

Antiferromagnetic domain nucleation and domain walk propagation in epitaxial Fe/CoO System Qian Li¹, Jie Zhu¹, Gong Chen², Alpha N'Diaye², Tianping Ma¹, Yan Huo¹, Yizheng Wu ¹Department of Physics, Fudan University, Shanghai, China ²NCEM, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Introduction

Abstract: Antiferromagnetic (AFM) domain dynamics has been studied in the single-crystalline Fe/CoO system by magneto-optic Kerr effect (MOKE) measurement and X-ray linear dichroism (XMLD). This report showed that AFM domain could be tuned with magnetic field through ferromagnetic/antiferromagnetic interface exchange coupling. For the first time, two mechanisms of AFM domain dynamics- AFM Domain nucleation and domain wall propagation are clearly studied.

FM domain reversal

Antiferromagnetic

Pining layer in spin valve structure

Magnetic recording head

AFM spintronics AFM TAMR effect

AFM AMR

Conclusion

1. We develop a universal formula to describe the antiferromagnetic domain dynamics in epitaxial Fe/CoO system.

2. Antiferromagnetic domain nucleation and domain wall propagation energy barrier can be determined from temperature dependence measurement. Energy

