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Fig. 2. Temperature dependence of the
thermal conductivity of the W/ALO,
nanolaminate deposited at 177°C when
& = 2.9 nm (open circles). Data for a
fully dense amorphous AL,O; film pre-
pared by ion-beam sputtering (solid tri-
angles) (7) are included for comparison.
The dashed line is the calculated mini-
mum conductivity A__  for alumina; the
solid line is A = 6G,, where & = 2.9
nm and Gg,,,, is the calculated conduc-
tance of W/ALLO, interfaces under the
diffuse mismatch model (79).

Thermal conductivity (W m=1 K-1)

expected thermal conductivity, assuming a con-
stant G = 260 MW m~* K ! and fixed values
for the thermal conductivities of the individual
alumina and W layers. For the ALD nanolami-
nate with 1/6 = 0.35 nm™' and a deposition
temperature of 177°C, the thermal conductivity
was almost wholly dominated by this interface
conductance, i.c., A = 8G.

This experimental value for G is close to the
prediction of the diffuse mismatch model
(DMM) (/9). In this model of interface thermal
transport, lattice vibrations are assumed to be
scattered strongly at the interface and to have a
transmission coefficient given by the ratio of the
densities of vibrational states on either side of the
interface. Using a Debye model for the densities
of states, we calculated that G, = 320 MW
m~> K~ for W/ALO,. Typically, the DMM
overestimates the conductance near room lem-
perature, because this model, when based on a
Debye density of states, does not take into ac-
count the dispersion of the vibrational modes.

We continued the comparison between our
data and the G,,,, by examining the tempera-
ture dependence of the thermal conductivity
(Fig. 2). The solid line in Fig. 2 1s A = 8Gp 1
that is, the solid line shows the thermal conduc-
tivity of a hypothetical nanolaminate in which 6
is 2.9 nm and the thermal conductivity is domi-
nated by the diffuse mismatch value of the ther-
mal conductance of the W/AL O, interfaces. The
temperature dependence of the data and G,,,,,
are similar, giving further support to our asser-
tion that thermal transport in the nanolaminates
is mostly controlled by the conductance of
the interfaces.

Interfaces between dissimilar materials such
as W and Al,O, are effective in reducing the
thermal conductivity of nanostructured maten-
als, but the relatively high interface energy will
limit the stability of these materials at the high
service temperatures typically required of ther-
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mal barrier coatings. Applications of nanolami-
nates as thermal barriers at temperatures higher
than 1000°C would require the development of
material interfaces that satisfy the conflicting
demands of low thermal conductance and excep-
tional thermal stability.
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Improving the Density of
Jammed Disordered Packings
Using Ellipsoids
Aleksandar Donev,"* Ibrahim Cisse,?® David Sachs,?

Evan A. Variano,>® Frank H. Stillinger,? Robert Connelly,’
Salvatore Torquato,’3#* P, M. Chaikin®*

Packing problems, such as how densely objects can fill a volume, are among the
most ancient and persistent problems in mathematics and science. For equal
spheres, it has only recently been proved that the face-centered cubic lattice has
the highest possible packing fraction ¢ = /18 = 0.74. It is also well known that
certain random (amorphous) jammed packings have ¢ ~ 0.64. Here, we show
experimentally and with a new simulation algorithm that ellipsoids can randomly
pack more densely—up to ¢ = 0.68 to 0.71 for spheroids with an aspect ratio close
to that of M&M's Candies—and even approach ¢ = 0.74 for ellipsoids with other
aspect ratios, We suggest that the higher density is directly related to the higher
number of degrees of freedom per particle and thus the larger number of particle
contacts required to mechanically stabilize the packing. We measured the number
of contacts per particle Z = 10 for our spheroids, as compared to Z = 6 for spheres.
Our results have implications for a broad range of scientific disciplines, including
the properties of granular media and ceramics, glass formation, and discrete geometry.

The structure of liquids, crystals, and glasscs

is intimately related to volume fractions of

ordered and disordered (random) hard-sphere

packings, as are the transitions between these
phases (/). Packing problems (2) are of cur-
rent interest in dimensions higher than three
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for inﬁu];lling stored data trom noise (3), and
in two and three dimensions in relation to
flow and jamming of granular materials (4-6)
and glasses (7). Of particular interest is ran-
dom packing, which relates to the ancient
(economically important) problem of how
much grain a barrel can hold.

Many experimental and computational algo-
rithms produce a relatively robust packing frac-
tion (relative density) ¢ = 0.64 for randomly
packed monodisperse spheres as they proceed to
their limiting density (&). This number, widely
designated as the random close packing (RCP)
density, is not universal but generally depends
on the packing protocol (¥). RCP 1s an ill-de-
fined concept because higher packing fractions
arc obtained as the system becomes ordered, and
a defimtion for randomness has been lacking. A
more recent concept 15 that of the maximally
random jammed (MRJ) state, corresponding to
the least ordered among all jammed packings
(¥). For a variety of order metrics, 1t appears that
the MR state has a density of ¢ = 0.637 and is
consistent with what has traditionally been
thought of as RCP (/()). Henceforth, we refer to
this random form of packing as the MRJ state.

We report on the density of the MR state
of ellipsoid packings as asphericity is intro-
duced. For both oblate and prolate spheroids,
¢ and £ (the average number of touching
neighbors per particle) increase rapidly, in a
cusp-like manner, as the particles deviate
from perfect spheres. Both reach high densi-
ties such as ¢ = 0.71, and general ellipsoids
pack randomly to a remarkable ¢ = 0.735,
approaching the density of the crystal with
the highest possible density for spheres
(11) @ = w/V18 = (.7405. The rapid in-
creases are unrelated to any observable in-
crease in order in these systems that develop
neither crystalline (periodic) nor liquid crys-
talline (nematic or orientational) order.

Our experiments used two varieties of

M&M's Milk Chocolate Candies: regular and
baking (“mimi™) candies (/2). Both are oblate
spheroids with small deviations from true
elhpsoids, Arlr < 0.01. Additionally,

M&M’'s Candies have a very low degree of

1+

polydispersity (principal axes 2a = 1.34
0.02 em, 2b = 0.693 * 0.018 cm, a/b =
1.93 = 0.05 for regular; 2a = 0.925 = 0.011
cm, 20 = 0493 = 0.018 cm, a/b = 1.88 =
0.06 for minis). Several sets of experiments
were performed to determine the packing
fraction. A square box, 8.8 cm by 8.8 cm, was
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filled to a height of 2.5 cm while shaking and
tapping the container. The actual measure-
ments were performed by adding 9.0 cm to
the height and excluding the contribution
from the possibly layered bottom. After mea-
suring the average mass, density, and volume
of the individual candies, the number of can-
dies in the container and their volume frac-
tion could be simply determined by weigh-
ing. These experiments yielded ¢ = 0.665 *
0.01 for regulars and ¢ = 0.695 = 0.01 for
minis. The same technique was used for
3.175 = mm ball bearings (spheres) and
yielded ¢ = 0.625 = 0.01. A second set of
expennments was performed by filling 0.5-,
|-, and 5-liter round flasks (to minimize or-
dering due to wall effects) with candies by
pouring them nto the flasks while tapping (5
liters corresponds to about 23,000 minis or
7500 regulars) (Fig. 1A). The volume frac-
tions found in these more reliable studies
were ¢ = 0.685 = 0.01 for both the minis
and regulars (/3). The same procedure for
30,000 ball bearings in the 0.5-liter flask
yielded ¢ = 0.635 %= 0.01, which is close to
the accepted MRJ density.

A S-liter sample of regular candies similar
to that shown n Fig. 1A was scanned in a
medical magnetic resonance imaging device
at Princeton Hospital. For several planar slic-
es, the direction 8 (with respect to an arbitrary
axis) of the major elliptical axis was manu-
ally measured and the two-dimensional
nematic order parameter 5, = (2 cosh — 1)
was computed, yielding S, = 0.05. This is
consistent with the absence of orientational
order in the packing (/4).

Our simulation technique generalizes the
lLubachevsky-Stillinger (LS) sphere-packing
algorithm (15, /6) to the case of cllipsoids.
The method is a hard-particle molecular dy-
namics (MD) algorithm for producing dense
disordered packings. Initially, small ellip-
soids are randomly distributed and randomly
oriented in a box with periodic boundary
conditions and without any overlap. The el-
lipsoids are given velocities and their motion
followed as they collide elastically and also
expand uniformly, After some time a jammed
state with a diverging collision rate is reached
and the density reaches a maximal value. A
novel event-driven MD algorithm (/7) was
used to implement this process efficiently,
based on the algorithm used in (/5) for
spheres and similar to the algorithm used for
needles in (/8). A typical configuration of
1000 oblate ellipsoids (aspect ratio a =
bla = 1.97! = 0.526) is shown in Fig. 1B,
with density of ¢ == 0.70 and nematic order
parameter § == (.02 to 0.05.

We have verified that the sphere packings
produced by the LS algorithm are jammed
according to the rigorous hierarchical defini-
tions of local, collective, and strict jamming
(19, 20). Roughly speaking, these definitions

REPORTS

are based on mechanical stability conditions
that require that there be no feasible local or
collective particle displacements and/or
boundary deformations. On the basis of our
experience with spheres (/0), we believe that
our algorithm (with rapid particle expansion)
produces final states that represent the MRJ
state well, The algorithm closely reproduces the
packing fraction measured experimentally,

The density of simulated packings of 1000
particles 1s shown in Fig. 2A. Note the two clear
maxima with ¢ = 0.71, already close to the
(.74 tor the ordered face-centered cubic (fec)/
hexagonal closc-packed (hep) packing, and the
cusp-like minimum near o« = 1 (spheres). Pre-
vious simulations for random sequential addi-
tion (RSA) (27), as well as gravitational depo-
sition (22), produce a similarly shaped curve,
with a maximum at nearly the same aspect
ratios ¢ = 1.5 (prolate) or a = 0.67 (oblate),
but with substantially lower volume fractions
(such as ¢ = 0.48 for RSA).

Why does the packing fraction initially in-
crease as we deviate from spheres? The rapid
increase in packing fraction is attributable to the
expected increase in the number of contacts
resulting from the additional rotational degrees

Fig. 1. (A) An experimental packing of the
regular candies. (B) Computer-generated pack-

ing of 1000 oblate ellipsoids with a« = 1.9 .
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Fig. 2. (A) Density ¢ 0.74
versus aspect ratio
from simulations, for
both prolate (circles)
and oblate (squares)
ellipsoids as well as
fully aspherical (dia-
monds) ellipsoids. The
most reliable experi-
mental result for the 0.68 -
regular candies (error L
bar) is also shown; 0.66

this likely underpre- G 3
dicts the true density
(38). (B) Mean contact
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to rotate and escape the cage of neighbors.

Fig. 3. Shearing the dens-
est packing of ellipses.

of freedom of the ellipsoids. More contacts per
particle are needed to eliminate all local and
collective degrees of freedom and ensure jam-
ming, and forming more contacts requires a
denser packing of the particles. In the inset in
Fig. 2B, the central circle is locally jammed. A
uniform vertical compression preserves ¢, but
the central ellipsoid can rotate and free itself
and the packing can densify. The decrease in
the density for very aspherical particles could
be explained by strong exclusion-volume ef-
fects in orientationally disordered packings
(23). Results resembling those shown in Fig.
2A are also obtained for isotropic random pack-
ings of spherocylinders (23, 24), but an argu-
ment based on “caging” (not jJamming) of the
particles was given to explain the increase in
density as asphericity is introduced. Spherocyl-
inders have a very different behavior for or-
dered packings from ellipsoids (the conjectured
maximal density is 7/V12 = 091, which is
significantly higher than for ellipsoids), and
also cannot be oblate and are always axisym-
metric. The similar positioning of the maximal
density peak for different packing algorithms
and particle shapes indicates the relevance of a
simple geometrical explanation.

By introducing orientational and transla-
tional order, it is expected that the density of
the packings can be further increased, at least
up to 0.74. As shown in Fig. 3 for two
dimensions, an affine deformation (stretch)
of the densest disk packing produces an el-
lipse packing with the same volume fraction.
However, this packing, although the densest
possible, 1s not strictly jammed (i.e., it is not
rigid under shear transformations). The figure

shows through a sequence of frames how one
can distort this collectively jammed packing
(20), traversing a whole family of densest
configurations. This mechanical instability of
the ellipse packing as well as the three-
dimensional ellipsoid packing arises from the
additional rotational degrees of freedom and
does not exist for the disk or sphere packing.,

There have been conjectures (25, 26) that
fricionless random packings have just
enough constraints to completely statically
define the system (27), Z = 2/ (i.c., that the
system 1s 1sostatic), where / 1s the number of
degrees ol freedom per particle (f = 3 for
spheres, f = 5 for spherowds, and f = 6 for
general ellipsoids) (28). If friction is strong,
then fewer contacts are needed, Z = f + |
(29). Experimentally, Z for spheres was de-
termined by Bernal and Mason by coating a
system of ball bearings with paint, draining
the paint, letting it dry, and counting the
number of paint spots per particle when the
system was disassembled (30). Their results
gave 7 = 6.4, surprisingly close to isostatic-
ity for frictionless spheres (37).

We performed the same experiments with
the M&M's, counting the number of true con-
tacts between the particles (32). A histogram of
the number of touching neighbors per particle
for the regular candies 1s shown in Fig. 4. The
average number is 7 = 9.82. In simulations a
contact i1s typically defined by a cutofT on the
gap between the particles. Fortunately, over a
wide range (107 to 1077) of contact toleranc-
es, Z is reasonably constant. Superposed in Fig.
4 15 the histogram of contact numbers obtained
for simulated packings of oblate ellipsoids for

0.4
2z 034
E :
g 0.2+
o
0.1
00 - I‘ |_ﬁ_
6 7 8 9 10 11 12 13

Number of contacts

Fig. 4. Comparison of experimental (black bars,
from 489 regular candies) and simulated (white
bars, from 1000 particles) distribution of parti-
cle contact numbers.

a = 0.526, from which we found Z = 9.80. In
Fig. 2B we show Z as a function of aspect ratio
« (33). As with the volume fraction, the contact
number appears singular at the sphere value and
nses sharply for small deviations. Unlike ¢,
however, Z does not decrease for large aspect
ratios, but rather appears to remain constant.

We expect that fully asphenical ellipsoids,
which have f = 6, will require even more
contacts for jamming (Z = 12 according to
the isostatic conjecture) and larger ¢. Results
from simulations of ellipsoids with axes a =
a ', b= 1,and ¢ = « (where a measures the
asphericity) arc included in Fig. 2A. At a =
1.3 we obtain a surprisingly high density of
@ = 0.735, with no significant orientational
ordering. The maximum contact number ob-
served in Fig. 2B is Z = 11.4. It is interesting
that for both spheroids and general ellipsoids,
Z reaches a constant value at approximately
the aspect ratio for which the density has a
maximum. This supports the claim that the
decrease in density for large « 1s due to
exclusion volume effects.

The putative nonanalytic behavior of Z and
¢ at o = | 1s striking and 1s evidently related to
the randomness of the jammed state. Crystal
close packings of spheres and ellipsoids show
no such singular behavior, and in fact ¢ and Z
are independent of a for small deviations from
unity. On the other hand, for random packings,
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the behavior is not discontinuous, whereas the
number of degrees of freedom jumps from three
to five (or six) as soon as « deviates from 1. In
several industrial processes such as sintering
and ceramic formation, interest exists in in-
creasing the density and number of contacts of
powder particles to be fused. If cllipsoidal in-
stead of spherical particles are used, we may
increase the density of a randomly poured and
compacted powder to a value approaching that
of the densest (fce) lattice packing.
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Renewable Hydrogen from
Ethanol by Autothermal

Reforming
G. A. Deluga,” ). R. Salge,” L. D. Schmidt,’* X. E. Verykios®

Ethanol and ethanol-water mixtures were converted directly into H, with
~100% selectivity and >>95% conversion by catalytic partial oxidation, with
a residence time on rhodium-ceria catalysts of <<10 milliseconds. Rapid va-
porization and mixing with air with an automotive fuel injector were performed
at temperatures sufficiently low and times sufficiently fast that homogeneous
reactions producing carbon, acetaldehyde, ethylene, and total combustion
products can be minimized. This process has great potential for low-cost H,
generation in fuel cells for small portable applications where liquid fuel storage
is essential and where systems must be small, simple, and robust.

In order for hydrogen fuel cells to have a
large impact on reducing greenhouse gas
emissions, the hydrogen needs to be derived
from sunlight, either directly or indirectly
from biomass through photosynthesis. The
use of hydrogen fuel cells in vehicles or in
portable power plants will require lightweight
H, storage or “on-board” reforming of hydro-
gen-containing compounds into H, (/).
Biomass candidates for H, generation in-
clude sugar, starch, oils, and crop wastes, The
production of hydrogen from sugar by cata-
Iytic reaction has been demonstrated (7, 2),
but the process from glucose thus far has
shown only 50% selectivity to H, and re-
quires a long reaction time. A fuel cell oper-
ating directly on sugars has been demonstrat-
ed (3), but the power densities are extremely
low. Biodiesel (the methyl ester of vegetable
oil) should be a good candidate for direct
reforming to H, because the analogous fossil
diesel can be reformed (4, 5), although the
higher cost of soy oil limits its economics.
Ethanol is now formed by fermentation of
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starch or sugar, and research suggests that it
may also be produced from lower-cost vege-
tation such as crop wastes (6).

Ethanol is readily and increasingly avail-
able in the United States because of the re-
quirement for an ethanol additive in gasoline
fuels, and 2.8 billion gallons/year are now
produced throughout the country by the fer-
mentation of biomass at a cost of approxi-
mately $1 per gallon, which 1s competitive
with petroleum fuels. However, a significant
fraction of ethanol’s production cost as a
gasoline fuel additive comes from the need to
remove all water, which requires distillation
and water separation from the azcotrope us-
ing zeolite adsorption.

We recently demonstrated direct H,
generation (7-9) from ethanol via oxida-
tion, which was carried out by preheating
ethanol to ~500°C over lanthanates, Ru,
and Ni. There has been discussion of the
desirability of autothermal reforming of
ethanol (/0), but ethanol oxidation presents
energetic and flammability 1ssues. The par-
tial oxidation reaction

C,H.OH + 20, — 2C0 + 3H,

AHy = +20 kl/mol (1)

(where AH, is the enthalpy change or heat of
rcaction) is slightly endothermic, so this re-
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