

应用表面物理国家重点实验室 State Key Laboratory of Surface Physics

Direct imaging antiferromagnetic domains and dynamic switching in thin films by magnetooptical birefringence effect

Jia Xu¹, Chao Zhou¹, Mengwen Jia¹, Dong Shi¹, Changqing Liu¹, Haoran Chen¹, Gong Chen², Guanhua Zhang³, Yu Liang³, Junqin Li⁴, Wei Zhang^{5*}, Yizheng Wu^{1*}

¹Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai, China ² Department of Physics, University of California, Davis, California, USA ³ State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China ⁴Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai, China ⁵Department of Physics, Oakland University, Rochester, Michigan, USA

Introduction

XAS (a.

[010]

CoC

0

- We can observe the contrasts in NiO induced by the magneto-optical birefringence effect.
- A large polarization rotation angle of 60 mdeg is obtained.

 $-\theta_{v}$

Temperature dependence

Thickness dependence

⁄⊇∕

Magneto-optical birefringence effect can be used to imaging AFM domain under field.

243K

▷ 242K 240K

☆ 238K ⊕ 237K 236K 235K

800

Summary

• Optical birefringence effect can be used for imaging AFM domains.

• A new understaning of spin canting structure of NiO grown on MgO.

• Dynamic switching of CoO AFM domain under field can be observed.

www.surface.fudan.edu.cn