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Robins showed in 1742 that a transverse aerodynamic force on a rotating sphere
could be detected by suspending it as a pendulum. Differences of periodic time in
conical pendulum motion with spin and orbit parallel and opposed have been
found to give a reasonably accurate measure of the lift coefficient, and the results
shown extend knowledge of the effect down to a Reynolds number of 2 x 103 and
up to a ratio of 12 between the peripheral and translational velocities.

1. Introduction

Robins must be aceounted one of the founders of aerodynamics in virtue of his
measurements of air resistance. The ballistic pendulum and the whirling arm
were his own inventions, and these he employed with great skill and care in two
complementary investigations: with the first he measured the loss of celerity’
of musket-balls at transonic speeds up to a Mach number of 1-5, recognizing
clearly the existence of a disproportionate rise in drag at speeds in the region
of the velocity of sound; with the second device he made direct observations on
the resistance of larger spheres at speeds of 10-40fts—%, confirming, for this
range, the proportionality between resistance and the square of the velocity, as
enunciated by Newton (1687). In addition, Robins made several remarkable
observations on the drag of other bodies, including the first indication of the
effect of aspect ratio.

Finally, he established clear priority in experimental demonstration of the
phenomenon commonly known as the Magnus effect. The experiments carried
out by Magnus (1853), more than a century after Robins’s work, were successful
only with rotating cylinders, and were purely qualitative; no measurements or
even estimates are recorded for the velocities and forces. The equivalent effect
with spheres was certainly known nearly two centuries earlier. Newton (1671/2)
had noted how the flight of a tennis ball was affected by spin, and had given an
explanation; the motions conspiring to excite a greater reluctancy and reaction
implied a greater pressure on that side of the ball which was moving forward
faster.

Euler’s opposition to the idea is surprising. Even while professing admiration
for Daniel Bernoulli’s Hydrodynamica, to which he considered that Robins paid
insufficient respect, Euler (1777) rejected the possibility of an aerodynamic force
resulting from spin. ‘The want of a perfect roundness’ (p. 310) he believed to be
the only cause of the deflexion of shot.

t Present address: Paisley College of Technology.
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The association of the effect with the name of Magnus was confirmed by the
attribution to him by Rayleigh (1877) of ‘the true explanation’. Rayleigh never-
theless noted the ‘weak step’ of the argument, namely that the pressure was
greatest on the side where the velocity was least, which could be justified for
frictionless fluids only, whereas friction is ‘the immediate cause of the whirlpool
motion’. Even more questionable, though not apparently challenged, was the
supposed experimental demonstration by Magnus that the pressures were not
equal on the two sides of the cylinder; the observed movement of quite large
vanes was proof only that pressure differences existed across the vanes in con-
sequence of a special and quite different condition of flow resulting from the
presence of the vanes.

Since Magnus was unsuoccessful in his experiments with spheres, merely guessing
that a similar force was generated, it would be only justice if the case of the
sphere were to be renamed the Robins effect. The extension of Robins’s work on
rotating spheres is the main subject of this paper.
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Ficure 1. The first set of observations by Robins. Five shots being fired in slightly
different directions from the same notch, the horizontal distances of the last four tracks are
shown relative to the first, as measured on three planes. Screens at 50 ft and 100 ft were of
‘exceeding thin paper’, and the third plane was a wall at 300 ft.

2. Robins’s observations on the effect of spin

Tracing the trajectories of musket-balls on two thin paper screens and a wall,
Robins (1805, p. 210) found unmistakable evidence of curvature in either direc-
tion in the horizontal plane; his belief that this was due to random components of
spin about a vertical axis was confirmed by deliberately imparting spin about a
known axis by means of a ‘crooked piece’; the barrel being bent to the left, the
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ball was foreed into contact with the right side of the bore, and the shots were
curved to the right.

The absolute alignment of the lines of reference on the three planes was not
considered essential for establishing the principle in the presence of other ob-
servers. The mark of the first shot being taken as the datum on each screen,
deflexions of subsequent shots were measured from these, and the recorded sets of
differences are plotted in figures 1 and 2; for the second group a more loosely
fitting ball was used. The evidence is insufficient for statistical treatment, but
the average curvature of the five shots in the second group is zero, if the first shot
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FiaUure 2. The second of the two sets of observations. If the mean curvature of these five
shots from the straight barrel is assumed to be zero, then, taking each in turn as the
reference shot used by Robins, the curvature of the ‘crooked-piece’ shot has the following
values: 61, 6-3, 10-5, 3-3 or 4:3 x 10-5 ft—1.

of the group is taken to have a curvature to the right of 0-2 x 10-3ft—1. Although
the behaviour of the later shots with a barrel curved 3 or 4° to the left evidently
satisfied the observers, only oneis recorded. Robins writes: ‘. . .notwithstanding
the bend of the piece to the left, the bullet itself might be expected to incurvate
towards the right; and this, upon trial, did most remarkably happen”. The one
recorded shot had a curvature to the right of 6-3 x 10—5ft— relative to one of the
five shots of figure 2, unfortunately not specified. Unless one makes the unlikely
assumption that the average curvature of the five shots was really not zero but
markedly to the left, then the crooked-piece shot must have been more curved
to the right than even the most unfavourable possible reference shot was
curved to the left. The five possible values quoted in the caption to figure 2 give
the absolute curvature of the crooked-piece shot on the assumption that the
average curvature of the five straight-barrel shots was zero.

A rough estimate can be made of the spin imparted to the lead ball, assuming
it to be travelling at the full muzzle-velocity U before reaching the bend; as
Robins bent only the last 3 or 4in. of the barrel, this is reasonable. If the ball has
mass m and radius a, and if the radius of curvature of the barrel is B, friction, with
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a coefficient u, gives an accelerating moment umU?2a/R. The angular velocity
acquired while the barrel bends through an angle 6 is

moment x time _ (umUZ%a/R)(RO|U) _ 5,U0
moment of inertia 2ma? T2 a

Hence, whether the curvature of the barrel is uniform or not, the ratio of peri-
pheral velocity to translational velocity is given by

ViU = $uf.

Taking the higher figure of 4° for the bend, and a value g = 0-2, this gives
V|U = 0-035, which will be seen to be consistent with a curvature of 6 x 105 ft-1,
ag far as available aerodynamie evidence allows.

No direct experiments are known to have been made on the ‘lift’ of rotating
spheres at speeds approaching those of musket-balls. The measurements of
Maccoll (1928) on a smooth sphere over a range of V/U up to 7 were made with
values of U up to 34fts—1. These are consistent with observations by Davies
(1949) using rough as well as smooth golf balls at U = 105fts~1. Both experi-
menters show negative lift — that is, a reversed Magnus or Robins force — for
smooth balls at values of V/U up to about §. This includes, therefore, all the spins
imparted by the straight or curved barrels in. Robins’s experiments, but if the
explanation offered by Davies for this reversal of sign of the lift is correct, then,
at the higher velocities of a musket-ball, rough and smooth balls would be ex-
pected to experience similar forces.

Davies argued from the known difference, for smooth non-rotating spheres,
of the pressure distribution at Reynolds numbers above and below a critical
value of about 3 x 105. The turbulent boundary layer following the surface further
round at the higher speeds, and breakaway occurring before maximum width at
the lower speeds, the region of reduced pressure is developed to more nearly that
of potential flow when the Reynolds number is above the critical value. If we
then consider a smooth ball in an air stream such that the Reynolds number
would be close to the critical value in the absence of spin, and if we further suppose
the ball to have angular velocity, the flow on the side on which the surface is
moving against the stream corresponds to a Reynolds number above the eritical
value, while that on the opposite side has the characteristics of flow at less than
the critical value. The reduction of pressure on the side moving against the
stream may then be sufficiently developed to outweigh the less perfect develop-
ment of the normally dominant low-pressure system. For moderate speeds of
rotation a reversal of the usual aerodynamic force might therefore be expected.

Davies used only one wind speed, and the overall Reynolds number was
0-9 % 10°%. The observations of Maccoll show a smaller negative lift for

R =11%x105 than for B = 0-9x 105,

The Reynolds number for musket-balls near the beginning of their flight, namely
about 5x 105, may be presumed to be well beyond the limited range in which
smooth-sphere lift-reversal occurs. If, therefore, we use Davies’s curve for the
lateral force on a rough ball, and take a mean lift coefficient of C; = 0-080,



Magnus effect on rotating spheres 441

corresponding to V/U = 0-035, we find that the trajectory should have a mean
curvature of 5-6 x 10-5ft—2. (A lateral force proportional to U?, asis implied by a
constant Oy, gives a circular path with a radius independent of velocity. U will,
of course, fall by 30 9, or 40 %, in 300 ft, but V decreases also, so that the change in
Cp, need not be great. Further refinement of the caloulation is not justified here.)

In support of his belief in an aerodynamic force as the explanation of the
deflexions of musket-balls, Robins reports another experiment with very much
lower velocities. A wooden ball of 4}in. diameter on a twisted double string of 8
or 9ft length was set in motion as a pendulum. The subsequent rotation of the
ball was accompanied by a rotation of the plane of the swing, in the same direc-
tion as the rotation of the ball, and this continued while the string was twisting
again, and the rotational speed decreasing. The only quantitative observation
recorded by Robins is that the plane of the swing could change direction by as
much as 90°. He regarded this as ““incontestable proof that if any bullet, besides
its progressive motion, hath a whirl around its axis; it will be deflected in the
manner here described ”’. In this he was not quite correct. The purely gyroscopic
action of the ball on its string makes a contribution to the precession of the swing
whieh is of comparable magnitude to that of the aerodynamic force. Nevertheless
the experiment is of interest in itself, and the complementary notion of the
conical pendulum having a period dependent on its ‘whirl’ will be seen to give
useful observations.

3. The continuation of Robins’s experiments

A teaching-laboratory project was developed from Robins’s spinning sphere
pendulum. A ball with a slightly roughened surface, having a mass of 100g and
diameter 6-4 cm, was suspended by a nylon thread of varying length from the
spindle of an eleotric motor, and two types of observation were made.

The precession of a simple pendulum, as observed by Robins, was treated as a
case of the rotation of the axes in an elliptical orbit. Since the flow pattern around
the sphere is continually changing in such orbits, these measurements do not
permit the derivations of aerodynamic information of any value. The rate of
precession depends markedly on the eccentricity of the ellipse, and this is
attributable in part to the gyroscopic effect; as no theoretical treatment of this
effect is known to be in print, the results are only reported briefly.

The more nearly the orbits approach to a pure circle, the more nearly the flow
approaches a steady state, and, while the concept of precession of axes becomes
meaningless, the change of period of the conical pendulum due to spin suggested
itself as a measure of the aerodynamic lift. This idea proved to be moderately
profitable, and the coefficients derived by this means extend to a higher ratio of
peripheral to translational velocity than any previously reported.

3.1. Precesston of elliptical orbits

Photographic recording of the orbits was facilitated by reflexions from a very
small ball of crumpled aluminium foil at the junction of ball and thread, ball and
background being dark. The shutter was opened for every fifth or tenth orbit.
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Figure 3 (plate 1) shows a typical record. The eccentricity of the orbits changed
slowly with time in a somewhat irregular manner. The rate of precession de-
pended only slightly on the amplitude of the orbits; a value of 0-15 rad was
chosen as a representative angle of the major half-axes, and the eight values in
figure 4 correspond to that amplitude. The ratio of half-axes b/a is defined as
positive for rotation in the orbit, which is in the same sense as the spin of the ball.
Whereas only two rates of spin were examined over a range of eccentricities, a
wider range of spin rates was used for the case of linear swings (b/a = 0) (figure 5).
The length of the pendulum, which had initially been 190 cm, was increased to
840 cm for the subsequent investigations, so reducing the relative magnitude of
the corrections as far as the height of the building permitted.
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Ficure 4. Rate of precession of the axes in relation to the eccentricity of the elliptical cone
pendulum. Rate of rotation of sphere: O, 1440 rev/min; +, 1040 rev/min.

3.2. Periodic times of the conical pendulum

If the axis of spin of the sphere is assumed to be aligned with the string, and the
aerodynamie lift L is taken to be normal to the string (figure 6), the ratio /7, of
the periodic time with spin to that without spin can be shown to be

T 1
7o (L= Lf(mgsm o) @)
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F1aurE 5. Rate of precession of straight pendulum swings, as a function of
the rate of spin of the ball.
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FIGURE 6. Conical pendulum with spinning spherical mass of negligible moment of inertia;
the axis of spin is aligned with the suspension,

Fieure 7. Conical pendulum with sphere of finite moment of inertia ; the axis of rotation of
the sphere assumes such an angle to the suspension as to cause a precession having a period
equal to that of the pendulum.
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To a good approximation the increase of period (67), = 7 —7,, due to the aero-
dynamic force in the presence of spin, may then be expressed as

Gl L

7o  2mgsing’

(2)

Defining the coefficient of lift in terms of the projected area S of the ball, and the
density p of the air, I = 1pC, SU®. (3)

Now the translational velocity U in the circular orbit of angle @ is [l sin 6 tan 612
when L is negligible, and using this in (3) and (2) the coefficient of lift can be
expressed as

am  (d7),

Cr = pSitanb 7, @)

The period is longer, and (67), positive, when the angular velocities of spin and
orbit are opposed. Under the same condition the period would also exhibit a
positive increment (é7), due to gyroscopic action in the absence of any aero-
dynamic force. We will retain 6 as the inclination to the vertical of the line from
the eentre of the ball to the point of suspension; then the angle of the string to the
vertical is approximately 6 —{a/(I —a)}¢, where ¢ is the angle between the axis
of spin and the string (figure 7). The period without aerodynamie lift is related to

by T tan @ : i
o [tan (6~{a/(z_a>}¢] ’ (5)

and the increment (d7), due to gyroscopic effect is then given approximately by

(0r), 1 a
To —si11205¢' (6)

The angle of tilt of the ball in the steady state is such that the tension of the string,
acting at distance a sin ¢ from the centre of gravity of the ball, causes precession
of the spin axis at the rotation rate of the conical pendulum. All the observations
recorded here were made with § < 5°and ¢ < 1°, and the ratio a/l was 3-6 x 1073,
50 that the relation between moment, angular velocity of precession and angular
momentum is adequately represented by

sin ¢ 2a
sin (0 + @) costf  5(glt (7)

where wis the angular velocity of the ball; the ball is assumed to be a homogeneous
sphere. This was solved graphically to give the values of ¢ required in (6), and the
gyroscopic contribution (d7), to the observed period was thus calculated.

At latitude A the earth’s rotation increases the period of a conical pendulum
with anticlockwise motion (looking down) by

(1), = 1-16 x 10~5 x 72sin A. (8)

{07), is simply reversed by reversal of the orbit, and (d7), is reversed by reversal
of either spin or orbit; the positive and negative values of (d7),, however, differ

appreciably; (67), is the mean of the two.
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Since (7),, (8—1); and (d7), are all very small compared to 7y, it is justifiable to
regard the observed o7 as the sum of these, each being represented by one of the
separate formulae (2), (6) and (8).

The corrections of the period for damping are negligible. In the most extreme
case observed the damping was 1-4 9, of critical, thusinereasing the period 5-8 s by
0-6 ms. The mean damping was about } %, of critical, increasing the period by less
than 0-1ms, so that any differences, due to different damping for the two direc-
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tions of rotation, were smaller still.
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FicUure 8. The relation of the coefficient of lift of a sphere to its relative rate of rotation,
given by the periods of a conical pendulum. The broken lines are the results of Maceoll, who
used a smooth ball of diameter 6 in.; each line is for one velocity of translation, indicated
in ft s—*. Rate of rotation of sphere: O, 1400 rev/min; [, 1200 rev/min; A, 1000 rev/min;

X , 800 rev/min; +, 600 rev/min; ¥, 400 rev/min.

Observations of the period were all made with the ball rotating in one direc-
tion (clockwise, looking down), the orbital motion being reversed. Every second
orbit was timed electronically, while the size of the orbit was observed through a
telescope close to the point of suspension: circles subtending radial angles of
0-04, 0-05, 0-06 and 0-08 rad had been marked on a graticule. As the orbits
frequently departed noticeably from true circles, judging when they matched
the circles of the graticule was a major source of error. Individual periods

deviated from the smoothed curve by up to 3 ms, but the smoothed figures are
good to about 1 ms. Differences at any given cone angle between the smoothed
periodic times with opposite orbital motions, double the 67 of the above equations,

ranged from 20 to 40 ms. The correction term [(d7),+ (d7),] amounted to between
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4 and 12 %, of the observed figure for é7, and the derived values for the lift co-
efficient O have a mean aceuracy of 5 9,. Translational Reynolds numbers lay in
the range 1500-3000.

The plot in figure 8 of €y, against VU, the ratio of peripheral and translational
speeds, shows a trend to higher lift coefficients at lower values of either V or U;
lines of constant V are, however, better defined than are those of constant 7.
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Ficure 9. Drag coefficients derived from the rate of decay of conical orbits. Symbols as in
figure 8 with addition { for zero rate of rotation.

The drag coefficients of figure 9 exhibit no eorresponding separation. These are
calculated on the assumption that the resistance of the suspending filament is
negligible in comparison with that of the sphere. The radius r of the orbit being
recorded as a function of the number N of the cycle, the drag coefficient ean then
be shown to be given by the relation

m d(1/r)

D= 71._',08 F (9)

The nylon filament had a length of 837 em and a diameter of 0-35 mm, so that
its total projected area was comparable to that of the sphere. Although no
attempt has been made to evaluate its effect in detail, the added resistance
accounts roughly for the drag shown for the sphere at zero spin exceeding the
accepted figure by some 30 9.

In common with whirling-arm experiments in general, these measurements
suffer from the defect that the ball is not moving into still air. The smallest orbit
used had a diameter eleven times the ball diameter, and the period, the longest
possible, was still under 6s.
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4. Conclusion

The coefficients of lift for rotating spheres at Reynolds numbers between 1500
and 3000, calculated to an accuracy of 5 9 from differences in the periods of a
conical pendulum, show noticeable departures from earlier measurements by
Maceoll at Reynolds numbers of 105. Whereas Maccoll’s lift coefficients level off at
higher rates of spin, the new observations rise less rapidly at first, with increasing
spin, but continue to rise to higher values, tending towards proportionality to the
rate of spin. Though of lower absolute accuracy, the drag coefficients exhibit an
appreciable difference from those of Maccoll, in that they fall slightly with
increasing spin.

Dr A.D. D. Craik gave valuable advice throughout the work. The later obser-

vations of the conical pendulum were made with the assistance of Mr M. A.
Barkla.
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Figure 3. A typical record of the elliptical pendulum motion. Every fifth orbit was
photographed. The ball was spinning at 1440 rev/min and the greatest amplitude shown is
about 1/6 radian.
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