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Abstract

Given two ellipsoids, we show that their characteristic equation has at least two negative roots and
that the ellipsoids are separated by a plane if and only if their characteristic equation has two distinct
positive roots. Furthermore, the ellipsoids touch each other externally if and only if the characteristic
equation has a positive double root. An advantage of this characterization is that only the signs of the
roots mattert] 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

We present an algebraic condition for the separation of ellipsoids in three-dimensional
Euclidean spaceE3. Two ellipsoids are said to be separated if they are on the opposite
sides of a plane and do not intersect the planeEf) and to overlap if they have
common interior points. Two ellipsoids that touch each other externally are not regarded
as overlapping or as separated.

Ellipsoids have a small number of geometric parameters and are excellent for
approximating a wide class of convex objects in simulations of physical systems.
Detecting the collision or overlap of two ellipsoids is thus an important problem
with applications in computer graphics, computer animation, virtual reality, robotics,
CAD/CAM, computational physics, and geomechanics. However, the use of ellipsoids is
hindered by the lack of efficient methods for detecting separation or overlap.
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The intersection curves between two quadric surfaces in three-dimensional projective
complex space can be classified using Segre’s characteristics, which are defined by the
elementary divisors of the associated quadratic forms (Bromwich, 1906; Sommerville,
1947). For all degenerate intersection curves, this classification essentially takes place in
three-dimensional complex space, so it cannot be directly applied to the present problem of
detecting separation in real space. In some sense, our work is an extension of the classical
results in (Bromwich, 1906), since we consider the classification of a pair of ellipsoids in
real affine space.

Conventional methods (Farouki et al., 1989; Levin, 1979; Wilf and Manor, 1993) for
finding the intersection of two quadrics could also be used to detect whether two ellipsoids
overlap; if there are no real intersection points between them, then the ellipsoids are
either separated or one is contained in the other. However, these methods are designed to
compute the structure and parameterization of the intersection curve, rather than the gross
relationship between the ellipsoids, and are more complicated than the algebraic condition
that will be given in this paper.

The overlap of two ellipsoids has also been studied in computational physics for mole-
cule simulation (Perram and Wertheim, 1985; Perram et al., 1996), and in geomechanics
for modeling ellipsoidal particles (Lin and Ng, 1995); the methods proposed for these ap-
plications are essentially numerical. In contrast, our algebraic condition leads to simple,
efficient, and exact algorithms.

Given two ellipsoids4d: XTAX =0andB: XTBX =0in E3, whereX = (x, y, z, w)'
are the homogeneous coordinates, thkearacteristic polynomialk defined as

f(») =detrA + B),

and f (1) = 0 is called thecharacteristic equatiorHere we assume that the interiors4f
andB are defined by TAX < 0 andX' BX < 0, respectively. We shall show that:
(i) The characteristic equatiofi(A) = 0 always has at least two negative roots.
(i) The two ellipsoids are separated by a plane if and onlf/(if) = 0 has two distinct
positive roots.

(iif) The two ellipsoids touch each other externally if and only{f.) = 0 has a positive

double root.
Note that only the signs are important—we do not need to solve for the exact roots. As soon
as two distinct positive roots are detected (e.g., using Sturm sequences (Dickson, 1914)),
one may conclude that the two ellipsoids are separated.

The remainder of this paper is organized as follows. In Section 2, we briefly review
some preliminaries on ellipsoids. In Section 3, we introduce an algebraic condition for the
separation of two ellipsoids, and show that it is a necessary and sufficient condition. Some
examples are given in Section 5. Finally, in Section 6, we conclude with some ideas for
future research.

2. Preliminaries

Given two ellipsoids, by applying an affine transformation as necessary, we may assume
that one ellipsoid is given in the standard form
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An affine transformation of two ellipsoidsA and B changes their characteristic
equation; however, the roots remain the same. leand B be the result of applying
an affine transformatior” to A and B. Then the corresponding matrices afe=
(T™HTATY andB = (r~1)TBT 1, and the characteristic equation becomesgidet+
B) = det™2(T)detAA + B) = 0, which has the same roots #§\) = detAA + B) = 0.
Clearly, the geometric relationship between the two ellipsoids does not change under the
affine transformatior". Thus it is sufficient to consider the simple case of an ellipsbid

in standard form (1), and a sphden form (2).
The characteristic polynomial o4 andB is then given as follows:

s s A
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An inspection of the above expression yields the following lemma.

Lemmal. Assumind <a < b < ¢, we have
(1) f(0) <0;
(2) f(—=a® <0if x. #0,and f(—a?) =0if x. = 0;
(3) f(=b? > 0if y.#0, and f(—b?) =0if y. =0;
(4) f(=c?® <0ifz.#0,and f(—c?) =0if z. = 0.

3)
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From Lemma 1, and considering the special case ef b or b = ¢, it is easy to
prove:

Theorem 2. Supposé® < a < b < c. Then f(1) =0 has at least two negative roots in
[—c2, —a?], counting multiplicity. There is a real root if-c2, —b?] and there is also a
real root in [—b2, —a?].

Lemma 3. A nonconstant common factor of all tBex 3 minors ofAA + B can only be
A4a? r+b%orr+c

Proof. It suffices to note that the first minor, defA + B)(1, 2, 3|1, 2, 3), is
A A A
3. Separation of two ellipsoids
We first consider a necessary condition for the separation of two ellipsoids.
Theorem 4. If A andB are separated, theif (,) = 0 has two distinct positive roots.

The next lemma will be used in the proof.

Lemma 5. If f(1) = 0 has a positive double root, thed and 5 have a real touching
point.

Proof. Letio > 0 be a positive double root gf(A) = 0. By Lemma 3¢ is nota common
zero of all the first 3x 3 minors ofAA + B. Hence, the matrixgA + B has rank 3 and
its null space, KdioA + B], has dimension 1. FurthexA + B = A(AI — (—A~1B)),
and thuskg is an eigenvalue of A~1B with multiplicity 2, and the null space Kptol +
A~1B] has dimension 1. By the Jordan canonical form, there are a real eigen¥ecind
a generalized eigenvectdn of —A~1B (see Appendix B of (Strang, 1988)) such that

(A™'B)Xo=—10Xo and (A7 B)X1=—ioX1+ Xo.

or, equivalently,
(rol + A71B)Xo=0 and (rol + A 1B)X1=Xo,

which implies thatxol + A~1B)2X; = 0. SinceA and B are symmetric,
X§AXo=X]A(rol + A™1B)?X1=0.

ConsequentlyXp is a point on4. Note thatXg is also a point on3 sinceX(T)BXO =

X{(hoA + B)Xo= X[ A(hol + A71B) X0 =0.

The tangent planes od andB at Xo are X' AXo =0 and X" BXo = 0, respectively.

Since (Aol + A"1B)Xo = 0, it follows that —AgAXo = BXp; in other words, the two
tangent planes are identical. Hendeand3 have a real touching point &fp. O
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Proof of Theorem 4. Consider a spherBy with radiusr > 0 and centeta +r + 1, 0, 0).
Clearly,.A andB3p are separated. A simple calculation shows that the characteristic equation
fo(r) = 0 of A andBo has two negative roots;»% and —c?, and two distinct positive
roots.

Given a sphere of radiusr, separated fromd, it is possible to move a sphere
B(), t €[0,1], of radiusr from By to B, while B(¢+) remaining out of contact wittd
foranyt € [0, 1]: hereB(0) is Bp andB(1) is B. Let f(4; t) = 0 denote the characteristic
equation of the ellipsoid4 and the moving spherB(r). We shall show that, for each
t € [0, 1], the characteristic equatiofi); 1) = 0 has two distinct positive roots. The proof
will then follow from the case where= 1.

Recall the following result on the continuity of the roots of a polynomial (see (Bhatia,
1997)): Let a;(¢), 1 < j < n, be continuous complex-valued functions defined on an
interval Z. Then there exist continuous complex-valued functiars), .. ., «, (t) which,
for eachr € Z, constitute the roots of the polynomial equatith— ay(H)A" 1 + --- +
(—=D"a,(¢t) = 0. This result is applicable to our case=£ 4) since the leading coefficient
of f(x;t) =0, which is —(abc)~2, is a nonzero constant for all Let «; (1), where
i =1,2,3,4, be continuous functions that constitute the four rootg @f;, 7) = 0. Since
f(x; 0) = 0 has two negative roots and two distinct positive roots, the functip@g can
be labeled such that; (0) < @2(0) < 0 < «3(0) < a4(0). Note that, by Theorem 241 (¢)
anda2(z) are real-valued and negative for akt [0, 1].

Suppose thaf (4; 10) = 0 does not have two distinct positive roots for some (0, 1].

We recall thatf (1; 0) = 0 does have two distinct positive roots, and so we must have one
of the following two cases:

(i) Either az(r) or as(t) changes from a positive root into a non-positive real root

through 0 orco, without ever becoming imaginary first.

(i) The valuesxz(tp) anda4(tp) are a pair of imaginary conjugate roots.

Case (i) is clearly impossible, since the first and last coefficienig(af r) are detA) =
—(abc)~?#0 and detB(r)) = —r? # 0, respectively.

As regards case (ii), consider the factorizatfo@; t) = ag(A —a1()) (A —a2(2))g(A; 1),

whereg(x; 1) = (A — a3(t))(A — aa(?)). Let A(¢) denote the discriminant of(1; 1):
A(t) = (a3(t) — a4(1))2, which is a real-valued function of. Clearly, A(0) > 0 and
A(tg) < 0. By continuity,{t € [0, 1] | A(t) = 0} is nonempty and closed; so there exists
a least value of, fmin, such thatA (fmin) = 0. It follows thatg(i; rmin) has a double real
rootas(tmin) = a4(tmin). Because of the minimality afyin, if a3(tmin) = ¢4(tmin) < 0 were

to hold, we would have case (i), which has been shown to be impossible. On the other hand,
if a3(tmin) = @4(tmin) > 0, then, by Lemma 5, the ellipsoid and the spher8(¢min) touch
each other, which contradicts the way ti&t) is constructed. These contradictions imply
that notg € [0, 1] exists such that\(fp) < 0; in other words, case (ii) is also impossible.
Hence,A(r) > 0 for all ¢ € [0, 1]. Consequentlyyz(z) andas(t) are distinct and positive
foranyre[0,1]. O

The next two lemmas will be used later.

Lemma 6. If 4 and B have a common interior point, thefi(A) = 0 has no positive
root.
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Proof. Let Xg = (xo, yo, zo0, 1)T denote a point that is contained in the interiors of hdth
andB; i.e., XJ AXo < 0 and X BXo < 0. Suppose thaf (1o) = detthoA + B) = 0, for
someig > 0. Then

X$ (oA + B)Xo=10X{ AXo+ XJBXo <O.

Now, for an arbitrary directio’X 1 = (x1, y1, z1, 0)7, let us consider the line
X(t)=Xo+1tX1= (xo+1x1, yo+1y1,z0 + 121, DT.

The value of
XOTO0A+B)X@)=2X1)TAX®) + X (@) BX(1)

is negative at = 0, and positive for a sufficiently large, since in that cas# (¢) is outside
both A and B. Thus X (t)T(A0A + B)X (r) vanishes at least twice; in other words, the
line X (r) intersects the quadrik’ (L0A + B)X = 0 at two different real points. Since this
is the case for an arbitrary directiofy, the quadricX T (oA + B)X = 0 must be a closed
surface inE3, which must be an ellipsoid. Thus degA + B) # 0, since the ellipsoid is
nondegenerate. But this contradicts the assumptionthista root of f (Ag) = 0. Hence,
all the real roots off (A) = 0 are negative. O

Lemma7. If two ellipsoids touch each other externally, then their characteristic equation
has a positive double root.

Proof. We shall first show that the characteristic equation has a positive root, and then
show that this positive root is a double root. Ldt XTAX =0 andB: X'BX =0

be two externally tangent ellipsoids. Lédp be the tangent point oA and 5. Then
BXo=—X1pAXo for some real valugg # 0, sinceA andB share the same tangent plane
at Xo. Thus,(ApA + B)Xo = 0; thatis,Ag is a root of f (1) = 0, the characteristic equation

of A andB. Let Yp be an interior point of5. ThenYy must be outsided, sinceA andB are
externally tangent. It follows thafOTBYo <0, andYOTAYo > 0. On the other hand, the line
throughXg andYp intersects4 at a pointlg distinct fromXg, and intersect8 at a pointVp
distinct from Xo. Without loss of generality, we may assume that the last components of
Xo, Yo, Up, andVp are all equal to 1. Then we may exprégs— (1 — )Xo+ s Yo for some

s <0,andVog=(1—1)Xo+ 1Yy for somet > 1. Sincely is on A,

0=UJAUp = (1—5)2X{AXo+2(1— 5)sYq AXo+s2Y] AYo
= 2(1—s)sYq AXo+s%Yq AYo.
Hence, Yy AXo = —sYg AYo/[2(1 — 5)] > O; similarly, we can show tha¥y BXo =
—tYy BYo/[2(1 - 1)] < 0. Since(roA + B)Xo =0, we obtain
0= Yy (oA + B)Xo = AoYg AXo+ Yg BXo.

It follows thatig = —Yg BXo/ Y] AXo > O.

Recall from Eq. (3) that the leading and last coefficientg 6f) = 0 are—(abc)~2 and
—r?, respectively. Thus the product of all the four rootsfah.) = 0 is (abcr)? > 0. Since
there are two negative roots ¢{A) = 0, and moreovekg > 0, the fourth roof.; must be
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positive. Now we are going to show by contradiction that= Ao, and consequently that
Ao is a double root off (A) = 0.

Supposei; # Ag. Then the real eigenvectak; associated withi; is linearly
independent fronXyg, i.e., X1 satisfies(A1A + B)X1 =0, andX; and X are distinct
points. From the equation&oA + B)Xo =0 and(A1A + B)X1 =0, we geth(AoA +
B)X; =0 and X} (1A + B)X1 = 0, which implies thatX] AX; = X]BX1 = 0, since
A0 # A1. Thus, X is a point on the common tangent plane 4fand B at Xo, and
X1 is therefore outside botd and B: that is, X]AX1 > 0 and X] BX; > 0. From
(A1A + B)X1 =0, we obtain

0=X](MA+ B)X1=x11X]AX1+ X] BX1>0.

This contradiction implies that the two positive roafs and i1 of f (L) = 0 cannot be
distinct. Hencef (1) = 0 has a positive double root.0

The next result is the main contribution of this paper.

Theorem 8. Let.4 and B be two ellipsoids with the characteristic equatigiix) = 0.
Claim(1): A andB are separated if and only if (A) = 0 has two distinct positive roots
Claim (2): A and B touch each other externally if and only ff(A) = 0 has a positive

double root.

Proof. The ‘only if’ part of claim (1) is proved by Theorem 4. For the ‘if’ part, suppose
that £ (1) = 0 has two distinct positive roots. Then, by Lemmas 6 and and5 do not
have a common interior point and do not touch each other externally. Hdresed 3 are
separated.

The ‘only if’ part of claim (2) is proved by Lemma 7. For the ‘if’ part, suppose that
f (1) =0 has a positive double root. Now, by Lemma4% andB touch each other. |4
and BB touch each other internally, the4rand 3 have common interior points. Further, by
Lemma 6, f(A) = 0 has no positive root; this is a contradiction. Hendeand B touch
each other externally. O

4. Examples

Three examples of the use of Theorem 8 are presented in this section to illustrate our
results.

Example 1. Consider the spherd: x2 + y2 + z2 — 25=0 and the ellipsoid3: (x —
9)2/9 + y2/4 + z2/16 — 1 = 0. The four roots of the characteristic equation a@25,
—1.5625, 060111, and 46211. Since there are two distinct positive rootisand 5 are
separated.

Example 2. Consider the spherd: x2 + y? 4+ z?> — 25= 0 and the ellipsoid3: (x —
6)2/9 + y2/4 4+ z%/16 — 1 = 0. The four roots of the characteristic equation a@25,
—1.5625, 01111+ 1.663i. Since there are no positive roatsandB overlap.
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Example 3. Consider the sphergl: x? 4+ y? + z2 — 4= 0 and the ellipsoid3: (x —
8)2/25+ y?/4+z%/4—1= 0. The four roots of the characteristic equation-afe0, —1.0,
0.12554 and 2745. Since there are two distinct positive roofisand B are separated.
Note that the negative double roetl indicates that the intersection curvedfandB is
degenerate in the projective complex space; howet@mdB do not touch each other.

5. Conclusions

We have presented a necessary and sufficient condition for detecting the intersection of
two ellipsoids: their characteristic equation has positive roots if and only if the ellipsoids
do not have common interior points. To prove this result for two ellipsoids, an affine
transformation is applied to convert one ellipsoid into a canonical form and the other one
into a sphere. However, the same condition can be obtained from the characteristic equation
of the two original ellipsoids, since affine transformations do not change the roots of the
characteristic equation. Hence, an algorithm for testing whether ellipsoids are separated
using the above condition does not need to perform an affine transformation.

To apply Theorem 8, the equation: XTAX =0 andB: X'BX = 0 must be

normalized so thanAXO <0 andX(T)AXO < 0, for the interiors of4 andB, respectively.
Under this assumption, the two equations can be converted by an affine transformation into
the equations (1) and (2), with some positive proportional constants. Since these positive
constants do not change the signs of the roots of the characteristic equation, Theorem 8
still holds irrespective of their particular values.

The numerical behavior of an algorithm based on the condition presented here is also
of importance; but such a study is beyond the scope of this paper. Furthermore, when
two ellipsoids are in motion, and possibly also undergoing some smooth deformation, it is
appropriate to consider the zero-setfah.; r) = 0. These issues will be discussed in future
work.
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