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Unusually Dense Crystal Packings of Ellipsoids
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In this Letter, we report on the densest-known packings of congruent ellipsoids. The family of new
packings consists of crystal arrangements of spheroids with a wide range of aspect ratios, and with
density ’ always surpassing that of the densest Bravais lattice packing ’ � 0:7405. A remarkable
maximum density of � � 0:7707 is achieved for maximal aspect ratios larger than

���

3
p

, when each
ellipsoid has 14 touching neighbors. Our results are directly relevant to understanding the equilibrium
behavior of systems of hard ellipsoids, and, in particular, the solid and glassy phases.
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the cylinders in parallel in the triangular lattice arrange- ellipsoids with at least two inequivalent orientations is
Particle packing problems have fascinated people since
the dawn of civilization, and continue to intrigue math-
ematicians and scientists. Dense packings of nonoverlap-
ping particles have been employed to understand the
structure of a variety of many-particle systems, including
glasses [1], crystals [2], heterogeneous materials [3], and
granular media [4]. The simple hard-sphere system is one
of the most intensively studied models because it exhibits
a rich thermodynamic behavior, including a well under-
stood liquid-solid transition, and a less understood meta-
stable liquid or glassy phase. An important extension
of the hard-sphere model is to include orientational de-
grees of freedom for the particles, and arguably the
simplest such extension is to consider systems of hard
ellipsoids. Results reported in a recent paper [5] raise
the question of whether the inclusion of orientational
degrees of freedom can lead to a thermodynamic (as
opposed to kinetic) glass phase. Answering this question
necessitates a knowledge of the disordered and ordered
phases at very high densities, and, in particular, the
densest possible phases. A system in which the density
of a disordered phase surpasses the density of the ordered
solid would be a candidate for the elusive thermodynamic
glass.

In addition to being important for understanding the
physics of complex materials, finding the densest packing
for a given particle shape is a basic problem in geometry.
The famous Kepler conjecture postulates that the densest
packing of spheres in three-dimensional Euclidean space
has a packing fraction (density) � � �=

������

18
p

� 0:7405, as
realized by stacking variants of the face-centered cubic
(fcc) lattice packing. It is only recently that this conjec-
ture has been proven [6]. Very little is known about the
most efficient packings of convex congruent particles that
do not tile three-dimensional space [7]. The only other
known optimal three-dimensional result involves infi-
nitely long circular cylindrical particles: The maximal
packing density �max � �=

������

12
p

is attained by arranging
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ment [8]. Of particular interest are dense packings of
congruent ellipsoids (an affine deformation of a sphere)
with semiaxes a, b, and c or, equivalently, with aspect
ratios 	 � b=a and 
 � c=a. The ratio of the largest to
the smallest semiaxes, denoted by �, is the most impor-
tant aspect ratio of the ellipsoid. We call � the maximal
aspect ratio.

In two dimensions, it can easily be shown that the
densest packing of congruent ellipses has the same den-
sity as the densest packing of circles, � � �=

������

12
p

�
0:9069 [9]. This maximal density is realized by an affine
(linear) transformation of the triangular lattice of circles.
Such a transformation leaves the density unchanged. In
three dimensions attempts at increasing the packing den-
sity yield some interesting structures, at least for needle-
like ellipsoids. By inserting very elongated ellipsoids into
cylindrical void channels passing through the ellipsoidal
analogs of the densest ordered sphere packings (an af-
finely deformed face-centered cubic or hexagonal close
packed lattice), congruent ellipsoid packings have been
constructed whose density exceeds 0.7405 and ap-
proaches 0.7585 in the limit of infinitely thin prolate
spheroids (ellipsoids of revolution), i.e., when 
 � 1 and
	 ! 1 [8,10].

However, there appears to be a widespread belief that
for nearly spherical ellipsoids the highest packing frac-
tion is realized by an affine transformation (stretch by 	
and 
 along two perpendicular axes) of the densest
sphere packing, preserving the density at 0.7405.
Mathematicians have often focused on lattice packings,
where a single particle is replicated periodically on a
lattice to obtain a crystal packing. For ellipsoids, a lattice
packing is just an affine transformation of a sphere pack-
ing, and therefore a theorem due to Gauss [7] enables us to
conclude that the densest lattice ellipsoid packing has
� � 0:7405. The next level of generality involves non-
lattice periodic packings (lattice packings with a multi-
particle basis), where a unit cell consisting of several
 2004 The American Physical Society 255506-1
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periodically replicated on a lattice to fill Euclidean space.
We will refer to these as crystal packings.

In this Letter, we report on a family of crystal packings
of ellipsoids that are denser than the densest Bravais
lattice packing for a wide range of aspect ratios in the
vicinity of the sphere point 	 � 
 � 1, and for certain
aspect ratios yields the densest-known ellipsoid packings
with � � 0:7707.

We recently developed a molecular dynamics tech-
nique for generating dense random packings of hard
ellipsoids [11]. The simulation technique generalizes the
Lubachevsky-Stillinger (LS) sphere-packing algorithm
[12] to the case of ellipsoids. Initially, small ellipsoids
are randomly distributed and randomly oriented in a box
with periodic boundary conditions and without any over-
lap. The ellipsoids are given velocities and their motion
followed as they collide elastically and also expand uni-
formly, while the unit cell deforms to better accommo-
date the packing. After some time, a jammed state with a
diverging collision rate is reached and the density reaches
a maximal value.

Using this technique, we generated nonequilibrium
random close packings of ellipsoids [5], believed to
closely represent the maximally random jammed (MRJ)
state [13]. The density of the resulting packings for non-
spheroidal ellipsoids with 
 � 	�1 is illustrated in Fig. 1,
and it can be seen that for 	 � 1:25 (
 � 0:8) the random
packings have a density as high as 0.735, surprisingly
close to what we believed was the densest ordered packing
(stretched fcc lattice). This unexpected result brought into
question what the maximal density really was for those
aspect ratios. Extensive experience with spheres has
shown that, for reasonably large packings, sufficiently
slowing down the growth of the density, so that the
hard-particle system remains close to the equilibrium
solid branch of the equation of state, leads to packings
near the fcc lattice [13,14]. This, however, requires im-
practically long simulation times for large ellipsoid pack-
ings. By running the simulation for very small unit cells,
from 4 to 16 particles per unit cell, we were able to
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FIG. 1. The packing fraction of the putative MRJ state for
nonspheroidal ellipsoids with semiaxes of ratios 1:	:	�1 [5].
The maximal density reached is about � � 0:735, which is
remarkably close to the density of the fcc crystal.
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identify crystal packings significantly denser than the
fcc lattice, and subsequent analytical calculations sug-
gested by the simulation results led us to discover ellip-
soid packings with a remarkably high density of
� � 0:7707. This result implies that, among all possible
choices of congruent ellipsoids, the maximum density
attainable is bounded from below by 0.7707.

We now describe the construction of a family of un-
usually dense crystal packings of ellipsoids.We start from
the fcc lattice, viewed as a laminate of face-centered
square planar layers of spheres, as illustrated in
Fig. 2(a).We similarly construct layers from the ellipsoids
by orienting the c semiaxis perpendicular to the layer,
while orienting the a and b axes along the axes of the
face-centered square lattice defining the layer, as shown
in Fig. 2(b). In this process, we maintain the aspect ratio
of the squares of side L of the face-centered square lattice
defining the layer, i.e., we maintain

L �
4	
���������������

1� 	2
p ; (1)

which enables us to rotate the next layer by �=2 and fit it
exactly in the holes formed by the first layer. This two-
layer lamination is then continued ad infinitum to fill all
space. This can be viewed as a family of crystal packings
with a unit cell containing two ellipsoids.

We can calculate the minimal distance h between two
successive layers (that preserves impenetrability) from
the condition that each ellipsoid touches four other ellip-
soids in each of the layers above and below it. This gives a
simple system of equations (two quadratic equations and
one quartic equation), the solution of which determines
the density to be

� �
16�	


3hL2 : (2)

The axis perpendicular to the layers can be scaled arbi-
trarily, without changing the density, because h has the
form 
f�		. We can therefore just consider spheroids with

 � 1. The density of this crystal packing as a function
of the aspect ratio 	 is shown in Fig. 3, and is higher than
the density of the fcc sphere packing for a wide range of
aspect ratios around the sphere point 	 � 
 � 1, sym-
metrical with respect to the inversion of 	 between
prolate and oblate ellipsoids (we consider the prolate
case in the equations in this section), and quadratic
around the sphere point [15]. Two sharp maxima with
density of about 0.770 732 are observed when the ellip-
soids in the face-centered layers touch six rather than four
in-plane neighbors, as shown in Fig. 4, i.e., when L � 2	.
This corresponds to an in-plane aspect ratio of
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3
p

, i.e.,
	 �

���

3
p

for the prolate and 	 � 1=
���

3
p

for the oblate case.
These two densest-known packings of spheroids are illus-
trated in the insets in Fig. 3, and in these special packings
each ellipsoid touches exactly 14 neighboring ellipsoids
(compare this to 12 for the fcc lattice). As illustrated in
Ref. [5], an affine deformation of the densest sphere
packing gives an ellipsoid packing that is not strictly
255506-2



FIG. 3 (color online). The density of the laminate crystal
packing of ellipsoids as a function of the aspect ratio	 (
� 1).
The point 	 � 1 corresponding to the fcc lattice sphere pack-
ing is shown, along with the two sharp maxima in the density
for prolate ellipsoids with 	 �

���

3
p

and oblate ellipsoids with
	 � 1=

���

3
p

, as illustrated in the insets. The presently maximal
achievable density is highlighted with a thicker line, and is
constant for � 


���

3
p

, as explained in the text.

FIG. 4 (color online). The layers of the densest known pack-
ing of ellipsoids with aspect ratio

���

3
p

, as illustrated in Fig. 3.
The same perpendicular view applies for both prolate and
oblate particles. The layers can be viewed as either face
centered or triangular.

FIG. 2 (color online). Part (a) (top): The face-centered cubic
packing of spheres, viewed as a laminate of face-centered
layers [in the (001) plane]. The bottom layer is colored purple
and the top layer yellow. Part (b) (bottom): A nonlattice
layered packing of ellipsoids based on the fcc packing of
spheres, but with a higher packing fraction.
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jammed [16,17]. It is an interesting open question whether
our denser laminated crystals are strictly jammed.

Figure 3 shows a rapid decrease in the packing fraction
for large maximal aspect ratios. However, it is a surpris-
ing fact that the maximal density of 0.770 732 is also
achievable whenever the maximal aspect ratio � of the
ellipsoids is greater than or equal to

���

3
p

. The key obser-
vation is that the x � y plane is a mirror symmetry plane
in the above packings, so that an affine stretch by an
arbitrary factor s 
 1 along a direction in this plane
will produce a packing of equal (stretched) ellipsoids,
without changing the density. Stretching an ellipse with
255506-3
� �
���

3
p

by a factor of s along the x � y line produces an
ellipse with aspect ratio

�2 �
�2� s2 � 2s4	 � 2�1� s2	

������������������������

1� s2 � s4
p

3s2
; (3)

which always gives � 

���

3
p

and achieves arbitrarily
large values for sufficiently large s. Therefore, by stretch-
ing the packing in Fig. 4 along the �

���

2
p

=2;
���

2
p

=2; 0	
direction, we can obtain a packing with density
0.770 732 for any maximal aspect ratio � larger than
255506-3



FIG. 5 (color online). The layers of the densest known pack-
ing of ellipsoids with maximal aspect ratio � � 3, as obtained
by stretching the packing from Fig. 4 along the �

���

2
p

=2;
���

2
p

=2; 0	
direction by a factor of 2.4842. The same perpendicular view
applies for both prolate and oblate particles.
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(see Fig. 3). The layers of such a packing of ellipsoids
with � � 3 are illustrated in Fig. 5. As before, scaling the
axis perpendicular to the layers can be used to go between
the prolate and oblate cases since the c semiaxes remains
aligned with the z axes. Notice that the initial stretch can
be along a direction with a nonzero z component, which
produces alternative packings with the same density and
� 


���

3
p

. The above stretch cannot be used to decrease the
aspect ratio so that, for � <

���

3
p

, our best results remain as
shown in Fig. 3. In the limit of infinitely large stretch s (or
infinitely large maximal aspect ratio �), the particles
approach perfect alignment that are either needlelike or
platelike ellipsoids. However, the packings remain non-
lattice arrangements with 14 contacts per particle and a
density of 0.770 732.

There is nothing to suggest that the crystal packing we
have presented here is indeed the densest for any aspect
ratio other than the trivial case of spheres. We believe it is
important to identify the densest periodic packings of
ellipsoids with small numbers of ellipsoids per unit cell.
This may be done using modern global optimization
techniques, as has been done for various sphere and disk
packing problems. However, this is a challenging project
due to the complexity of the nonlinear impenetrability
constraints between ellipsoids. In particular, the case of
slightly aspherical ellipsoids is very interesting, as the
best packing will be a perturbation of the fcc lattice with
a broken symmetry, and should thus be easier to identify.
In Fig. 3, we see that the density of our crystal packing
increases smoothly as asphericity is introduced, unlike
for random packings, where a cusplike increase is ob-
served near 	 � 1 [5]. Is there a crystal packing which
leads to a sharp increase in density for slightly aspherical
255506-4
ellipsoids? Our initial attempts to answer this question
using global optimization have not found such a crystal
packing, but have not ruled out the possibility either.
Further multidisciplinary investigations are needed to
answer this and related questions. The results of such
investigations could be used to formulate a Kepler-like
conjecture for ellipsoids and understand the high-density
phase behavior of the hard-ellipsoid system.
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