Muon Spin Relaxation Study on Quantum Spin Liquid

Candidate H₃LiIr₂O₆

Y-X. Yang¹, Z-H. Zhu¹, C-S. Chen¹, Q. Wu¹, Z-F. Ding¹, C. Tan¹, P. K. Biswas², A. D. Hillier², C. Liu³, J-W. Mei³, L. Shu¹

¹State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai, 200433, China ²ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom ³Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong,

518055, China

We present the muon spin relaxation (μ SR) results of the honeycomb lattice H₃LiIr₂O₆ which is supposed to hold quantum spin liquid (QSL) state based on Kitaev model. Zero field (ZF) μ SR data indicate the absence of both magnetic order and spin freezing down to 0.08 K. We carry out longitudinal field (LF) μ SR experiments to exclude to effect of nuclear magnetic moments. The temperature-independent plateaus of muon spin relaxation rates found in ZF/LF- μ SR suggest the formation of QSL state in H₃LiIr₂O₆.