
- Electric Radiation Correction
$t_{1,2} \approx t_{p p}+t_{p p}^{n d x}=\frac{f_{0}|\vec{p}|^{2}}{8 \pi \varepsilon_{0}\langle\Phi \mid \Phi\rangle d^{3}} \cdot\left[\left(1-\frac{(k d)^{2}}{2}\right)-\left(3+\frac{(k d)^{2}}{2}\right) \cos ^{2} \theta\right]$ $A=\Delta f\left(\theta=90^{\circ}\right) / \Delta f\left(\theta=0^{\circ}\right)$

- gold nanorods NOT deep subwavelength (80nm long and 40 nm wide)
- Magnetic dipolar interaction $\Delta f=2 t_{p p} \approx \frac{f_{0} \mu_{0}}{4 \pi} \frac{\left(1-3 \cos ^{2} \theta\right)|\vec{m}|^{2}}{d^{3}}$
- BC-SRR [6]:
- Pure Magnetic resonance
$R=4.8 \mathrm{~mm} t=1.0 \mathrm{~mm}$ $S=0.8 \mathrm{~mm} \quad d=0.7 \mathrm{~mm}$

- Coupling strength depends on: Orientations Distance
- EM Cross-interacting Term $t_{1,2} \approx t_{p p}+t_{p p}^{r a d}+t_{m m}+t_{p m}$ $=\frac{f_{0}}{8 \pi\langle\Phi \mid \Phi\rangle d^{3}}\left\{\frac{|\overrightarrow{\mid \vec{c}}|^{2}}{\varepsilon_{0}} \cdot\left[\left(1-\frac{(k d)^{2}}{2}\right)-\left(3+\frac{(k d)^{2}}{2}\right) \cos ^{2} \theta\right] \pm \mu_{0}|\vec{m}|^{2} \mp \frac{\omega_{0}|\vec{p}||\bar{m}| d}{\varepsilon_{0} c^{2}} \sin \theta\right.$

III. APPLICATIONS

- Dispersions of plasmonic modes in a gold nanorods chain with different orientation angle $\boldsymbol{\theta}$
($f=f_{0}-t_{1,2} \cos (k a)$, a is the lattice constant),
- ultra-slow plasmon transport velocity at particular angle near 45°
- Rabi-like oscillations between two nanorods

Conclusions

- An Effective model is derived for coupling in general plasmonic systems
- Derived from first principles (directly based on Maxwell Equations)
- Verified by full wave simulations
- Some fascinating phenomena demonstrated

