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a b s t r a c t

In earlier work [P.J. Aston, R. Shail, The dynamics of a bouncing superball with spin, Dyn. Sys. 22 (2007)

291–322] the problem of the possible back and forth motion of a superball thrown spinning onto a

horizontal plane was considered in detail. In this paper the problem is extended to include a vertical

wall. In particular motion of the superball where it bounces alternately on the floor and the wall several

times is considered. Using the same physical model as in our previous work, a non-linear mapping is

derived which relates the launch data of the (n+1)th floor bounce to that of the n th. This mapping is

analysed both numerically and theoretically, and a detailed description is presented of various possible

motions. Regions of initial conditions which result in a specified number of bounces against the wall are

also considered.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In a previous paper [1] two of the present authors considered
in detail the mechanics of a superball bouncing back and forth on
a rough horizontal plane. Reversals in direction in the horizontal
motion of the ball result from the application of a tangential law
of restitution at the point of impact of the ball and the plane. This
concept was first introduced by Garwin [2] who used a tangential
coefficient of restitution of one, which is not physically realistic.
Garwin’s model was modified by Cross [3] who employed a
tangential coefficient of restitution a satisfying 0oao1, with the
horizontal velocity of the point of impact of the ball being
reversed and reduced in magnitude by a factor of a in the impact.
Further details of the physics of this model are given in [1],
together with references to other theoretical and experimental
work.

All who have experimented with a superball will have at
sometime bounced the ball on the floor, followed by a bounce on a
vertical wall. If the bounce on the wall occurs while the ball is still
rising, it gives the ball some backspin, so that the direction of
motion is reversed at the next bounce on the floor resulting in the
ball hitting the wall a second time. With practice, the ball can be
made to bounce between the floor and wall several times. Such
motion is illustrated in the animations in Figs. 2, 3, 5, and 11. It is
our purpose to give a theoretical investigation of such motions
and the non-linear mappings which they engender. To this end we
establish in Section 2 the basic equations governing the model.
ll rights reserved.

x: +44 1483 686071.
Essentially, each journey of the ball from floor to wall to floor,
assumed to take place in the same vertical plane, comprises four
events: (i) after launch from the floor the ball pursues a parabolic
trajectory until it hits the wall, (ii) the rebound from the wall,
(iii) the parabolic trajectory of the return journey to the floor and
(iv) the impact with the floor which provides the launch data for
the next excursion of the ball. The result of this analysis is the
derivation of a non-linear mapping which relates the floor launch
data (linear and angular velocity components of the ball and
distance from the wall) to the same parameters after the next
bounce on the floor.

In Section 3 some numerical trajectories of the non-linear
mapping are computed and examples given of motions with
various numbers of floor to wall bounces. Also illustrated are the
parameter spaces of initial conditions required to produce various
numbers of bounces off the wall. In Section 4 a scaling invariance
is introduced which rewrites the non-linear map of Section 2 in
terms of suitable canonical coordinates. This results in a three-
dimensional non-linear map, a reduction in dimension by one
from the original system.

Section 5 presents some numerical results for the regions of
initial conditions which will result in a given number of bounces
against the wall in the canonical variables, analogous to those of
Section 3 for the original variables. The next two sections of the
work analyse these numerical results in some detail, focussing on
the behaviour of the mapping on two planes which comprise
boundaries of the region of interest. The paper concludes by
proposing a number of further questions related to the problem.

Before continuing to our analysis of the problem we have just
described, we note that there are limitations to the model of the
bounce of the superball that we use. It is recognised that the
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model introduced in [3] which was subsequently used in [1] and
the present paper is an oversimplification of the physics of
superball impact. Thus, the tangential coefficient of restitution a
is known not to be constant, but to depend on factors such as the
speeds, the angles of incidence and the angular velocities of the
bodies in collision (see, for example, Cross [3,4], Labous et al. [5],
Dong and Moys [6], Sondergaard et al. [7], although we note that
the latter two studies were concerned with steel balls, not
superballs). Further there is a number of competing models of the
impact process which attempt to describe the slip and elastic
restitution occurring over the area of contact of the impinging
bodies. For example, Maw et al. [8] study in detail the elastic
displacements of colliding spheres during impact, giving parti-
cular attention (via a classical elasticity mixed boundary-value
problem) to the tangential tractions generated in the collision.
Stronge et al. [9] model the collision by again considering the
elastic impact region, which they represent by a deformable
particle, the remainder of the system being treated as a rigid body.
A very different approach to collision dynamics is that of Bibó
et al. [10], who construct a mechanical model of a ball which can
exhibit the back and forward bouncing studied in [1]. Basically
they consider the ball to have a rigid core attached by torsion
springs to an outer casing, each component being capable of
rotation about a common axis. The outer layer mimics the surface
layer of the ball whilst the inner part can store energy even if the
outer layer is reduced to rest during the bounce. These and other
models may be able to give a more realistic description of the
bouncing process. However, despite the shortcomings of the Cross
model of a bounce, it has the merit of enabling progress to be
made in the analytical description of the title problem of this
paper, and hence is to be preferred to other models which would
lead to intractable mathematical and numerical situations.
2. The model equations

We consider the motion of a solid homogeneous superball of
mass m and radius a, bouncing back and forth under gravity
between a horizontal floor (f) and a vertical wall (w). The motion
is assumed to be two-dimensional, and horizontal and vertical
axes Ox and Oy are taken in the plane of motion of the centre, C, of
the ball such that the horizontal floor is given by y¼�a,
�arxo1 and the vertical wall by x¼�a, �aryo1. With this
choice of coordinates, the ball centre C is restricted to the positive
quadrant of the plane (see Fig. 1).
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Fig. 1. The trajectory of the ball centre C and three successive impacts.
Since collisions occur at two separate surfaces it is essential to
formulate a clear notation for describing the progress of the ball.
Let un, vn be the horizontal and vertical velocity components of
the centre of the ball immediately after the nth bounce on the floor,
and let on, measured positive in the direction from Ox to Oy, be
the angular velocity of the ball. Clearly vn40 by definition and we
require uno0 in order for the ball to proceed towards the wall.
Further, let xn+a denote the horizontal distance of the ball centre
C from the wall at the nth bounce on the floor, and yn+a the height
of C above the floor at the subsequent impact with the wall. After
launch from the floor the centre of the ball describes a parabolic
trajectory, and elementary mechanics shows that

yn ¼�
xn

un
vnþ

gxn

2un

� �
: ð1Þ

Immediately prior to impacting the wall the linear and angular
velocity components of the ball are denoted by uw-

n , vw-
n and ow-

n ,
and immediately after the collision with the wall these compo-
nents are written uwþ

n , vwþ
n and owþ

n . The ball now returns to the
floor, pursuing a parabolic trajectory, and reaches it with
component velocities uf-

n , vf-
n and of-

n , the centre C having travelled
a horizontal distance xn + 1. Finally, the ball rebounds from the
floor at the (n+1)th bounce with component velocities un + 1, vn +1

and onþ1. Fig. 1 shows the trajectories of the centre C and the
linear and angular velocities of the ball immediately after three
successive impacts with the floor and wall structure.

During the flight of the ball between impacts any viscous or
aerodynamic effects that might arise from the motion of the ball
are assumed to be small and so are ignored; it follows that in any
parabolic segment of the motion, the angular and horizontal
velocities remain constant. In order to describe the interaction of
the superball with the wall after the nth bounce on the floor, we
introduce normal and tangential coefficients of restitution, ew and
aw, both in the range (0,1), with a similar notation for the floor,
the subscript f replacing w. ew is the classical Newtonian
coefficient whence, in the notation of the previous paragraph,

uwþ
n ¼�ewuw-

n ¼�ewun: ð2Þ

In the direction tangential to the wall it is assumed, following
Cross [3] and Aston and Shail [1], that the tangential velocity of
the ball at the point of contact Pw with the wall is reversed and
reduced in magnitude by a factor aw. This condition gives

vwþ
n �aowþ

n ¼�awðv
w-
n �aow-

n Þ ¼�awðv
w-
n �aonÞ, ð3Þ

where

vw-
n ¼ vnþ

gxn

un
: ð4Þ

A third model equation follows from the conservation of angular
momentum in the bounce; taking moments about Pw, which
obviates the need to introduce the impulsive friction and normal
reaction at Pw, we have

2
5 ma2owþ

n þmavwþ
n ¼ 2

5ma2onþmavw-
n : ð5Þ

Eqs. (3)–(5) give

vwþ
n ¼

2

7
ð1þawÞaonþ

1

7
ð5�2awÞ vnþ

gxn

un

� �
, ð6Þ

owþ
n ¼

5

7a
ð1þawÞ vnþ

gxn

un

� �
þ

1

7
ð2�5awÞon, ð7Þ

and (6) and (7), together with (2), furnish the launch velocities for
the rebound from the wall.

We now consider the return of the ball to the floor and its
rebound. The initial height of the centre of the ball above Ox is yn,
given by (1), and its horizontal range is xn +1. Again, elementary
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mechanics of the parabolic trajectory of C shows that

xnþ1 ¼�
ewun

g
fvwþ

n þððv
wþ
n Þ

2
þ2gynÞ

1=2
g, ð8Þ

vf-
n ¼�ððv

wþ
n Þ

2
þ2gynÞ

1=2, ð9Þ

where (6) supplies vwþ
n , and further

uf-
n ¼ uwþ

n , of-
n ¼o

wþ
n : ð10Þ

Applying the law of restitution normal to the floor and making use
of (1), (6) and (9) shows that

vnþ1 ¼�ef vf-
n

¼ ef
2

7
ð1þawÞaonþ

1

7
ð5�2awÞ vnþ

gxn

un

� �� �2
(

�
2gxn

un
vnþ

gxn

2un

� ��1=2

: ð11Þ

Further, tangential restitution and conservation of angular
momentum about the point of contact Pf with the floor give
equations analogous to (3) and (5) [1,3] given by

unþ1 ¼
1

7
ð5�2af Þu

f-
n�

2a

7
ð1þaf Þof-

n

¼
1

7
ð5�2af Þu

wþ
n �

2a

7
ð1þaf Þowþ

n
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1

7
ð5�2af Þewun�

2a

7
ð1þaf Þ

5

7a
ð1þawÞ vnþ

gxn

un
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þ
1

7
ð2�5awÞon

�
ð12Þ

and

onþ1 ¼�
5

7a
ð1þaf Þu
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n þ

1
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ð2�5af Þof-

n

¼�
5
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ð1þaf Þu
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1

7
ð2�5af Þowþ

n

¼
5

7a
ð1þaf Þewunþ

1
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ð2�5af Þ
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7
ð2�5awÞon

�
, ð13Þ

using (10), (2) and (7). We complete the mapping from the nth
floor bounce to the (n+1)th by quoting the full expression for
xn + 1; from (1), (6) and (8),

xnþ1 ¼�
ewun

g

2

7
ð1þawÞaonþ

1

7
ð5�2awÞ vnþ

gxn

un

� ��

þ
2

7
ð1þawÞaonþ

1

7
ð5�2awÞ vnþ
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un
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(

�
2gxn

un
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gxn

2un
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!
: ð14Þ

The mapping (11)–(14) must be supplemented by initial data.
Thus we assume that the ball is launched from the floor with
velocity components u0o0, v040 and o0, with the centre C at an
initial position (x0,0). These initial data are the output of a zeroth
bounce arising from projecting the ball onto the floor. To simplify
matters we assume that the floor and the wall are constructed
from the same material so that aw ¼ af ¼ a and ew ¼ ef ¼ b, say.
We also non-dimensionalise by defining

~vn ¼ vn=v0, ~un ¼ un=v0, ~on ¼ aon=v0 and ~xn ¼ gxn=v2
0:
The mapping (11)–(14) in these non-dimensional coordinates
takes the form

~xnþ1 ¼ f1ð ~xn, ~on, ~un, ~vnÞ ¼�b ~un 2c2 ~onþc1 ~vnþ
~xn

~un

� ��

þ 2c2 ~onþc1 ~vnþ
~xn

~un

� �� �2

�
2 ~xn

~un

~vnþ
~xn

2 ~un

� �( )1=2
1
A,

ð15Þ

~onþ1 ¼ f2ð ~xn, ~on, ~un, ~vnÞ ¼ 5bc2 ~unþ5c2c3 ~vnþ
~xn

~un

� �
þc2

3
~on, ð16Þ

~unþ1 ¼ f3ð ~xn, ~on, ~un, ~vnÞ ¼�bc1 ~un�10c2
2

~vnþ
~xn

~un

� �
�2c2c3 ~on, ð17Þ

~vnþ1 ¼ f4ð ~xn, ~on, ~un, ~vnÞ

¼ b 2c2 ~onþc1 ~vnþ
~xn

~un

� �� �2

�
2 ~xn

~un

~vnþ
~xn

2 ~un

� �( )1=2

, ð18Þ

where

c1 ¼
1
7 ð5�2aÞ, c2 ¼

1
7 ð1þaÞ, c3 ¼

1
7ð2�5aÞ:

Note that c1,c240 for all 0oao1 but that c3 may be positive,
negative or zero depending on the value of a. Later, we will also
make use of the relation

10c2
2�c1c3 ¼ a: ð19Þ

The formulation of the problem ensures that ~vn40 for all n

since the ball bounces off the floor in the upward direction. In
addition, we require three further constraints for the iterates to be
valid, given by

~uno0, ~xn40, ~xnþ2 ~un ~vno0: ð20Þ

The first of these ensures that the ball is moving towards the wall
after the bounce and also implies that ~xnþ140, the second is a
physical constraint, since we require the bounce to occur at a
positive distance from the wall, while the third is required for the
ball to hit the wall before returning to the floor (i.e. yn40 in (1)).
We note that the first condition of (20) is necessary for the third
condition of (20) to hold, assuming that vn,xn40. If the first or third
of the conditions (20) is violated, then the ball will next bounce
again on the floor, not the wall, and the process breaks down.

One can conceive of the limiting situation of a wall impact in
which yn¼0 with the ball grazing the floor without impacting and
interacting elastically with it. From (1) this occurs when
xn¼�2unvn/g, but to avoid the ball immediately interacting with
the floor we also need from (6) that vwþ

n 40, i.e.

on4
ð5�2aÞvn

2að1þaÞ
40:

The requirement of a sufficiently positive impact angular velocity
is intuitively clear, but the grazing scenario seems so unlikely that
we choose to ignore it. Hence strict inequality as in the third
condition of (20) will be used. It is also of interest to note that the
problem in which the ball simultaneously impacts both floor and
wall in the corner is indeterminate within the context of the
model. Essentially there are seven unknowns in the impact,
namely four impulsive force components, two at each point of
contact, and the three velocity components after the bounce.
Whilst seven equations, four of restitution and three moment
equations, can be written down, it is found that they are not
consistent. Hence the ball is unable to respond simultaneously at
the two distinct points of contact.
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Finally, we note that ~u0 is the horizontal velocity immediately
after the initial (zeroth) bounce. To determine the horizontal
velocity immediately before this bounce, we note that

~u0

~o0

" #
¼

c1 �2c2

�5c2 c3

" #
~u�0
~o�0

" #
,

where ~u�0 and ~o�0 are the horizontal and angular velocities
immediately before the bounce [1,3]. Inverting the matrix and
using (19), we find that

~u�0 ¼�
1

a ðc3 ~u0þ2c2 ~o0Þ:

The ball is initially thrown towards the wall prior to the zeroth
bounce if ~u�0 o0 and this implies that

~o04�
c3

2c2

~u0: ð21Þ

3. Some illustrative motions

In this section we give some numerical examples of the
motions predicted by the mapping (15)–(18). We illustrate
motions in which exactly m successive collisions with the wall
take place. It follows from (20) that for this to be the case it is
required that

0o ~xjo�2 ~uj ~vj for j¼ 0 . . .m�1 with ~xm4�2 ~um ~vm: ð22Þ

Note that since the first condition of (20), namely ~uno0, is
necessary for the third condition to hold, we do not need to
include this as one of the constraints in (22).

Since ~v0 ¼ 1, we need consider only three initial values. Thus,
we define the open set Sm in ð ~x0, ~u0, ~o0Þ�parameter space for
m¼1,2,yby

Sm ¼ fð ~x0, ~u0, ~o0Þ : 0o ~xjo�2 ~uj ~vj for j¼ 0, . . . ,m�1g;

then since the ball when making its pth successive impact on the
wall must already have made p�1, it follows that

S1*S2* � � �*Sp* � � � :

If the initial data ð ~x0, ~u0, ~o0ÞASp, then the ball bounces off the wall
at least p times. For exactly p bounces, ð ~x0, ~u0, ~o0ÞASp\Spþ1.

Consider first the case of a single impact with the wall. The
region S1 of parameter space is shown shaded in Fig. 2(a) for
representative ranges of ~x0, ~u0 and ~o0. The open set S1 is bounded
by the planes ~x0 ¼ 0 and ~x0 ¼�2 ~u0.
0

-1.2
5

-5
0.3650

x0~

u0
~

�0~

Fig. 2. (a) Three-dimensional representation of the parameter space S1 satisfying 0

(b) A trajectory for precisely one rebound from the wall with initial conditions ~x0 ¼

positive and black zero angular velocities. Refer supplementary data for an animation.

referred to the web version of this article.)
In the following examples, we take the two coefficients of
restitution as a¼ 0:5 and b¼ 0:9, which are close to the experi-
mental values obtained by Cross [4] and which were also used in our
previous paper [1]. As an example of a trajectory with exactly one
rebound from the wall, the parameters in Fig. 2(b) are chosen as
~x0 ¼ 0:2, ~u0 ¼�0:5, ~o0 ¼ 0 which clearly satisfy ~x0o�2 ~u0. Then,
from (15)–(18) with ~v0 ¼ 1, we find that ~x1 ¼ 0:546, ~u1 ¼�0:018,
~o1 ¼�0:528, ~v1 ¼ 0:783 which give ~x14�2 ~u1 ~v1. In physical

variables suppose that u0¼�5 m/s and v0¼10 m/s; then
x0 ¼ v2

0
~x0=g ¼ 2 m and x1¼5.46 m, using the approximate value of

g¼10 m/s2. The ball is launched from the plane at an angle of 63.41
and subsequently rebounds from the plane nearly vertically.

Consider next the situation in which the ball makes precisely
two impacts with the wall, that is ~xmo�2 ~um ~vm, m¼ 0,1 with
~x24� ~u2 ~v2. The parameter space S2 within which the initial data
must lie is shown from three different aspects in Figs. 3(a)–(c). We
note that this set is ‘‘glued’’ to the boundary plane ~x0 ¼ 0 over
quite a large region of this plane and so having the initial bounce
close to the wall is clearly desirable in this case. In contrast,
having ~x0 too large will mean that a second bounce against the
wall is impossible, although the upper bound on ~x0 varies
significantly with ~o0.

We recall that the condition for the ball to be thrown towards
the wall before the initial bounce is given by (21). With our value
of a¼ 0:5, this condition becomes

~o04�
~u0

6
:

On the scale of the axes used in Fig. 3(a), the plane defined by
~o0 ¼� ~u0=6 (which separates the two regions where the ball is

thrown towards or away from the wall) is almost indistinguish-
able from the vertical plane ~o0 ¼ 0. Thus, the region with ~o040
corresponds to the initial throw of the ball being towards the wall,
but almost all of the region with ~o0o0 corresponds to the initial
throw being away from the wall, but with backspin on the ball so
that it reverses direction and moves towards the wall after the
initial bounce. We note from Fig. 3(a) that the volume of S2 is
significantly greater for negative values of ~o0, corresponding to
the initial throw of the ball being away from the wall, than for
positive values of ~o0, where the ball is initially thrown towards
the wall. Thus, having a finite height wall, standing on the wrong
side of it and throwing the ball over the wall with backspin is
much more likely to give two bounces against the wall than
standing in front of the wall.
o ~x0 o�2 ~u0. The colours are used to show a grid in the ~u0 and ~o0 variables.

0:2, ~u0 ¼ �0:5, ~o0 ¼ 0. Red indicates negative (i.e. clockwise ball rotation), blue

(For interpretation of the references to colour in this figure legend, the reader is
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Fig. 3. (a) A three-dimensional representation of the region of parameter space S2 satisfying ~xm þ 2 ~um ~vm o0; m ¼ 0;1. (b) The left-hand view of the region depicted in (a).

(c) The right-hand view of the region depicted in (a). (d) A typical trajectory with two rebounds from the wall with initial conditions ~x0 ¼ 0:05, ~u0 ¼ �0:2, ~o0 ¼ 0.

Refer supplementary data for an animation.
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In order to explain this result, we refer back to the work of
Aston and Shail [1]. We first consider the case where the ball is
initially thrown away from the wall ð ~u�0 40Þ but with backspin
(relative to the direction of motion, i.e. ~o�0 40) to make it reverse
direction at the bounce. In this case, if there is a reversal of
direction, then there must also be a reversal in the spin (for a4 2

5;
see Fig. 2 of [1]). Thus, after the initial bounce, we have ~u0o0 and
~o0o0. On the other hand, if the ball is initially thrown towards

the wall, then in a similar way, it can be shown that ~o0

will almost always be positive. Reverting back to the dimen-
sional variables o0 and u0, clearly these will have the same
sign as the corresponding non-dimensional variables, as just
discussed.

Using (7) and (4), the spin after the bounce on the wall is given
by

owþ
0 ¼

5c2

a
vw�

0 þc3o0,

where vw�
0 is the vertical velocity just before the bounce on the

wall. We assume that the bounce on the wall occurs before the
ball reaches its maximum height so that vw�

0 40. Now c240 also
and so clearly 5c2vw�

0 40. However, c3o0 for a¼ 0:5 and so when
o0o0, then owþ

0 consists of the sum of two positive quantities,
which will therefore be quite large and positive. This corresponds
to the ball having a large amount of backspin after bouncing on
the wall (relative to the direction of motion) and so the ball is very
likely to reverse direction at the next bounce on the floor and
return to hit the wall a second time. However, if o040, then
c3o0o0 and so owþ

0 is obtained from the sum of a positive and
negative quantity. While this may still be positive, corresponding
to backspin, it is likely to be small in magnitude, which means
that there may not be enough backspin for the next bounce on the
floor to result in the reversal in direction that is required for the
second hit on the wall. This explains why an initial throw away
from the wall but with backspin is much more likely to result in a
second hit against the wall.

To illustrate the two wall-bounce trajectory,take initial values
of ~x0 ¼ 0:05, ~u0 ¼�0:2, ~o0 ¼ 0 which satisfy ~x0o�2 ~u0. Then, from
(15)–(18), we find that ~x1 ¼ 0:219, ~u1 ¼�0:242, ~o1 ¼�0:250 and
~v1 ¼�0:709 with ~x1o�2 ~u1 ~v1. A further iteration gives ~x2 ¼

0:108, ~u2 ¼ 0:207, ~o2 ¼�0:219 and ~v2 ¼ 0:644 with ~x24�2 ~u2 ~v2.
The trajectory of the ball is shown in Fig. 3(d), with the same
colour coding as in Fig. 2(b). To relate the non-dimensionlised
motions to a physical situation, take u0¼�2 m/s, v0¼10 m/s and
o0 ¼ 0; then x0¼0.5 m, x1¼2.190 m and x2¼1.078 m. After its
second bounce on the floor the velocity components of the ball are
u2¼2.072 m/s and v2¼6.443 m/s and the ball moves away from
the wall.

With an increase in the number of wall impacts the parameter
regions Sm become both sparser and more contorted. Thus Fig. 4
shows the parameter regions S3, S4 and S5, pertaining to at least
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Fig. 4. (a) The set S3: at least 3 impacts on the wall. Note the development of a ‘‘depression’’ on the top left-hand side. (b) The set S4: at least 4 impacts on the wall. (c)

The set S5: at least 5 impacts on the wall.

Fig. 5. (a) A typical trajectory with three rebounds from the wall with initial

conditions ~x0 ¼ 0:025, ~u0 ¼ �0:05, ~o0 ¼ 0. An experiment demonstrating three

rebounds from the wall can be seen. (b) A typical trajectory with four rebounds

from the wall with initial conditions ~x0 ¼ 0:29, ~u0 ¼ �0:5, ~o0 ¼ �5. Refer

supplementary data for an animation.
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three, four or five impacts with the wall, respectively. A finer
search procedure would give better resolution for S5. In contrast
to S2, we note that a small region of S3 becomes ‘‘unglued’’ from
the boundary plane ~x0 ¼ 0 and so, in some cases, an initial bounce
very close to the wall will not give rise to three impacts with the
wall. This small bubble in S3 becomes very much larger in S4 so
that an initial bounce close to the wall is unlikely to give four
impacts with the wall, at least for negative values of ~o0 (which is
just as well as this corresponds to throwing the ball away from
the wall!). An exception to this rule is the region lower down
which is still attached to the ~x0 ¼ 0 plane. However, for positive
values of ~o0, corresponding to throwing the ball towards the wall,
small values of ~u0 and ~x0 are essential in order to achieve four
impacts with the wall.

The change in volume from S2 to S3 appears to be relatively
small, so achieving three bounces against the wall should not be
much harder than achieving two. However, there is then a very
significant reduction in volume between S3 and S4, indicating that
four bounces against the wall would be very difficult to generate,
except possibly under carefully controlled laboratory conditions.
Clearly the volume has shrunk still further when going to S5,
a pattern that is presumably repeated for successively higher
values of m.

In Figs. 5(a) and (b) we present trajectories for three and four
wall impacts. Again, the same colour coding as in Fig. 2 is used.
A student project has achieved three bounces against the wall
experimentally [11] and the video of this can also be seen from
the link in Fig. 5(a).
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4. Scaling invariance

Eqs. (15)–(18) have a scaling invariance which occurs since the
whole problem can be scaled in the horizontal and vertical
directions together without essentially changing the dynamics.
This scaling invariance can be expressed, for any c40, as

f1ðc
2 ~xn,c ~on,c ~un,c ~vnÞ ¼ c2f1ð ~xn, ~on, ~un, ~vnÞ, ð23Þ

fiðc
2 ~xn,c ~on,c ~un,c ~vnÞ ¼ cf ið ~xn, ~on, ~un, ~vnÞ, i¼ 2,3,4: ð24Þ

This implies that for any orbit of (15)–(18) given by ð ~xn, ~on, ~un, ~vnÞ,
n¼0,1,2,y, then ðc2 ~xn,c ~on,c ~un,c ~vnÞ, n¼0,1,2,y, is also an orbit
for any c40. This scaling is effectively eliminated by the initial
condition ~v0 ¼ 1.

As a consequence of this scaling invariance, it is possible to
express the equations in terms of canonical coordinates [12],
where three equations depend only on three (scale-free) variables
and the fourth equation involves all four variables, with the
scaling acting by addition on the fourth variable. Choosing
c¼ 1= ~vn in Eqs. (23) and (24) gives

f1ð ~xn, ~on, ~un, ~vnÞ ¼ ~v
2
nf1

~xn

~v2
n

,
~on

~vn
,
~un

~vn
,1

 !
,

fið ~xn, ~on, ~un, ~vnÞ ¼ ~vnfi

~xn

~v2
n

,
~on

~vn
,
~un

~vn
,1

 !
, i¼ 2,3,4:

Eqs. (15)–(18) can then be written as

~xnþ1

~v2
nþ1

¼

f1

~xn

~v2
n

,
~on

~vn
,
~un

~vn
,1

 !

f4

~xn

~v2
n

,
~on

~vn
,
~un

~vn
,1

 !2
, ð25Þ

~onþ1

~vnþ1
¼

f2

~xn

~v2
n

,
~on

~vn
,
~un

~vn
,1

 !

f4

~xn

~v2
n

,
~on

~vn
,
~un

~vn
,1

 ! , ð26Þ

~unþ1

~vnþ1
¼

f3

~xn

~v2
n

,
~on

~vn
,
~un

~vn
,1

 !

f4

~xn

~v2
n

,
~on

~vn
,
~un

~vn
,1

 ! ,

log ~vnþ1 ¼ log ~vnþ logf4

~xn

~v2
n

,
~on

~vn
,
~un

~vn
,1

 !
, ð27Þ

thus expressing the equations in terms of the canonical co-
ordinates ~xn= ~v

2
n , ~on= ~vn, ~un= ~vn and log ~vn. Note that Eqs. (25)–(27)

depend only on the three scale-free coordinates.
The advantage of these coordinates is that the new variables

are always well defined since ~vna0 and so the singular behaviour
associated with ~un ¼ 0 (which is a boundary of our region of
interest since we require ~uno0) is contained in the equations.
However, we find it more convenient to use a different set of
canonical coordinates, given by ~xn=ð ~un ~vnÞ, ~on= ~vn, ~un= ~vn and log ~vn.
For these variables, the singularity associated with ~un ¼ 0 is
brought into the first variable but is removed from the equations.
In terms of these variables, the equations are given by

~xnþ1

~unþ1 ~vnþ1
¼

f1

~xn

~un ~vn

~un

~vn
,
~on

~vn
,
~un

~vn
,1

� �

f3

~xn

~un ~vn

~un

~vn
,
~on

~vn
,
~un

~vn
,1

� �
f4

~xn

~un ~vn

~un

~vn
,
~on

~vn
,
~un

~vn
,1

� � , ð28Þ
~onþ1

~vnþ1
¼

f2

~xn

~un ~vn

~un

~vn
,
~on

~vn
,
~un

~vn
,1

� �

f4

~xn

~un ~vn

~un

~vn
,
~on

~vn
,
~un

~vn
,1

� � , ð29Þ

~unþ1

~vnþ1
¼

f3

~xn

~un ~vn

~un

~vn
,
~on

~vn
,
~un

~vn
,1

� �

f4

~xn

~un ~vn

~un

~vn
,
~on

~vn
,
~un

~vn
,1

� �, ð30Þ

log ~vnþ1 ¼ log ~vnþ logf4

~xn

~un ~vn

~un

~vn
,
~on

~vn
,
~un

~vn
,1

� �
: ð31Þ

We define the new coordinates

Xn ¼�
~xn

~un ~vn
, Un ¼

~un

~vn
, On ¼

~on

~vn
, ð32Þ

where the minus sign in the definition of Xn ensures that this
scale-free distance function is positive (since ~uno0). We then
define the new functions

F1ðXn,On,UnÞ ¼ f1ð�XnUn,On,Un,1Þ

¼ �bUn½2c2Onþc1ð1�XnÞþ
~F ðXn,OnÞ�, ð33Þ

F2ðXn,On,UnÞ ¼ f2ð�XnUn,On,Un,1Þ

¼ 5bc2Unþ5c2c3ð1�XnÞþc2
3On, ð34Þ

F3ðXn,On,UnÞ ¼ f3ð�XnUn,On,Un,1Þ

¼ �bc1Un�10c2
2ð1�XnÞ�2c2c3On, ð35Þ

F4ðXn,On,UnÞ ¼ f4ð�XnUn,On,Un,1Þ

¼ b ~F ðXn,OnÞ, ð36Þ

where

~F ðXn,OnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2c2Onþc1ð1�XnÞ�

2þ2Xn�X2
n

q
: ð37Þ

The function F4 is independent of Un and therefore this variable
can be omitted from its list of arguments. Eqs. (28)–(31) can then
be written as

Xnþ1 ¼ G1ðXn,On,UnÞ ¼ �
F1ðXn,On,UnÞ

F3ðXn,On,UnÞF4ðXn,OnÞ
, ð38Þ

Onþ1 ¼ G2ðXn,On,UnÞ ¼
F2ðXn,On,UnÞ

F4ðXn,OnÞ
, ð39Þ

Unþ1 ¼ G3ðXn,On,UnÞ ¼
F3ðXn,On,UnÞ

F4ðXn,OnÞ
, ð40Þ

~vnþ1 ¼ ~vnF4ðXn,OnÞ: ð41Þ

Note that we prefer to work with the variable ~vn rather than the
canonical coordinate log ~vn. Since the variable ~vn occurs only in
the last of these equations, we study the three equations (38)–
(40), which involve only the three variables Xn, On and Un, in
detail. The values of the fourth variable ~vn are then easily
determined from (41).

In the new coordinates, the three conditions in (20) become

Uno0, 0oXno2, ð42Þ

and these constraints define the region of the three-dimensional
phase space that is of interest. Thus, we define the region

W ¼ fðX,O,UÞ : Uo0,0oXo2g:

If ðXn,On,UnÞAW then the ball will bounce against the wall before
returning to the floor. On the other hand, if an iterate leaves W,
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then the ball will not hit the wall before returning to bounce again
on the floor. Note that there are no constraints on On as the
angular velocity can be in either direction. We observe that the
condition 0oXno2 implies that 2Xn�X2

n 40 and this ensures that
~F ðXn,OnÞ is well defined and hence that ~vn40 for all n from (41).

It is easily shown that Xn¼2 corresponds to the ball hitting the
wall and the floor simultaneously at the next bounce, while Xn¼1
corresponds to the ball hitting the wall at the highest point of its
parabolic trajectory. Clearly, Xn approaching zero corresponds to
the bounce of the ball on the floor getting correspondingly close to
the wall.

Finally, the condition (21) for the ball to be thrown towards
the wall initially is now given by

O04�
c3

2c2
U0: ð43Þ

5. Numerical results

We now present numerical results for regions that will give a
specified number of bounces against the wall in the new
coordinates, which are analogous to those presented in Section 3.
As before, we consider parameter values of a¼ 0:5, b¼ 0:9.

Following the approach used in Section 3, we define the open
set Rm in ðX0,O0,U0Þ�parameter space for m¼1,2,yby

Rm ¼ fðX0,O0,U0Þ : ðXj,Oj,UjÞAW for j¼ 0, . . . ,m�1g:
0
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Fig. 6. (a) The set R2: at least 2 impacts on the wall. (b) The set R3: at least 3 impacts o

impacts on the wall.
Clearly, these sets also have the inclusion property that

R1*R2* � � �*Rp* � � � :

The region R1 is defined by the inequalities U0o0 and 0oX0o2,
with no restriction on O0. The regions R2, R3, R4 and R5 are shown
in Fig. 6. Finer resolution is required to obtain R5 more accurately.

We note from the comparable numerical results in Fig. 4 that
the regions Si all seem to connect to the line ~x0 ¼ ~u0 ¼ 0. The new
variable X0 as this line is approached is given by

lim
~u0-0

X0 ¼ lim
~u0-0
�

~x0

~u0 ~v0
¼�

1
~v0

d ~x0

d ~u0
ð0Þ:

Thus, X0 evaluated at U0¼0 (which implies that ~u0 ¼ 0) indicates
the direction of approach to the line ~x0 ¼ ~u0 ¼ 0, and so opens out
this region so that more detail can be seen.

With a¼ 0:5, the condition (43) for the ball to be thrown
towards the wall before the initial bounce becomes

O04
U0

6

and again, the dividing plane defined by O0 ¼U0=6 is very close to
the plane O0 ¼ 0 on the plots shown in Fig. 6.
6. The plane X¼0

To study the non-linear map defined by (38)–(40) analytically
would be very difficult. However, we can gain more understanding
0
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n the wall. (c) The set R4: at least 4 impacts on the wall. (d) The set R5: at least 5
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of the behaviour of the map and of the regions Rm by considering
the dynamics on the two boundary planes of W defined by X¼0
and U¼0. In this section, we consider the boundary plane X¼0.
The plane U¼0 is studied in the next section.

One of the conditions in (42) that define W is Xn40. However,
it is interesting to consider the boundary to this region defined by
Xn¼0 since this will help us to understand the dynamics for small
positive values of Xn. From (32), Xn¼0 requires that ~xn ¼ 0. In
terms of the behaviour of the ball, this implies that the ball
bounces at the point where the wall and the floor meet. While our
modelling has ignored this specific point, it is useful to consider
the dynamics in this plane from a mathematical perspective as
the limiting case of nearby points which are in W.

6.1. Analysis of the plane X¼0

We first note from (37) that

~F ð0,OnÞ ¼ j2c2Onþc1j:

Substituting this into (33) gives

F1ð0,On,UnÞ ¼�bUn½ð2c2Onþc1Þþj2c2Onþc1j�

¼
0 if 2c2Onþc1r0,

�2bUnð2c2Onþc1Þ if 2c2Onþc140:

(

We note that the condition 2c2Onþc1r0 is equivalent to

Onr�
c1

2c2
¼

2a�5

2ð1þaÞ
,

since c240.
We define a straight line in this region by

‘1ðOn,UnÞ � bc1Unþ10c2
2þ2c2c3On ¼ 0: ð44Þ

Note that ‘1ðOn,UnÞ ¼�F3ð0,On,UnÞ. There are now five different
cases to consider.
1.
U

Fig
in

Xnþ

Xnþ

fixe
Ono�c1=ð2c2Þ, ‘1ðOn,UnÞa0.
In this case, F1ð0,On,UnÞ ¼ 0, F3ð0,On,UnÞa0 and F4ð0,OnÞa0
and so, from (38), we must have Xn +1¼0 also. We note that if
‘1ðOn,UnÞ40, then Unþ1o0. This corresponds to region (a) of
Fig. 7. Similarly, if ‘1ðOn,UnÞo0, then Unþ140, which violates
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. 7. The plane Xn¼0 for a¼ 0:5, b¼ 0:9. In region (a), Xn + 1¼0, Unþ1 o0;

region (b), Xn+ 1¼0, Unþ1 40; in region (c), Xnþ1 Að0,2Þ, Unþ1 o0 and

2=2ð0,2Þ; in region (d), Xnþ1 ,Xnþ2 Að0,2Þ, Unþ1 ,Unþ2 o0; in region (e),

1 42, Unþ1 o0; in region (f), Xnþ1 o0, Unþ1 40. The + symbol indicates the

d point discussed in Section 6.3.
the first condition of (42), and hence is of no further interest.
This corresponds to region (b) of Fig. 7.
2.
 On4�c1=ð2c2Þ, ‘1ðOn,UnÞa0.
In this case, F1ð0,On,UnÞ40, F3ð0,On,UnÞa0 and F4ð0,OnÞ40
and so, from (38), Xnþ1a0.
If ‘1ðOn,UnÞo0, then Unþ140 and Xnþ1o0 which is not in W.
This corresponds to region (f) of Fig. 7. Conversely, if
‘1ðOn,UnÞ40, then Unþ1o0 and Xnþ140. However, to be in
W, we also require that Xnþ1o2. The boundary of this region
can be found by solving Xn +1¼2. Assuming that Xn¼0 and
On4�c1=ð2c2Þ gives

Xnþ1 ¼�
F1ð0,On,UnÞ

F3ð0,On,UnÞF4ð0,OnÞ

¼�
2bUnð2c2Onþc1Þ

½bc1Unþ10c2
2þ2c2c3On�½bð2c2Onþc1Þ�

¼�
2Un

bc1Unþ10c2
2þ2c2c3On

: ð45Þ

Thus, Xn +1¼2 when

‘2ðOn,UnÞ � ð1þbc1ÞUnþ10c2
2þ2c2c3On ¼ 0: ð46Þ

On this line, Uno0 if and only if

5c2þc3On40, ð47Þ

since b,c1,c240. If a4 2
5, then c3o0 and this condition

becomes Ono�5c2=c3. Conversely, if ao 2
5, then c340 and

so condition (47) is On4�5c2=c3. Since �5c2=c3o�c1=2c2 for
all a satisfying 0oao 2

5, then (47) is satisfied in the whole of
this region. Clearly, (47) is also satisfied when a¼ 2

5.
We note from (45) that as Un-0, then Xnþ1-0 also. Thus, we
conclude that 0oXnþ1o2 provided that Uno0, ‘2ðOn,UnÞ40
and these conditions imply that Ono�5c2=c3 when a4 2

5.
Observe also that Unþ1o0 in this region since ‘1ðOn,UnÞ40
and so the next iterate satisfies all the conditions (42). This
area is given by regions (c) and (d) of Fig. 7. Within this region,
it is possible to find another region ((d) of Fig. 7) where
0oXnþ2o2 and Unþ2o0. This region is bounded by the line
defined by Xn +2¼2 and is a complicated function of On and Un.
It can be shown that it intersects the On axis at

On ¼
5c2ð1�c2

3Þ

ab�c3þc3
3

: ð48Þ

It can be verified that this intersection point is always greater
than �c1/(2c2) for all a4 2

5 and so always occurs in the region
under consideration for this range of a. When a¼ 0:5 and
b¼ 0:9, the intersection point is On ¼

4875
2383 ¼ 2:0457.
3.
 Ono�c1=ð2c2Þ, ‘1ðOn,UnÞ ¼ 0.
On this line, which separates regions (a) and (b) of Fig. 7, we
find that F1ð0,On,UnÞ ¼ F3ð0,On,UnÞ ¼ 0 and F4ð0,On,UnÞa0 and
so Xn + 1 is not defined. However, a limiting process with Xn-0
can be used to determine a value of Xn + 1 in this case. We will
consider this case in more detail in Section 6.2.
4.
 On4�c1=ð2c2Þ, ‘1ðOn,UnÞ ¼ 0.
On this line, which separates regions (e) and (f) of Fig. 7, we
find that F1ð0,On,UnÞa0, F3ð0,On,UnÞ ¼ 0 and F4ð0,OnÞa0 and
so Xn +1 is not defined in this case. As the line is approached,
Xn +1 tends to either 1 or �1.
5.
 On ¼�c1=ð2c2Þ.
Along this line, F1ð0,On,UnÞ ¼ F4ð0,OnÞ ¼ 0 and so Xn +1 is not
defined. In the plane Xn¼0, the line On ¼�c1=2c2 is a line of
discontinuity for the evaluation of Xn + 1 since

Xnþ1-0 for Ons�
c1

2c2
,



Fig. 8. A contour plot of the surface given by (59) which is defined by Xn+ 1¼2.
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Xnþ1-�
2Un

bc1Unþa
for Onr�

c1

2c2
,

where we have used (45) and (19).

With a¼ 0:5 and b¼ 0:9, the lines which define the different
regions are given by

On ¼�
4
3 , ‘1ðOn,UnÞ ¼

18
35 Unþ

45
98 �

3
98On ¼ 0,

‘2ðOn,UnÞ ¼
53
35 Unþ

45
98 �

3
98On ¼ 0:

These results, summarised in Fig. 7, show that region (a) maps
back onto this half-plane (X¼0, Uo0), region (b) maps onto the
other half of this plane (X¼0, U40), which is outside of W,
regions (c) and (d) map into W and regions (e) and (f) do not
map into W. Note that the boundary of regions (a), (c) and
(d) can clearly be seen in Fig. 6(a) on the plane X0¼0. Moreover,
the boundary of region (d) can also be seen on this plane in
Fig. 6(b).

6.2. Analysis of the limit in case 3

We recall that case 3 listed above is the line defined by

‘1ðOn,UnÞ ¼ 0, Ono�
c1

2c2
ð49Þ

and that this is the line that divides regions (a) and (b) of Fig. 7.
Solving the defining equation for Un gives the alternative
representation of the line as

Un ¼�
10c2

2þ2c2c3On

bc1
: ð50Þ

Consider first the range of values of On which ensure that
Uno0 along this line. At the end point of the line On ¼�c1=ð2c2Þ,
we note that Un ¼�a=ðbc1Þo0 (using (19)). When aZ 2

5,
then c3r0 and so the slope of the line (50) is positive and this
implies that Uno0 along the whole line. However, if ao 2

5, then
the line (50) has a negative slope and in this case, Uno0 requires
that

5c2þc3On40: ð51Þ

We observe for future reference that the inequality (51) also holds
along the line when aZ 2

5.
We have already noted that Xn +1 is not defined on this line but

if we consider nearby points with Xn40 and take the limit as
Xn-0, then a limiting value can be obtained. Consider the surface
defined by

‘1ðOn,UnÞ ¼ bc1Unþ10c2
2þ2c2c3On ¼ kXn ð52Þ

for some constant k. Clearly this corresponds to the line (49)
when Xn¼0. Substituting for Un from (52), we find that on this
surface

F1ðXn,On,UnÞ ¼ �
ðkXn�10c2

2�2c2c3OnÞ½2c2Onþc1ð1�XnÞþ
~F ðXn,OnÞ�

c1
,

ð53Þ

F2ðXn,On,UnÞ ¼�
a
c1
ð5c2þc3OnÞ�

5c2

c1
ðc1c3�kÞXn,

F3ðXn,On,UnÞ ¼ ð10c2
2�kÞXn: ð54Þ

We also note that

~F ðXn,OnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2c2Onþc1Þ

2
q

1�
c1ð2c2Onþc1Þ�1

ð2c2Onþc1Þ
2

XnþOðX2
n Þ

 !

¼�ð2c2Onþc1Þþ
c1ð2c2Onþc1Þ�1

2c2Onþc1
XnþOðX2

n Þ, ð55Þ
since 2c2Onþc1o0. Substituting this expansion into (53) gives

F1ðXn,On,UnÞ ¼
ðkXn�10c2

2�2c2c3OnÞ½XnþOðX2
n Þ�

c1ð2c2Onþc1Þ
:

The limiting values as Xn-0 are now found as

Xnþ1 ¼�
2c2ð5c2þc3OnÞ

bc1ð2c2Onþc1Þ
2
ð10c2

2þkÞ
,

Onþ1 ¼
að5c2þc3OnÞ

bc1ð2c2Onþc1Þ
,

Unþ1 ¼ 0: ð56Þ

We note that Onþ1o0 (using (49) and (51)) and that the next
iterate is on another boundary of W as Un +1¼0. This boundary
will be considered in more detail in Section 7.

We now consider conditions on k for the next iterate to lie in
W, for which we require that Unþ1o0 and 0oXnþ1o2. Using
(54), we see that Unþ1o0 for small Xn40 provided that

k410c2
2 : ð57Þ

By (56) and (51) this condition also ensures that Xnþ140 in the
limit as Xn-0.

From (56), the condition on k such that Xnþ1o2 is given by

k4
c2ð5c2þc3OnÞ

bc1ð2c2Onþc1Þ
2
þ10c2

2 : ð58Þ

The first term on the right-hand side is positive (using (51)), and
so if this inequality is satisfied, then so is (57). Thus, we conclude
that all the required conditions hold if (58) is satisfied.

Note that it is possible to solve for k the full equation Xn +1¼2,
where F1 and F3 are given by (53) and (54). Substituting this
solution back into (52) gives the surface defined by

Un ¼�
4c2ð5c2ð1�XnÞþc3OnÞ

~F ðXn,OnÞ

2c2Onþc1ð1�XnÞþð1þ2bc1Þ
~F ðXn,OnÞ

, ð59Þ

which is shown in Fig. 8. Note how this surface intersects the
plane Xn¼0 along the lines which bound regions (a) and (c) of
Fig. 7. The region above the plane (59) and bounded by the planes
Un¼0 and the Xn¼0 is the region R2 which is shown in Fig. 6(a).
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6.3. Fixed point

In the plane X¼0, there is a fixed point ðX,O,UÞ ¼ ð0,O0,U0Þ in
region (a) of Fig. 7 which can be found by solving the two
equations

O0 ¼
F2ð0,O0,U0Þ

F4ð0,O0Þ
¼�

5bc2U0þ5c2c3þc2
3O0

bð2c2O0þc1Þ
, ð60Þ

U0 ¼
F3ð0,O0,U0Þ

F4ð0,O0Þ
¼

bc1U0þ10c2
2þ2c2c3O0

bð2c2O0þc1Þ
, ð61Þ

where we have used (55) to evaluate F4ð0,O0Þ. Solving (60) for U0

gives

U0 ¼�
bO0ð2c2O0þc1Þþc3ð5c2þc3O0Þ

5bc2
, ð62Þ

and substituting into (61) provides the cubic equation

2bc2O
3
0þðbc1þc2

3ÞO
2
0þ10c2c3O0þ25c2

2 ¼ 0: ð63Þ

Similarly, solving (61) for O0 and substituting into (60) gives
another cubic equation

b2U3
0�bc3U2

0þbc1U0þa¼ 0: ð64Þ

To investigate the character of the roots further, we form the
discriminant D, the product of the squared differences of the
roots, of the cubic Eq. (63). We find that, in terms of a and b,

D¼ 4900ð1þaÞ2f7ð2a�5Þ3b2
þð25a4�2350a3�9522a2

�2350aþ25Þb�7að5a�2Þ3g:

If Do0, the cubic (63) has one real and two complex conjugate
roots, whereas if DZ0, (63) has three real roots with a repeated
root in the case of equality. Suppose now that we plot the curve
D¼ 0 for 0oao1, 0obo1. The result is a concave arc joining
the points (2/5,0) and (0,1/35) (put b¼ 0 and a¼ 0 in D¼ 0).
Three negative real roots correspond to values ða,bÞ in the area
bounded by the arc and the segments 0oao 2

5 and 0obo 1
35 of

the axes. The remainder of the square 0oa,bo1 corresponds to
values of ða,bÞ for which (63) has a single real root. The tiny
b�values for which there are three real roots are of no interest
physically and so we consider only the region where there is a
single real root. Note that the same discriminant (up to a positive
scalar) is obtained from the cubic equation (64).

We now show that the one real solution of Eqs. (60) and (61)
lies in region (a) of Fig. 7. To do this, we must verify the three
conditions (i) U0o0, (ii) 2c2O0þc1o0 and (iii) ‘1ðO0,U0Þ40. We
consider each of these conditions in turn.
(i)
 If a4 2
5, then all the coefficients in Eq. (64) are positive. Since

there are no changes of sign in these coefficients, Descartes’
rule of signs (see, for example, [13]) says that there are no
positive roots to this equation, and either one or three
negative real roots. Since we have a single root, it must be
negative in this case.
If ao 2

5, then the coefficient of U0
2 is negative, and so there are

two changes of sign in the coefficients. In this case, Descartes’
rule of signs implies that there are either two or zero positive
real roots of the equation. Since we have only a single real
root, this must correspond to the case of zero positive real
roots and hence the one real root must be negative.
Thus, in both cases, the only real root of the equation must be
negative and so U0o0.
(ii)
 The cubic equation (63) can also be expressed as

ð5c2þc3O0Þ
2
¼�bO2

0ð2c2O0þc1Þ: ð65Þ
From this, it follows that any real solutions of this equation
must satisfy 2c2O0þc1r0. We note that equality is only
possible if 5c2þc3O0 ¼ 2c2O0þc1 ¼ 0 and it can be shown
that this only holds if a¼ 0, which is outside our range of
interest. Thus, we conclude that the real solution must satisfy
2c2O0þc1o0.
(iii)
 Solving (61) for U0 gives

U0 ¼
5c2þc3O0

bO0
, ð66Þ

and substituting this value into ‘1ðO0,U0Þ gives

‘1ðO0,U0Þ ¼
ð2c2O0þc1Þð5c2þc3O0Þ

O0
:

Now from (ii) we know that 2c2O0þc1o0 and we have also
established that O0o0. Thus, it remains to determine the
sign of 5c2þc3O0.
In (66), U0o0 and O0o0 which imply that 5c2þc3O040.
Thus, we conclude that ‘1ðO0,U0Þ40 as required.
When a¼ 0:5 and b¼ 0:9, the fixed point, as shown in Fig. 7, is
given by

O0 ¼�2:164886, U0 ¼�0:629267:

We note that there is no corresponding fixed point in terms of the
original non-dimensional variables ~x, ~o, ~u and ~v. Having this fixed
point and being able to analyse it is another advantage of studying
the three-dimensional system in the scale-free variables.

Having determined that there is a fixed point in region (a) of
Fig. 7, we now linearise about this fixed point and consider the
eigenvalues of the Jacobian matrix evaluated at this point. The
Jacobian is given by

JðO0,U0Þ ¼

j11ðO0,U0Þ 0 0

j21ðO0,U0Þ j22ðO0,U0Þ j23ðO0,U0Þ

j31ðO0,U0Þ j32ðO0,U0Þ j33ðO0,U0Þ

2
64

3
75,

where

j11ðO0,U0Þ ¼�
U0

ðbc1U0þ10c2
2þ2c2c3O0Þð2c2O0þc1Þ

2
,

j21ðO0,U0Þ ¼�
ð2c2O0þc1Þð5bc1c2U0�ac3O0Þ�c3ð5c2þc3O0Þ�5bc2U0

bð2c2O0þc1Þ
3

,

j22ðO0,U0Þ ¼
10bc2

2U0þac3

bð2c2O0þc1Þ
2

,

j23ðO0,U0Þ ¼�
5c2

2c2O0þc1
,

j31ðO0,U0Þ ¼�
ð2c2O0þc1Þð2ac2O0�bc2

1U0Þþ2c2ð5c2þc3O0Þþbc1U0

bð2c2O0þc1Þ
3

,

j32ðO0,U0Þ ¼�
2c2ðbc1U0þaÞ
bð2c2O0þc1Þ

2
,

j33ðO0,U0Þ ¼
c1

2c2O0þc1
, ð67Þ

again using (19). Clearly, the eigenvalues of JðO0,U0Þ are given by
l1 ¼ j11ðO0,U0Þ together with the two eigenvalues l2,3 of the
matrix

~JðO0,U0Þ ¼
j22ðO0,U0Þ j23ðO0,U0Þ

j32ðO0,U0Þ j33ðO0,U0Þ

" #
:



Fig. 9. The eigenvalues of JðO0;U0Þ in the ða;bÞ plane. (a) The eigenvalues l2;3 are

complex and jl2;3j41, l1 41. (b) The eigenvalues l2;3 are complex and jl2;3jo1,

l1 41. (c) The eigenvalues l2;3 are complex and jl2;3jo1, l1 o1. (d) The

eigenvalues l2;3 are real, l1 41. The solid red line gives parameter values at

which jl2;3j ¼ 1. The blue line gives parameter values at which the discriminant

(69) is zero. The dashed red line gives parameter values at which l1 ¼ 1. (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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To find these two eigenvalues, we note that

trð~JðO0,U0ÞÞ ¼
10bc2

2U0þac3þbc1ð2c2O0þc1Þ

bð2c2O0þc1Þ
2

:

Substituting for U0 from (62) gives

trð~JðO0,U0ÞÞ ¼ �
bð2c2O0�c1Þþc2

3

bð2c2O0þc1Þ
:

Similarly,

detð~JðO0,U0ÞÞ ¼�
a2

bð2c2O0þc1Þ
3

, ð68Þ

which is clearly positive since 2c2O0þc1o0 (see (ii) above).
When a¼ 0:5 and b¼ 0:9, it is found that

trð~JðO0,U0ÞÞ ¼ �4:190944, detð~JðO0,U0ÞÞ ¼ 6:137029,

and so the two eigenvalues in this particular case are given by
l2,3 ¼�2:09547271:321372i. We now show that these eigenva-
lues are complex for most values of a and b. To do this, we must
show that the discriminant of the quadratic eigenvalue equation
is negative. The boundary of this region occurs where the
discriminant is zero, which is defined by the equation

trð~JðO0,U0ÞÞ
2
�4detð~JðO0,U0ÞÞ

¼
8b2c3

2O
3
0þ4bc2

2ð2c2
3�bc1ÞO

2
0þ2c2ðc

4
3�b

2c2
1ÞO0þc1ðbc1�c2

3Þ
2
þ4a2b

b2
ð2c2O0þc1Þ

3

¼ 0: ð69Þ

The problem we have now is that O0 is the solution of the cubic
equation (63) and so is not easily obtained in a form that can be
substituted into this equation. Thus, we regard (63) as an
equation involving O0, a and b and solve it for b. Substituting
this value of b into (69) gives an equation which involves only O0

and a, and which is quadratic in O0. This equation can be solved
for O0 in terms of a. Substituting these solutions back into (63)
gives an equation involving only a and b and which can be solved
for b. One of the two solutions gives rise to negative values of b
and so is of no interest. The other gives a complicated function of
a which is plotted as the blue line in Fig. 9. It is easily verified that
the eigenvalues are complex in the large region above this line,
and real in the small region below it. Clearly this small region is of
no interest to us as b is very small there.

Consider next the magnitude of jl2,3j, since this determines
whether the fixed point is attracting or repelling in the plane. We
note that

det~JðO0,U0Þ ¼ jl2,3j
2,

and so the boundary between stability and instability of the fixed
point (in the plane) is defined by

det~JðO0,U0Þ ¼ 1: ð70Þ

Solving (63) in the factorised form (65) for b and substituting into
(68) gives

det~JðO0,U0Þ ¼
aO0

ð5c2þc3O0Þð2c2O0þc1Þ

� �2

,

and so (70) is equivalent to

ð5c2þc3O0Þð2c2O0þc1Þ ¼7aO0: ð71Þ

For aZ 2
5, c3r0 and so 5c2þc3O040. Since 2c2O0þc1o0, we

must take the positive sign in the above equation in this case.
Solving for O0 in terms of a, we find that

2c2O0þc1 ¼�

ffiffiffiffiffiffiffiffiffiffiffiffi
�
ac1

c3

r
, ð72Þ
where we have taken the negative square root since
2c2O0þc1o0. Solving (70) with the determinant given by (68)
for b and substituting using (72) gives

b¼�
a2

ð2c2O0þc1Þ
3

¼
ffiffiffi
a
p
�

c3

c1

� �3=2

¼
ffiffiffi
a
p 5a�2

5�2a

� �3=2

:

This curve is plotted as the solid red line in Fig. 9. There are four
solutions in total of (71), of which we have considered only one.
For the other three, two have b negative and the other curve lies
in the region where the eigenvalues are real, and hence is of no
interest.

Finally, we consider the eigenvalue l1 ¼ j11ðO0,U0Þ. Substitut-
ing using (61) in j11ðO0,U0Þ gives

l1 ¼�
1

bð2c2O0þc1Þ
3
:

Clearly, l140 since 2c2O0þc1o0. When a¼ 0:5 and b¼ 0:9, we
find that l1 ¼ 24:5481 with corresponding eigenvector v1 given by

v1 ¼

1

0:7940

0:2627

2
64

3
75:

This eigenvector gives the tangent direction to the one-dimen-
sional unstable manifold from the fixed point out of the plane
X¼0. This unstable manifold is easy to find by iterating a small
line segment from the fixed point in the direction of the
eigenvector. Since the eigenvalue l1 is so large, the iterates very
quickly escape from W along this manifold. Two projections of the



Fig. 10. Two projections of the one-dimensional unstable manifold coming from

the fixed point in the X¼0 plane. Also shown is the point where this manifold

crosses the plane X¼2 and two preiterates of this point.

Fig. 11. A typical trajectory with a¼ 0:95, b¼ 0:6 where there are infinitely many

bounces of the ball against the wall as the iterates converge to the stable fixed

point. The initial conditions are ~x0 ¼ 0:3, ~u0 ¼�1:2, ~o0 ¼�2:5. Refer supplemen-

tary data for an animation.
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manifold are shown in Fig. 10 together with three iterates on the
manifold.

Stability of the fixed point with respect to perturbations out of
the plane is determined by the magnitude of l1. In particular, the
boundary between stability and instability is defined by l1 ¼ 1.
We note that this condition is very similar to the condition
detð~JðO0,U0ÞÞ ¼ 1, where detð~JðO0,U0ÞÞ is given by (68). Thus, we
use a similar approach to determine the line in parameter space
corresponding to l1 ¼ 1. It can be shown that this line is given by

b¼�
c3

c1

� �3

,

and this is illustrated by the dashed line in Fig. 9. It is easily
verified that l141 to the left of this line and that l1o1 to the
right of the line.
If a material could be found which gave coefficients of
restitution a and b in region (c) of Fig. 9, then this would imply
that a large region of the space of initial conditions would give rise
to trajectories that converge to the fixed point and thus do not
escape from W. Physically, this implies that there are infinitely
many bounces of the ball between the floor and the wall.
Simulations with a¼ 0:95, b¼ 0:6 confirm these conclusions.
One such trajectory of the ball is shown in Fig. 11.

We summarise all these results as follows.

Theorem 6.1. For all values of b satisfying 1
35 obo1, the plane

X¼0 has a fixed point in region (a) of Fig. 7. The two eigenvalues of

the Jacobian evaluated at the fixed point associated with perturba-

tions in the plane are always complex, so that iterates near to the

fixed point spiral around it. The eigenvalue associated with

perturbations out of the plane is positive. As a increases from zero

to one for a fixed value of b, three scenarios are encountered which

are, in order,
(i)
 all three eigenvalues are unstable, and so the fixed point is

linearly unstable with respect to all perturbations (region (a) in

Fig. 9);

(ii)
 the two complex eigenvalues are stable while the real eigenvalue

is unstable. Thus, iterates in the plane sufficiently close to the

fixed point will converge to the fixed point, while iterates near

the fixed point but out of the plane will spiral around the one-

dimensional unstable manifold of the fixed point, moving away

from the plane X¼0 but converging towards the unstable

manifold (region (b) in Fig. 9);

(iii)
 all three eigenvalues are stable, and so the fixed point is linearly

stable with respect to all perturbations (region (c) in Fig. 9).
6.4. Iteration in region (a) of Fig. 7

We recall that iterates in region (a) of Fig. 7 map to somewhere
else in the half-plane defined by Xn¼0, Uno0 and so some parts
of region (a) will map back onto region (a). However, the regions
for which this holds will clearly get smaller for more iterations,
assuming that the parameters a and b are chosen in region (a) of
Fig. 9, so that the fixed point is linearly unstable in the plane.
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To determine these regions, the boundary lines of region (a)
defined by On ¼�c1=ð2c2Þ, ‘1ðOn,UnÞ ¼ 0 and Un¼0 can be back
iterated.

The iteration on the part of the plane defined by Ono�c1=ð2c2Þ

is given by

Onþ1 ¼�
5bc2Unþ5c2c3þc2

3On

bð2c2Onþc1Þ
, ð73Þ

Unþ1 ¼
bc1Unþ10c2

2þ2c2c3On

bð2c2Onþc1Þ
, ð74Þ

since ~F ð0,OnÞ ¼ j2c2Onþc1j ¼ �ð2c2Onþc1Þ. These equations can
be solved for On and Un to give the inverse map explicitly, but we
do not require this form.

We can now back iterate each of the three boundary lines. We
start by setting Onþ1 ¼�c1=ð2c2Þ and substituting this into (73)
gives the line

Un ¼
2c2ðbc1�c2

3ÞOnþbc2
1�10c2

2c3

10bc2
2

: ð75Þ

Similarly, we write the second line as ‘1ðOnþ1,Unþ1Þ ¼ 0 and
substituting for Onþ1 and Un +1 from (73) and (74) gives

Un ¼�
2c2

bðbc2
1�10c2

2c3Þ
½ð10bc2

2þbc1c3�c3
3ÞOnþ10bc1c2�5c2c2

3 �:

The third boundary line is Un + 1¼0 and substituting this into (74),
we derive the preimage

Un ¼�
10c2

2þ2c2c3On

bc1
, ð76Þ

which we note is the line ‘1ðOn,UnÞ ¼ 0.
The region defined by these three preimage lines must be

partly cut off by the line On ¼�c1=ð2c2Þ, so that the resulting
region is bounded by a quadrilateral. For a¼ 0:5 and b¼ 0:9 the
required region is shown in Fig. 12 as the lightest shaded area,
which is the preimage of region (a). Further inverse iteration of
this quadrilateral region can be performed, resulting in smaller
Fig. 12. The blue regions show the parts of the Xn¼0 plane for which Xn +k¼0 and

Unþk o0 for k¼2,3,4,5, for a¼ 0:5, b¼ 0:9. The red plus sign indicates the fixed

point. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
regions at each stage which are converging towards the fixed
point found previously in Section 6.3. The next few steps of this
process are also shown in Fig. 12.

Clearly some points in region (a) will end up, under forward
iteration, in regions (c), (d) or (e) of Fig. 7. Thus, we can define
more regions of this plane where 0oXnþko2 and Unþko0 for
increasing values of k.

We first note that for a¼ 0:5, b¼ 0:9, if ðOn,UnÞ is in region (a),
then ðOnþ1,Unþ1Þ will lie to the left of the line Unþ1 ¼ 6Onþ1,
which is the forward iterate of the line Un¼0. In particular, this
implies that Onþ1 is always negative. Thus, for these parameter
values, iterates of points in region (a) will never lie in region (d). It
is likely that this will also be true for many other parameter
values, but we have not considered this in detail. However, we
concentrate our attention on region (c), since this is the region for
which 0oXnþ1o2 and Unþ1o0. It is bounded by the lines Un¼0,
On ¼�c1=ð2c2Þ and Un ¼�2c2ð5c2þc3OnÞ=ð1þbc1Þ. We have
already back iterated the first two of these lines, and so it
remains to find the inverse iterate of the third. Using a similar
process to before, this gives the line

Un ¼�
2c2

bðbc2
1þc1�10c2

2c3Þ
½ð10bc2

2þbc1c3þc3�c3
3ÞOn

þ10bc1c2þ5c2�5c2c2
3 �: ð77Þ

For future reference, we note that this line intersects the On�axis
at

On ¼�
10bc1c2þ5c2�5c2c2

3

10bc2
2þbc1c3þc3�c3

3

: ð78Þ

Thus, the region for which 0oXnþ2o2 and Unþ2o0 is bounded
by the lines (75)–(77) and is shown as the lightest shaded red
region in Fig. 13. Back iterating this region gives the next darkest
shaded region, which is now also cut off by the lines On ¼

�c1=ð2c2Þ and ‘1ðOn,UnÞ ¼ 0, resulting in a pentagonal region. This
region can be further back iterated as shown in Fig. 13, again
Fig. 13. The red regions show the parts of the Xn¼0 plane for which 0oXnþk o2

and Unþk o0 for k¼2,3,4,5, for a¼ 0:5 and b¼ 0:9. The red plus sign indicates the

fixed point. The boundaries of the regions shown in Fig. 12 are also given. (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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resulting in smaller regions at each stage and converging towards
the fixed point.

Combining these two sets of results, we can find regions of the
plane Xn¼0 where 0rXnþko2 (note the equality!) and Unþko0.
These regions consist of the combination of the corresponding
blue and red areas from Figs. 12 and 13 and are shown in Fig. 14.

Taking n¼0, clearly these regions of the plane X¼0 show
where the regions Rm, m¼3,4,yintersect this boundary plane. In
Fig. 6(b), the intersection with the plane X0¼0 is similar to the
region bounded by the blue line of Fig. 14. If the resolution used to
generate Fig. 6(b) was finer, then better agreement would be
obtained. Similarly the regions where R4 and R5 intersect the
plane X0 in Figs. 6(c) and (d) should match with the regions
bounded by the red and green lines of Fig. 14, but again the
resolution in Fig. 6 is poor.

6.5. The iteration for Xn40

We have so far studied in detail the dynamics in the plane
X¼0, even though this is only the boundary of the region W but is
not in W. However, the dynamics near to this boundary can be
understood in terms of the dynamics on this boundary plane.

Let ðXn,On,UnÞ be a point at which the functions G1, G2 and G3

defined by (38)–(40) are differentiable. Then taking a Taylor series
of these functions in the variable Xn about Xn¼0 gives

Xnþ1 ¼ G1ðXn,On,UnÞ ¼ G1ð0,On,UnÞþG1,Xð0,On,UnÞXnþOðX2
n Þ,

Onþ1 ¼ G2ðXn,On,UnÞ ¼ G2ð0,On,UnÞþG2,Xð0,On,UnÞXnþOðX2
n Þ,

Unþ1 ¼ G3ðXn,On,UnÞ ¼ G3ð0,On,UnÞþG3,Xð0,On,UnÞXnþOðX2
n Þ,

where G1,X ¼ @G1=@X, etc. Thus, the iterates are determined by the
iterates in the plane Xn¼0, perturbed by terms of O(Xn), which we
assume to be initially small. Moreover, if the point ðOn,UnÞ is in
region (a) of Fig. 7, then G1ð0,On,UnÞ ¼ 0 and so

Xnþ1 ¼ G1,Xð0,On,UnÞXnþOðX2
n Þ:
Fig. 14. Regions of the Xn¼0 plane for which 0rXnþk o2 and Unþk o0 for k¼2

(blue), 3 (red), 4 (green), 5 (magenta), for a¼ 0:5 and b¼ 0:9. The red plus sign

indicates the fixed point. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
We note that G1,Xð0,On,UnÞ ¼ j11ðOn,UnÞ, given by (67). This
function tends to 1 for points that tend towards either of the
boundary lines On ¼�c1=ð2c2Þ or ‘1ðOn,UnÞ ¼ 0 and is zero along
the remaining boundary line Un¼0. Solving the equation
j11ðOn,UnÞ ¼ 1 gives the line

Un ¼�
2c2ð2c2Onþc1Þ

2
ð5c2þc3OnÞ

1þbc1ð2c2Onþc1Þ
2

,

and this line is shown in Fig. 15 for a¼ 0:5 and b¼ 0:9. Clearly, if
ðOn,UnÞ is a point below this line, then Xnþ14Xn and if it is a point
above the line, then Xnþ1oXn.

In general terms, if ðOn,UnÞ is a point in region (a) of Fig. 7 and
Xn is small and positive, then the iterates will spiral out from the
fixed point, while generally moving away monotonically from the
X¼0 plane (unless the dashed line in Fig. 15 is crossed) until an
iterate leaves region (a), in which case the next iterate will either
leave W or jump away from the plane X¼0 while remaining in W.

We note that G1ð0,On,UnÞ is not defined along the line
‘1ðOn,UnÞ ¼ 0, as considered in case 3 above and so the Taylor series
approach cannot be used on this line. However, the behaviour of
iterates with Xn40 but near to this line was studied in Section 6.2.
7. The plane U¼0

The conditions (42) which define the region W include Uno0.
As in the previous section, it is interesting to consider the
boundary of W defined by Un¼0, since this will help to under-
stand the dynamics for small, negative values of Un. From a
physical point of view, this condition implies that the ball bounces
vertically from the floor, which necessarily implies that it will not
hit the wall before returning to the floor. However, insight can be
gained by considering this plane from a mathematical perspective
as the limiting case of nearby points which are in W.

We first consider which points ðXn,OnÞ in the plane Un¼0
ensure that Unþ1o0. The boundary to this region will occur when
Un +1¼0, and this occurs when

F3ðXn,On,0Þ ¼�10c2
2ð1�XnÞ�2c2c3On ¼ 0:

This is equivalent to

Xn ¼ L1ðOnÞ �
c3

5c2
Onþ1:

It is easily verified that Unþ140 when Xn4L1ðOnÞ and so this
immediately implies that the region of interest in the plane Un¼0
-5 -4 -3 -2 -1
Ω

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

U

Fig. 15. The dashed line shows points at which j11ðO,UÞ ¼ 1 for a¼ 0:5, b¼ 0:9.

Above the line, j11ðO,UÞo1 and below the line j11ðO,UÞ41.



Fig. 16. The line Xn ¼ L2ðOnÞ in the Un¼0 plane that maps onto the point

ðOð2Þnþ1 ,Uð2Þnþ1Þ in the Xn +1¼0 plane.
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is initially given by

0oXnoL1ðOnÞ: ð79Þ

The behaviour of iterates near to the line Xn ¼ L1ðOnÞ with Una0
is also of interest. We consider these two cases separately.

7.1. The region 0oXnoL1ðOnÞ

In the region defined by (79), Xn+ 1¼0 which is one of the other
boundary planes that we considered in the previous section. We
note that in this case,

Onþ1

Unþ1
¼

F2ðXn,On,0Þ

F3ðXn,On,0Þ
¼�

c3

2c2
,

and so the region defined by (79) in the plane Un¼0 maps onto
the line

Onþ1 ¼�
c3

2c2
Unþ1 ð80Þ

in the plane Xn + 1¼0. We note that points ðXn,OnÞ in the plane
Un¼0 that approach the line Xn ¼ L1ðOnÞ map, under iteration, to
points on this line that approach the origin Unþ1 ¼Onþ1 ¼ 0.

We now determine where the line (80) intersects the line
‘2ðOnþ1,Unþ1Þ ¼ 0 which is defined by (46). This point of
intersection is given by

ðOð2Þnþ1,Uð2Þnþ1Þ ¼
5c2c3

bc1þ1�c2
3

,�
10c2

2

bc1þ1�c2
3

 !
:

It can be shown that the function Oð2Þnþ1þc1=ð2c2Þ is positive for all
a,bA ½0,1�, which implies that this point of intersection lies to the
right of the line Onþ1 ¼�c1=ð2c2Þ. From this, we conclude that the
line (80) intersects regions (c) and (e) of Fig. 7 for all a,bA ½0,1�.

Similarly, the point of intersection of the line ‘1ðOnþ1, Unþ1Þ ¼ 0
defined by (44) and the line (80) is found to be

ðOð1Þnþ1,Uð1Þnþ1Þ ¼
5c2c3

bc1�c2
3

,�
10c2

2

bc1�c2
3

 !
:

In this case, solving

Oð1Þnþ1þ
c1

2c2
¼ 0

gives b¼�ac3=c2
1, using (19). To the left of this line in the parameter

plane, the point of intersection ðOð1Þnþ1,Uð1Þnþ1Þ lies to the right of the
line Onþ1 ¼�c1=ð2c2Þ, which implies that the line (80) intersects
region (f) of Fig. 7. However, to the right of this line, the point of
intersection ðOð1Þnþ1,Uð1Þnþ1Þ lies to the left of the line
Onþ1 ¼�c1=ð2c2Þ, which implies that the line (80) intersects regions
(a) and (b) of Fig. 7. In this case, it is possible that period 2 orbits of
the map may exist, since points that approach the line ‘1ðOn,UnÞ ¼ 0
as Xn-0 map onto the plane Un+1¼0 (see Section 6.2) and some
points on this plane map back onto the line (80) in the plane Xn+2¼0
which intersects the line ‘1ðOn,UnÞ ¼ 0.

The example that we are considering of a¼ 0:5, b¼ 0:9
corresponds to the case where the line (80) intersects region (f),
and so we do not consider the possibility of period two points further.

We now determine the line in the Un¼0 plane which maps
onto the intersection point ðOð2Þnþ1,Uð2Þnþ1Þ in the plane Xn+ 1¼0. This
can be found by solving

Oð2Þnþ1 ¼
F2ðXn,On,0Þ

F4ðXn,On,0Þ
¼

5c2c3ð1�XnÞþc2
3On

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2c2Onþc1ð1�XnÞ�

2þ2Xn�X2
n

q :

Substituting for Oð2Þnþ1, squaring and simplifying gives

½ð5c2ð1�XnÞþc3OnÞðbc1þ1�c2
3Þ�

2

¼ ð5bc2Þ
2
½ð2c2Onþc1ð1�XnÞÞ

2
þ2Xn�2X2

n �:
This equation is quadratic in Xn (and in On). We note that of the
two solutions to this equation, only one of them will be a solution
of the original equation as the second has been introduced due to
squaring. The solutions are complicated functions of a and b. We
denote the one solution of the original equation by Xn ¼ L2ðOnÞ

and the graph of this solution for a¼ 0:5, b¼ 0:9 is shown in
Fig. 16. It is easily verified that the region between the lines
Xn ¼ L1ðOnÞ and Xn ¼ L2ðOnÞ maps onto the intersection of the line
(80) with region (c) of Fig. 7.

The two intersection points of the line Xn ¼ L2ðOnÞ with the
On�axis can be found and are given by (48) and (78). Thus, this
line in the plane Un¼0 joins up with the boundary of region (d) of
Fig. 7 in the plane Xn¼0 and the boundary of the lightest red
region of Fig. 13, again in the plane Xn¼0.

For the parameter values a¼ 0:5, b¼ 0:9, the line (80) does not
intersect the boundary of region (d). (This is likely to be the case
also for many other values of a and b, but we do not explore this
in detail.) Thus, in this case, the region in the plane Un¼0 bounded
by the lines Xn ¼ L1ðOnÞ and Xn ¼ L2ðOnÞ iterates as follows:
�
 in one iteration, it maps onto the intersection of the line (80)
with region (c) of Fig. 7 in the boundary plane Xn + 1¼0;

�
 in two iterations it maps into W, so that 0oXnþ2o2 and

Unþ2o0;

�
 in three iterations, it escapes from W.

Thus, this region defines the boundary of the set R3 (see Section 5)
where it intersects the Un¼0 plane, as can be seen from the
numerical results in Fig. 6(b).

When Un is small but non-zero, a similar approach to that used
in Section 6.5 can be used to show that iterates are O(Un) from the
corresponding iterates starting with Un¼0.

One question of interest in this case is whether Xnþ140 for
sufficiently small Uno0 and 0oXnoL1ðOnÞ? We note from (38),
(33) and (36) that

Xnþ1 ¼
Un½2c2Onþc1ð1�XnÞþ

~F ðXn,OnÞ�

F3ðXn,On,UnÞ
~F ðXn,OnÞ

: ð81Þ
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Now ~F ðXn,OnÞ40 by definition. The region 0oXnoL1ðOnÞ is
defined to ensure that F3ðXn,On,0Þo0 and so, for sufficiently small
Un, F3ðXn,On,UnÞo0 also. Therefore, the denominator of (81) is
negative. In the numerator, we have by assumption that Uno0,
and so it remains to consider the term in the square brackets. The
following result shows that this quantity is positive.

Lemma 7.1. If 0oXno2 then

2c2Onþc1ð1�XnÞþ
~F ðXn,OnÞ40,

where ~F ðXn,OnÞ is defined by (37).

Proof. We first define

F̂ ðXn,OnÞ ¼ 2c2Onþc1ð1�XnÞ:

The expression of interest can then be rewritten as

2c2Onþc1ð1�XnÞþ
~F ðXn,OnÞ ¼ F̂ ðXn,OnÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̂ ðXn,OnÞ

2
þ2Xn�X2

n

q
:

Since 0oXno2, it follows that 2Xn�X2
n 40 and so

F̂ ðXn,OnÞ
2
þ2Xn�X2

n 4 F̂ ðXn,OnÞ
2
Z0:

The square-root function is monotonically increasing, and so we
conclude thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F̂ ðXn,OnÞ
2
þ2Xn�X2

n

q
4 jF̂ ðXn,OnÞj:

Hence,

F̂ ðXn,OnÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̂ ðXn,OnÞ

2
þ2Xn�X2

n

q
4 F̂ ðXn,OnÞþjF̂ ðXn,OnÞjZ0

which gives the required result. &

Combining the signs of all these terms, we conclude that
Xnþ140, and so the first iterate is on the valid side of the
boundary plane Xn +1¼0. We finally note that this also implies
that the region of the plane Un¼0 defined by 0oXnoL1ðOnÞmust
define the intersection of the set R2 with the plane Un¼0. This
region can clearly be seen in Fig. 6(a).

7.2. The line Xn ¼ L1ðOnÞ

The line Xn ¼ L1ðOnÞ is found from the condition that
F3ðXn,On,0Þ ¼ 0 and so, from (38), Xn+ 1 is not defined along this
line. However, a limiting process with Un-0 can be used to
determine a value of Xn + 1 in this case, using a similar approach to
that used in Section 6.2.

We consider the surface defined by

�10c2
2ð1�XnÞ�2c2c3On ¼ kUn ð82Þ

for some k. Clearly, this corresponds to the line Xn ¼ L1ðOnÞ when
Un¼0. On this surface, we find that

F2ðXn,On,UnÞ ¼ 5bc2�
kc3

2c2

� �
Un,

F3ðXn,On,UnÞ ¼ ðk�bc1ÞUn:

Clearly, F4ðXn,OnÞ does not depend on Un and so we do nothing
with this function. We also leave F1ðXn,On,UnÞ in its current form
at this stage. On the surface defined by (82), we then find that

Xnþ1 ¼�
2c2Onþc1ð1�XnÞþ

~F ðXn,OnÞ

ðbc1�kÞ ~F ðXn,OnÞ
,

Onþ1 ¼
ð5bc2�kc3=ð2c2ÞÞUn

b ~F ðXn,OnÞ
,

Unþ1 ¼
ðk�bc1ÞUn

b ~F ðXn,OnÞ
: ð83Þ
Taking the limit as Un-0 therefore gives Onþ1 ¼Unþ1 ¼ 0 (since
~F ðXn,OnÞ40) and since Xn + 1 in (83) above does not depend on Un,
there is no limit to take here.

We now consider conditions on k, assuming that Uno0 and
0oXno2, for this next iterate to lie in W. We note that the
following analysis does not require Un to be small.

Since ~F ðXn,OnÞ40, then Unþ1o0 provided that

k4bc1ð40Þ: ð84Þ

For Xn +1 defined by (83), we note that the denominator is
negative, using (84) and since ~F ðXn,OnÞ40. Lemma 7.1 ensures
that the numerator of Xn +1 is positive and combining these
results, we conclude that Xnþ140 as required.

The final condition we require is that Xnþ1o2. To find the
values of k which correspond to the boundary of the region
satisfying this condition, we substitute Xn + 1¼2 into (83) and
solve for k, giving

k¼
2c2Onþc1ð1�XnÞþ

~F ðXn,OnÞ

2 ~F ðXn,OnÞ
þbc1: ð85Þ

The required inequality is then

k4
2c2Onþc1ð1�XnÞþ

~F ðXn,OnÞ

2 ~F ðXn,OnÞ
þbc14bc1:

Note that the second inequality follows from Lemma 7.1 and since
~F ðXn,OnÞ40. Clearly, if this condition holds, then so does (84) and so
this is the only condition that we need on k to ensure that the next
iterate lies in the region of interest. The surface defined by (82), with
k given by the limiting value (85), is the same as was found
previously and is given by (59). This is the surface shown in Fig. 8.
8. Concluding remarks

We have derived an impact map which describes one cycle of
the ball from leaving the floor, bouncing on the wall and then
bouncing on the floor again. We have analysed this map in detail
to determine some of its properties. This has shown that it is
much easier to obtain a higher number of bounces against the
wall if the ball is initially thrown away from the wall, but with
backspin to bring it back towards the wall after the bounce, than if
the ball is initially thrown towards the wall. However, this work
still leaves a number of questions:
�
 How many hits against the wall are possible? Is it a fixed finite
number or can it be arbitrarily large?

�
 What happens to the region of initial conditions as the number

of hits against the wall increases?

�
 How many hits against the wall are possible experimentally?

It is possible to answer the first of these questions from the
work that we have done. From Theorem 6.1, in case (iii) there is a
stable fixed point and so there will be a large region of initial
conditions that are attracted to this fixed point. In this case, the
number of iterates in W, and hence the number of hits against the
wall, can be arbitrarily large (see Fig. 11). However, even in cases
(i) and (ii) where this fixed point is linearly unstable, there is a
one-dimensional unstable manifold associated with perturbations
out of the plane Xn¼0. By taking points closer and closer to the
fixed point on this manifold, it is possible to find initial conditions
that will give rise to an arbitrarily large number of hits against the
wall. However, we note that for the parameter values we have
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been considering of a¼ 0:5 and b¼ 0:9, the unstable eigenvalue is
l1 ¼ 24:5481 and so there is strong repulsion from the fixed point.
Thus, the intervals on the unstable manifold which correspond to
a given high number of hits will be exceedingly small!

The third question poses an interesting challenge for experi-
mentalists!
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