Partial information, market efficiency, and anomalous continuous phase transition

G. Yang, W. Z. Zheng and J. P. Huang

Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China.

Introduction

- Everyday we have to compete with each other for limited resources.
- Everyone wants to get complete information before making decisions.

Efficient-market hypothesis:

- √ Weak-form: prices adjust to the technical information rapidly. Hence, no one can give a correct prediction by analyzing the past prices.
- ✓ Semi-strong-form: prices adjust to the publicly available new information rapidly. Hence, no excess returns can be earned by trading on that information.
- ✓ Strong-form: prices reflect all the public and private information and no one can earn excess returns.

Is complete information really good for both individuals and markets?

Resource Allocation System:

The most efficient state

Optimal state $M_1/N_1 = M_2/N_2$ and with lowest fluctuation level

The System

information

Agents

Model

Table 1. A particular strategy.	
Exogenous situation	Choice
1	0
2	1
3	1

Strategies:

- P possible situations.
- Choice 1 for Room 1; 0 for Room 2.
- Each agent creates S strategies: with probability of L/P to fill 1 in the choice column, where L is randomly drawn from [0, P].
- A situation is drawn randomly from [1, P] at every time step.
- Each agent uses his/her best-scored strategy to make decisions under the current situation.
- Every strategy will be evaluated based on the "winning" room unveiled.

Experiment

To validate the model design:

- We recruit 25 students from the Department of Physics at Fudan
- Each set of parameters (k and M_{\downarrow}/M) is conducted for one round with 15 time steps.

Results

Fig. 1: Well fitness between the values of $\langle N_1 \rangle / N$ from experiments and simulations.

- Fig. 2: Even for k=0.2, the system can almost reach the optimal state $M_1/N_1=M_2/N_2$.
- Fig. 4: For system with infinite number of agents. $f = (1/N) \langle (N_1 \langle N_1 \rangle)^2 \rangle$, $\sigma^2(f) = \overline{f^2 (\overline{f})^2}$

Conclusions

- Even for a very low level of partial information, the system can still almost reach the optimal state.
- Ensemble average of the simulated system's fluctuation level undergoes a continuous phase transition, showing that in the abnormal phase more information can hurt the system's stability instead (complete information is not good for the system's efficiency).
- At the critical point, ensemble fluctuations of fluctuation level remain at a low value which is in contrast to the textbook knowledge about continuous phase transitions.
- When the number of agents becomes infinite, there still exists this anomalous fluctuation transition phenomenon.