Low-threshold optical bistabilities in ultra-thin plasmonic films

Shiwei Tang^{1,†}, Baocheng Zhu,¹ Shiyi Xiao,¹ Jung-Tsung Shen,² Lei Zhou^{1,*}

¹State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China

²Department of Electrical and Systems Engineering, Washington University in St. Louis

[†]tsw@fudan.edu.cn *phzhou@fudan.edu.cn

Backgrounds:

Optical bistability can be used as optical switching, optical memories, optical transistors, optical diode, and optical computing.

Problem:

- Incident light needs high \bullet power
- **Devices must be comparable** \bullet to wavelength to sustain a FP mode

Motivation:

• A new mechanism to achieve

Discussions:

Film-thickness dependences of the threshold field and saturation field

OB at low input power

Device with a miniaturized size

Threshold of HMP much smaller than FP slab

Mechanism is different: k=0 mode and field enhance

OB threshold and saturation fields in systems with different thicknesses

> Transmission peaks insensitive to film thickness h > Transmission peak is narrowed when h is increased

Linear results:

Schematic of the holey metallic plate (HMP) device

Yellow region: metal **Blue region: Kerr material**

Nonlinear results:

Transmission spectra

- > Red shift when dielectric of Kerr material increases
- > FDTD calculation agrees with Model calculation
- Thickness is only 1/25 of the wavelength Threshold independent of the film thickness ◆ Saturation increases when *h* increased Strongly depend on width of the aperture Difference between FDTD and model
- because of self-phase modulation

Model calculation

Linear transmittance at normal incidence

$$T = \left| \frac{4Y_0 Y_{\text{hole}} e^{iq_z h}}{\left(Y_0 + Y_{\text{hole}}\right)^2 - \left(Y_0 - Y_{\text{hole}}\right)^2 e^{2iq_z h}} \right|^2$$

> Permittivity of the Kerr medium > E field enhanced by the area correction and $(1/S_0)^2$

$$S_0 = \frac{\int_{\text{hole}} (\vec{E}^{\text{inc}})^* \cdot (\vec{E}^{\text{wg}}) dx dy}{\sqrt{\int_{\text{unit cell}} |\vec{E}^{\text{inc}}|^2 dx dy} \cdot \int_{\text{hole}} |\vec{E}^{\text{wg}}|^2 dx dy}}$$

 \succ S₀: Overlapping integral between incident wave & fundamental waveguide mode \succ S₀: Characterizes the Q-factor and field enhancement inside the aperture

Threshold decreases when S_0 becomes smaller Threshold is independent on *h*

Conclusions:

 Ultra-low bistability threshold $(4.85 \times 10^{16} V^2/m^2)$ that is 3500 times smaller than conventional optical bistable device •Operation in a wavelength of 1500 micron (~0.2 THz), the thickness of the device can be as thin as 60 microns (1/25 of the wavelength)

•Device supports an operating bandwidth of 19 GHz

•1. W. Chen, and D. L. Mills, Phys. Rev. B **35**, 524 (1987).

