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The paper presents a simple dynamical model to systemically explain the rotation mechanism of the liquid film
motor reported by experiments. The field-induced-plasticity effect of the liquid film is introduced into our model,
in which the liquid film in crossed electric fields is considered as a Bingham plastic fluid with equivalent electric
dipole moment. Several analytic results involving the torque of rotation, the scaling relation of the threshold
fields, and the dynamics equation of a square film and its solution are obtained. We find that the rotation of the
liquid film motor originates from the continuous competition between the destruction and the reestablishment of
the polarization equilibrium maintained by the external electric field, which is free from the boundary effects.
Most experimental phenomena observed in direct current electric fields are interpreted well.
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I. INTRODUCTION

Recently much attention has been focused on the effects
of the electric fields on the liquid films. On the one hand,
macroscopic thin films are important in physics, biophysics,
and engineering [1]. On the other hand, the effects of the
electric fields on the liquid films not only bring about many
unexpected phenomena but also exhibit potential application
prospects in microfluidic systems to mix or phase separate
liquids or particles in microscale systems [2].

The electric fields can produce electrohydrodynamical
flows in free suspended films, which are made of either certain
liquid crystals [3–7] or common polar liquids [8–11]. Recently,
Amjadi et al. [11] reported an interesting experimental device,
the so-called liquid film motor, as the direction and the speed
of its rotation can be controlled via manipulating the direction
and the strength of the applied electric fields. Meanwhile,
experiments bring about several thought-provoking questions:
What causes the liquid film motor to rotate? Why are the
points near the center rotating faster than those away from it?
Why do the threshold fields obey a simple scaling relation?
For the first question, Amjadi et al. [11] denied the possibility
of generating such a flow by the edge effects or ionization
of the water molecules, and proposed a heuristic explanation
based on the changing of the orientation of water molecular
dipoles due to a strong electric field. To our knowledge,
two papers have attempted to give a reasonable physical
explanation for the first two questions [12,13]. However, they
did not give the answers to the third question. Moreover,
for further experiments, few theoretical guidance is currently
available.

In this paper, a simple physical model is introduced to
systemically explain the dynamical mechanism of the liquid
film motor [11]. The purpose is to discover the physical origin
behind the fluid phenomena occurring in the crossed electric
fields, with the hope of developing an essential understanding
for these counterintuitive phenomena. All questions that we
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have mentioned are systemically answered in this paper. We
find that the rotation of the liquid film in crossed electric
fields originates from the continuous competition between
the destruction and the reestablishment of the polarization
equilibrium maintained by the external electric field, which
is free from the boundary effects of the liquid film.

The remainder of this paper is organized as follows. We
will introduce the model and dynamical mechanism in Sec. II.
The scaling relation of the threshold fields is analytically
given in Sec. III. Section IV is devoted to deducing the
dynamics equation of a square film and its solution. Finally,
in Sec. V some concluding remarks and discussions are
made.

II. MODEL AND DYNAMICAL MECHANISM

In this section, we first give some evidence in favor of
our assumption: the liquid film exhibits plastic behavior in an
applied electric field and then produces a qualitative picture
of the dynamical mechanism responsible for the liquid film
motor. Finally, the active torque driving the rotation of the
liquid film motor is presented.

Quantum field theory produces a picture of liquid water
as a mixture of two phases [14–16], which are a low-density
coherent phase made up of extended regions, the so-called
coherence domains (CDs) where all water molecules oscillate
in phase between two configurations, and a high-density
noncoherent phase made up of independent molecules trapped
in the interstices among the CDs (0.1 μm). In normal water,
CDs are not necessarily correlated among each other. However,
the coherence among CDs can be induced by an externally
applied polarization field [17,18]. Recently two articles in
favor of the proposed theory appeared [19,20]. In addition,
based on this theory, many “anomalous” phenomena of the
water observed in experiments can be explained, such as
“Neowater” [21], “EZ Water” [22–24], and “Floating Water
Bridge” [17,25,26].

In the case of the floating water bridge the external electric
field can align the CDs to form superdomains [25–28].
Recently, a two-dimensional neutron-scattering study
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(a)

Eext

(b)

FIG. 1. (a) The polarization equilibrium maintained by the exter-
nal electric field. Each ellipse denotes a CD. Arrows “↑” represent
the dipolar orientations of the polar molecules. (b) The equivalent of
(a). Arrows “⇑” denote the orientations and values of the equivalent
dipole moments of CDs.

indicated a low-level long-range molecular ordering within a
D2O bridge [29]. Moreover, Widom et al. [30] pointed out that
in a polar liquid acting as a ferrofluid, the electric-field-induced
tension responsible for holding up the water bridge arises out
of long ordered chains of low-entropy aligned coherent dipolar
domains. The case of the floating water bridge is similar
to that of the liquid film in an external electric field. It is
conceivable that within the liquid film located in an external
electric field there must be long ordered chains parallel to the
field, which are responsible for the plasticity of the film, just
as the particle chains are responsible for the plastic behavior
of electrorheological fluids [31].

The thin water film is almost completely made up of
CDs [32]. When it is located in an external electric field
⇀
E ext produced by a large parallel-plate capacitor, it will
reach a polarization equilibrium, and a permanent polarization
develops in each CD [14] [see Fig. 1(a)]. As the liquid film
is very thin (hundreds of nanometers or less), the motions
of CDs are restricted in a quasi-two-dimensional space. For
the same reason, the orientational preference of equivalent
dipole moment of each CD is almost completely parallel
to the external electric field ⇀

E ext [see Fig. 1(b)], since
the disruptive role of thermal collisions gets neutralized by
the external electric field and the surface tension. As a result,
the equivalent dipole moment per unit volume is so large that
it may bring about a powerful torque in a high steady electric
field ⇀

E cur, which drives the liquid film to move. However,
experimental results show that rotation can not be observed
in relatively thick film (or a bulk of liquids) [11]. Among the
possible explanations of this phenomenon, the most plausible
is that the equivalent dipole moment per unit volume is too
small to start the rotation, since the orientational preference
of the independent molecules exposed to the disruption of
the thermal collisions become disordered in the thick film or
bulk water. In other words, the necessary preconditions for the
rotation of the liquid film depend on the thickness of the film.
Therefore, if not otherwise stated, the liquid film discussed
in this paper is so thin that it may rotate in crossed electric
fields.

As we have mentioned, if the applied crossed steady electric
field ⇀

E cur is large enough, it will destroy the polarization

equilibrium maintained by ⇀
E ext. In fact, as a fully coherent

water, the strong correlated motions of CDs constitute the
macroscopical motion of the liquid film, since it is impossible
to touch a molecule without affecting all the others. Almost
at the same time ⇀

E ext will rapidly reestablish the polarization
equilibrium kept by itself. ( ⇀

E ext should play a dominant role in
the polarization of the liquid film since ⇀

E ext exists in the whole
space between two plates of a large parallel-plate capacitor,
while ⇀

E cur, which causes the electric current, exists only within
the liquid film.) In this way, the continuous destruction effect
of the steady electric field ⇀

E cur on the polarization equilibrium
maintained by ⇀

E ext creates the rotating flow of the liquid film.
That is to say, the motion of the liquid film results from
the continuous competition between the destruction and the
reestablishment of the polarization equilibrium maintained by
the external electric field.

From the macroscopic viewpoint a compartment of the
liquid film may be realized as an unaltered equivalent electric
dipole in the whole process. Based on the picture we have
described, the thin liquid film in the crossed electric fields
is considered as a Bingham plastic fluid with an equivalent
electric dipole moment.

The dynamical mechanism of the liquid film motor is
considered from the viewpoint of the action of the mechanical
torques on the liquid film, which was first introduced by Grosu
and Bologa [13]. Without loss of generality, the thin liquid
film (l1,l2,h) is artificially partitioned into several rectangular
compartments [see Fig. 2(a)]. A compartment (a,b,h) [e.g., a
gray compartment in Fig. 2(a)] with fixed-plane free surfaces
(z = 0,−h) in Cartesian coordinates (x,y,z) is investigated
[see Fig. 2(b)]. For convenience, the direction of the electric
current density ⇀

J cur (or ⇀
E cur) is along the y direction. θ

denotes the angle between the external electric field ⇀
E ext

and ⇀
J cur.

First, let us consider the case under the following condi-
tions: θ = 90◦, ⇀

E ext �= 0, and ⇀
J cur = 0. The external electric

field induces the opposite polarization charges in the fluid
near the interface boundaries of the studied compartment [see
Fig. 2(b)]. As we have mentioned, compartment (a,b,h) may
be considered as an equivalent electric dipole parallel to the
external electric field ⇀

E ext. The corresponding dipole moment
is expressed as

⇀
P = ε0(εr − 1)V

εr

⇀
E ext , (1)

y

x

(a) (b) 

Eext h

Jcur

b

a

x

y

z

o

FIG. 2. (a) A planform of the thin liquid film. (b) A sketch of a
rectangular compartment of the thin liquid film in the crossed electric
fields.
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where ε0, εr , and V = abh denote the dielectric constant of
vacuum, the relative dielectric constant of the liquid, and the
volume of the studied compartment, respectively.

Subsequently, turning on the electrolysis current
( ⇀
J cur �= 0), the equivalent dipole moment ⇀

P will be subject
to the steady electric field ⇀

E cur. The torque
⇀
Mcur exerted on

⇀
P may be defined as

⇀
Mcur = ⇀

P × ⇀
E cur . (2)

Inserting Eq. (1) into Eq. (2), we obtain the active torque which
drives the rotation of the liquid film:

⇀
Mcur = ε0(εr − 1)

εr

EextEcurV sin θ ⇀e z . (3)

This result is also suitable for the compartment of arbitrary
shape by extrapolation.

Equation (2) reveals that the direction of the torque
⇀
Mcur

obeys a simple right-hand rule, which is in the form of ⇀
E ext ×

⇀
E cur (or ⇀

E ext × ⇀
J cur). This result coincides with the rotation

direction of the induced vortices observed in the laboratory
[11]. From Eq. (3) it is easy to understand the experimental
phenomenon that the rotation velocity monotonically drops to
zero as the angle θ between ⇀

E ext and ⇀
E cur decreases from

90◦ to 0◦. However, our further investigation predicts that film
stops rotating when θ is small enough but not zero. One can
obtain such a prediction from the driving source of the liquid
film motor given in Sec. IV.

III. SCALING RELATION OF THE THRESHOLD FIELDS

In this section, considering the field-induced-plasticity
effect of the thin film of polar liquid, we derive the scaling
law of the threshold fields.

For simple shearing flow u = u(y), the constitutive relation
for a Bingham plastic fluid is expressed as [33,34]

∂u

∂y
=

{
0, (τ < τ0)

(τ − τ0)/μ, (τ � τ0),
(4)

where τ0 is the so-called yield stress and μ represents the
plastic viscosity. That is to say, the liquid film does not
show its fluid behavior until the shear stress is larger than
the yield stress. Otherwise it behaves as a rigid body at low
stress.

To start the rotation of the liquid film, the active torque
⇀
Mcur

exerted on a CD (or a superdomain) must be larger than the
maximum static resistance torque arising from the yield stress.
It is also convenient to investigate a compartment (a,b,h). In
Cartesian coordinates (x,y,z), considering the symmetry of
the maximum static resistances (see Fig. 3), one may obtain
the resultant torque of the maximum static resistance, which
is expressed as

⇀

Mf = − 2τ0V
⇀e z , (5)

where V = abh, the volume of the studied compartment, and
the numerical factor 2 comes from two couples arising from
the yield stress. This result is also suitable for a CD (or a
superdomain) of arbitrary shape by extrapolation.

b

a
fcur

fcur

fMx

fMy

fMy

fMx

x

y

Jcur

Eext

FIG. 3. The free-body force diagram for a compartment (a,b,h).
fcur represents a couple resulting from the interactions between the
equivalent dipole moment and the steady electric field. fMx and fMy

denote two couples arising from the yield stress.

If the resultant torque exerted on the studied CD is
defined as

⇀
Mr = ⇀

Mcur + ⇀
Mf , (6)

letting
⇀
Mr= 0 and using Eqs. (3), (5), and (6), we have

EextEcur sin θ = 2τ0εr

ε0(εr − 1)
, (7)

which is the scaling relation of the threshold fields. By using
the relation between ⇀

E cur and the electrolysis voltage Ucur,

Ucur = Ecurl2, (8)

Eq. (7) may be rewritten as

EextUcur sin θ = 2τ0εr l2

ε0(εr − 1)
. (9)

On the one hand, Eq. (7) shows that the threshold of
the fields is independent of electrical conductivity, viscosity,
and/or density of the liquid. This prediction coincides with
the experimental results that show that the thresholds of
the fields are in the same order of magnitude for all the
polar liquids with different electrical conductivity, viscosity,
and/or density. Although εr are on a different order of
magnitude for the liquids used in experiments (e.g., water,
aniline, anisole, chlorobenzene, and diethyleoxalate) [11],
εr/(εr − 1) in Eq. (7) are on the same order of magnitude O(1).
Comparison between the experimental and the theoretical
results implies that the yield stresses of different liquid films
are on the same order of magnitude. Namely, different polar
liquids may form a similar ordered structure in an external
polarization field. This prediction is partly confirmed by the
experimental findings of the group led by G. H. Pollack
[24], who found that different polar liquids (e.g., water,
methanol, ethanol, isopropanol, and acetic acid) show similar
near-surface exclusion zones, due to the polarization field
produced by the wall. Obviously, more experiments are called
for in order to clearly identify whether this prediction is
correct.

On the other hand, Eq. (7) can give an especially good
fit of experimental results (see Fig. 4). Setting εr = 80 and
l2 = 3.1 × 10−2 m, by fitting the experimental results to
Eq. (9), the transform of Eq. (7), we obtain τ0 = 6.77, 7.26, and
7.75 (×10−5 Pa). Contrasting Fig. 4 in this paper with Fig. 2
in Ref. [11], we find an interesting phenomenon: the larger
volume a fraction of glycerin is, the smaller the yield stress of
the water film is. In our opinion, there are two possible reasons.
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FIG. 4. (Color online) The plot of the electric field versus the
electric voltage at the rotating threshold for the solutions with
different yield stresses τ0 (×10−5 Pa). τ0 = 6.77 (solid line), τ0 =
7.26 (dashed line), and τ0 = 7.75 (dotted line).

One is that, if the thicknesses of the films with different
volume fractions of glycerin are the same in experiments, the
perturbations of glycerin weaken the coherence among CDs
within the water film, further reducing the value of the yield
stress of it. Another possible reason is that the larger a volume
fraction of glycerin is, the thinner the water film used in the
experiments is, and the smaller the yield stress of it is.

IV. DYNAMICS EQUATION AND ITS SOLUTION

In this section, the dynamics equation for a square liquid
film (l,l,h) is deduced from the rotational form of Newton’s
second law. This method is completely different from those
that directly start from the Navier-Stokes equations [12,13].

The film is assumed to be thin enough (h � l) and the
surface forces large enough that the effects of the thickness
of the film and the gravity on the film rotation can be ignored.
The present analysis is inspired by the stable ring structure of
the rotating square liquid film. We divide the liquid film into
a series of concentric cylindrical rings, all of which obey the
rotational form of Newton’s second law:

⇀
Mr = J

⇀
β , (10)

where
⇀
Mr denotes the resultant torque exerted on a ring liquid

film of radius r and radius r + dr , and J and
⇀
β are the moment

of inertia and the angular acceleration of it, respectively.
In a cylindrical coordinate systems (r,θ,z), one may easily

obtain the moment of inertia of the ring liquid film

J = ρr2dV, (11)

where ρ is liquid density and dV = 2πrhdr denotes the
volume of the ring liquid film. The angular acceleration of
it may be expressed as

⇀
β = ωt

⇀e z = ut

r

⇀e z , (12)

where ωt and ut , respectively, denote the first partial derivatives
of the angular velocity ω and the linear velocity u with respect
to time t .

The rest of this work is to deduce the resultant torque exerted
on the ring liquid film. Of course, we can directly derive it from
the free-body force diagram for the ring liquid film. However,
for convenience, we deduce it from the partial derivative of the
resultant moment

⇀
M rd exerted on a disc liquid film of radius r

with respect to r , which originates from two sources, i.e.,
⇀
M rd = ⇀

Mcurd + ⇀
MBd , (13)

where
⇀
Mcurd results from the interactions between the equiv-

alent dipole moment ⇀
P and the steady electric field ⇀

E cur,
and

⇀
MBd derives from the viscosity force. In addition, it

can be proved that the contribution to the resultant torque
from the hydrodynamics pressure vanishes by considering the
periodicity of the pressure over the angle θ .

Using Eq. (3), one can obtain

⇀
Mcurd = ε0(εr − 1)

εr

EextEcurπr2h sin θ ⇀e z . (14)

From Eq. (4), in cylindrical coordinates, the viscous force
exerted on the disc liquid film of radius r is expressed as

⇀
f Bd =

[
τ0 − μ

(
ur − u

r

)]
2πrh(− ⇀e θ ), (15)

where ur denotes the first partial derivative of u with respect
to r . Its corresponding torque has the following form:

⇀
MBd =

[
−τ0 + μ

(
ur − u

r

)]
2πr2h ⇀e z . (16)

Inserting Eqs. (14) and (16) into Eq. (13), we have

⇀
M rd =

(
� + 2μur − 2μu

r

)
πr2h ⇀e z , (17)

where

� = ε0(1 − 1/εr )EextEcur sin θ − 2τ0. (18)

By taking a partial derivative of Eq. (17) with respect to r ,
we obtain the resultant torque exerted on the ring liquid film
of radius r and radius r + dr:

⇀
Mr =

(
μrurr + μur − μu

r
+ �

)
dV ⇀e z , (19)

where urr denotes the second partial derivative of u with
respect to r .

Inserting Eqs. (11), (12), and (19) into Eq. (10), we finally
obtain the dynamics equation of the square liquid film:

ut = μ

ρr2
(r2urr + rur − u) + �

ρr
, (0 < r < R,t > 0).

(20)

Equation (20) indicates that � is the driving source of the
rotation of the liquid film motor. The liquid film motor
can work with direct current electric fields only if � > 0.
Thus, given � = 0, one can obtain the scaling relation of the
threshold fields Eq. (7) from Eq. (18) at once.

There are two boundary conditions and an initial condition
for Eq. (20): the disappearance of the linear velocity at r = 0
and r = R, and the liquid film is static at t = 0, i.e.,

u(r,t)|r=0 = 0, u(r,t)|r=R = 0. (21)
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FIG. 5. (Color online) Several modes of the linear velocity
J1(κnζ ) for different kn (k1 = 3.832, k2 = 7.016, k3 = 10.173, k4 =
13.324, k5 = 16.471, k10 = 32.190, k100 = 314.943), where ζ =
r/R, which is a dimensionless variable from 0 to 1.

and

u(r,t)|t=0 = 0. (22)

The solution of this problem can be obtained by separation
of variables. It is expressed as

u(r,t) = �

∞∑
n=1

cnJ1

(
κnr

R

)
(1 − e−ant ), (23)

where

cn = 2R

μ

1 − J0 (κn)

κ3
nJ 2

0 (κn)
, an = μ

ρ

κ2
n

R2
, (24)

κn denotes the nth zero point of J1(Z), ordinary Bessel function
of order one, and J0(Z) is an ordinary Bessel function of order
zero. The corresponding angular velocity has the following
form:

ω(r,t) = �

r

∞∑
n=1

cnJ1

(
κnr

R

)
(1 − e−ant ). (25)

Physically, the rotation of the liquid film exhibits many
spatial modes. Some modes of the linear velocity and the
angular velocity for different κn are illustrated in Figs. 5
and 6, respectively. It is apparent that these modes show an

FIG. 6. (Color online) Several modes of the angular velocity
ζ−1J1(κnζ ) for the same parameters as in Fig. 5.

FIG. 7. (Color online) The profiles of the linear velocity for
different times: t = 0.1 s, 1 s, 10 s, 100 s, 1000 s.

oscillatory decreasing behavior as the radius r increases from
0 to R. Equations (23) and (25) indicate that as time evolves,
modes with different κn appear in sequence. When time is
long enough, all modes constitute the stationary rotation of
the liquid film. Under the circumstances, Eqs. (23) and (25)
are simplified as

u(r,t → ∞) = �

2μ
r ln

R

r
(26)

and

ω(r,t → ∞) = �

2μ
ln

R

r
. (27)

Here Eq. (26) is identical with the result in reference [13].
Using Eqs. (23) and (25), setting EextEcur sin θ = 7.2 ×

106 V2/m, l = 2R = 3.1 × 10−2 m, μ = 10−3 Pa·s and τ0 =
6.77 × 10−5 Pa, we plot the profiles of the linear velocity
(see Fig. 7) and the angular velocity (see Fig. 8) for different
times. Figures 7 and 8 illustrate that the points near the center
start to rotate earlier than those away from it. Subsequently
the points away from the center gradually start to move. As
the rotation radius r increases from zero, the rotation speed
increases quickly from zero to a maximum and then decreases
slowly to zero as r increases further (see Fig. 7). As time

FIG. 8. (Color online) The profiles of the angular velocity for the
same parameters as in Fig. 7.
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evolves, the location of the maximum of the linear velocity
moves away from the center of the film. Finally, the linear
velocity has its maximum at

rm = R/e. (28)

At a fixed time, the angular velocity decreases as the radius
r increases from 0 to R (see Fig. 8). This result is consistent
with the experimental one (see Fig. 3 in Ref. [11]).

V. CONCLUSIONS AND DISCUSSIONS

A simple physical model is presented in this paper to
systemically explain the dynamical mechanism of the liquid
film motor. Considering the liquid film in the crossed electric
fields as a Bingham plastic fluid with equivalent electric dipole
moment, we successfully explain most of the experimental
phenomena observed in direct current electric fields. Several
analytical results, such as the torque of rotation, the scaling
relation of the threshold fields, and the dynamics equation of a
square film and its solution, are obtained. The comparison be-
tween our theoretical predictions and the experimental results
is presented in detail. We find that the rotation of the liquid film
in crossed electric fields originates from the continuous com-
petition between the destruction and the reestablishment of the
polarization equilibrium maintained by the external electric
field, which is free from the boundary effects. Several inter-
esting phenomena are predicted in the paper. For example, the
polar liquid films of arbitrary shape may rotate in the crossed
electric fields. For square liquid film, the rotation speed has its
maximum at r = R/e when the rotation of the film is stable.

Our model indicates why the addition of an amount of
salt to water almost cannot affect the speed of the rotation.
Although the addition of an amount of salt to water may
increase the liquid electrical conductivity by a few orders
of magnitudes, the speed of rotation [Eq. (23)] is free of
the liquid electrical conductivity and is mainly dependent
on μ, ρ, R, and � [� = ε0(1 − 1/εr )EextEcur sin θ − 2τ0].
Addition of an amount of salt to water may change the
density ρ and the relative dielectric constant εr of the liquid.
However, they could not noticeably affect the speed of
rotation.

Experiments show that one cannot observe any induced
rotation in films of nonpolar liquids [11]. Why? Perhaps the
films of nonpolar liquids would also show a plastic behavior in
an external electric field. Recently, Rai et al. [35] demonstrated
that an external electric field can induce a covalent-like bond
between polar and nonpolar molecular species. However, in
contrast to the polar liquids, without the relatively strong
orientational polarization, the equivalent dipole moment of
the molecule groups in the nonpolar liquids is too small to
break this plasticity. Naturally, one cannot observe the induced
rotation in films of nonpolar liquids.
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