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In earlier work [P.]. Aston, R. Shail, The dynamics of a bouncing superball with spin, Dyn. Sys. 22 (2007)
291-322] the problem of the possible back and forth motion of a superball thrown spinning onto a
horizontal plane was considered in detail. In this paper the problem is extended to include a vertical
wall. In particular motion of the superball where it bounces alternately on the floor and the wall several
times is considered. Using the same physical model as in our previous work, a non-linear mapping is
derived which relates the launch data of the (n+1)th floor bounce to that of the n th. This mapping is
analysed both numerically and theoretically, and a detailed description is presented of various possible
motions. Regions of initial conditions which result in a specified number of bounces against the wall are
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1. Introduction

In a previous paper [1] two of the present authors considered
in detail the mechanics of a superball bouncing back and forth on
a rough horizontal plane. Reversals in direction in the horizontal
motion of the ball result from the application of a tangential law
of restitution at the point of impact of the ball and the plane. This
concept was first introduced by Garwin [2] who used a tangential
coefficient of restitution of one, which is not physically realistic.
Garwin’s model was modified by Cross [3] who employed a
tangential coefficient of restitution o satisfying 0 < o < 1, with the
horizontal velocity of the point of impact of the ball being
reversed and reduced in magnitude by a factor of « in the impact.
Further details of the physics of this model are given in [1],
together with references to other theoretical and experimental
work.

All who have experimented with a superball will have at
sometime bounced the ball on the floor, followed by a bounce on a
vertical wall. If the bounce on the wall occurs while the ball is still
rising, it gives the ball some backspin, so that the direction of
motion is reversed at the next bounce on the floor resulting in the
ball hitting the wall a second time. With practice, the ball can be
made to bounce between the floor and wall several times. Such
motion is illustrated in the animations in Figs. 2, 3, 5, and 11. It is
our purpose to give a theoretical investigation of such motions
and the non-linear mappings which they engender. To this end we
establish in Section 2 the basic equations governing the model.
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Essentially, each journey of the ball from floor to wall to floor,
assumed to take place in the same vertical plane, comprises four
events: (i) after launch from the floor the ball pursues a parabolic
trajectory until it hits the wall, (ii) the rebound from the wall,
(iii) the parabolic trajectory of the return journey to the floor and
(iv) the impact with the floor which provides the launch data for
the next excursion of the ball. The result of this analysis is the
derivation of a non-linear mapping which relates the floor launch
data (linear and angular velocity components of the ball and
distance from the wall) to the same parameters after the next
bounce on the floor.

In Section 3 some numerical trajectories of the non-linear
mapping are computed and examples given of motions with
various numbers of floor to wall bounces. Also illustrated are the
parameter spaces of initial conditions required to produce various
numbers of bounces off the wall. In Section 4 a scaling invariance
is introduced which rewrites the non-linear map of Section 2 in
terms of suitable canonical coordinates. This results in a three-
dimensional non-linear map, a reduction in dimension by one
from the original system.

Section 5 presents some numerical results for the regions of
initial conditions which will result in a given number of bounces
against the wall in the canonical variables, analogous to those of
Section 3 for the original variables. The next two sections of the
work analyse these numerical results in some detail, focussing on
the behaviour of the mapping on two planes which comprise
boundaries of the region of interest. The paper concludes by
proposing a number of further questions related to the problem.

Before continuing to our analysis of the problem we have just
described, we note that there are limitations to the model of the
bounce of the superball that we use. It is recognised that the
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model introduced in [3] which was subsequently used in [1] and
the present paper is an oversimplification of the physics of
superball impact. Thus, the tangential coefficient of restitution «
is known not to be constant, but to depend on factors such as the
speeds, the angles of incidence and the angular velocities of the
bodies in collision (see, for example, Cross [3,4], Labous et al. [5],
Dong and Moys [6], Sondergaard et al. [7], although we note that
the latter two studies were concerned with steel balls, not
superballs). Further there is a number of competing models of the
impact process which attempt to describe the slip and elastic
restitution occurring over the area of contact of the impinging
bodies. For example, Maw et al. [8] study in detail the elastic
displacements of colliding spheres during impact, giving parti-
cular attention (via a classical elasticity mixed boundary-value
problem) to the tangential tractions generated in the collision.
Stronge et al. [9] model the collision by again considering the
elastic impact region, which they represent by a deformable
particle, the remainder of the system being treated as a rigid body.
A very different approach to collision dynamics is that of Bibo
et al. [10], who construct a mechanical model of a ball which can
exhibit the back and forward bouncing studied in [1]. Basically
they consider the ball to have a rigid core attached by torsion
springs to an outer casing, each component being capable of
rotation about a common axis. The outer layer mimics the surface
layer of the ball whilst the inner part can store energy even if the
outer layer is reduced to rest during the bounce. These and other
models may be able to give a more realistic description of the
bouncing process. However, despite the shortcomings of the Cross
model of a bounce, it has the merit of enabling progress to be
made in the analytical description of the title problem of this
paper, and hence is to be preferred to other models which would
lead to intractable mathematical and numerical situations.

2. The model equations

We consider the motion of a solid homogeneous superball of
mass m and radius a, bouncing back and forth under gravity
between a horizontal floor (f) and a vertical wall (w). The motion
is assumed to be two-dimensional, and horizontal and vertical
axes Ox and Oy are taken in the plane of motion of the centre, C, of
the ball such that the horizontal floor is given by y=-—a,
—a < x < oo and the vertical wall by x=—a, —a <y < co. With this
choice of coordinates, the ball centre C is restricted to the positive
quadrant of the plane (see Fig. 1).

wall

floor

Fig. 1. The trajectory of the ball centre C and three successive impacts.

Since collisions occur at two separate surfaces it is essential to
formulate a clear notation for describing the progress of the ball.
Let u,, v, be the horizontal and vertical velocity components of
the centre of the ball immediately after the nth bounce on the floor,
and let w;,, measured positive in the direction from Ox to Oy, be
the angular velocity of the ball. Clearly v, > 0 by definition and we
require u, <0 in order for the ball to proceed towards the wall.
Further, let x,,+a denote the horizontal distance of the ball centre
C from the wall at the nth bounce on the floor, and y,,+a the height
of C above the floor at the subsequent impact with the wall. After
launch from the floor the centre of the ball describes a parabolic
trajectory, and elementary mechanics shows that

__Xn EXn
Yn=—q <vn+ 2un>' (1)

Immediately prior to impacting the wall the linear and angular
velocity components of the ball are denoted by uy-, vy~ and wy-,
and immediately after the collision with the wall these compo-
nents are written uy *, vy* and w} *. The ball now returns to the
floor, pursuing a parabolic trajectory, and reaches it with
component velocities u’,; v’; and w{l the centre C having travelled
a horizontal distance x,.;. Finally, the ball rebounds from the
floor at the (n+1)th bounce with component velocities u; .1, Vn+1
and w, . Fig. 1 shows the trajectories of the centre C and the
linear and angular velocities of the ball immediately after three
successive impacts with the floor and wall structure.

During the flight of the ball between impacts any viscous or
aerodynamic effects that might arise from the motion of the ball
are assumed to be small and so are ignored; it follows that in any
parabolic segment of the motion, the angular and horizontal
velocities remain constant. In order to describe the interaction of
the superball with the wall after the nth bounce on the floor, we
introduce normal and tangential coefficients of restitution, e,, and
oy, both in the range (0,1), with a similar notation for the floor,
the subscript f replacing w. e, is the classical Newtonian
coefficient whence, in the notation of the previous paragraph,

upy+ = —ewlty” = —eylp. 2)

In the direction tangential to the wall it is assumed, following
Cross [3] and Aston and Shail [1], that the tangential velocity of
the ball at the point of contact P,, with the wall is reversed and
reduced in magnitude by a factor «,,. This condition gives

VW —aml = —ay (VY —aw-) = o (VW —awy), 3)
where
X
V- = v+ & @
Un

A third model equation follows from the conservation of angular
momentum in the bounce; taking moments about P,, which
obviates the need to introduce the impulsive friction and normal
reaction at P,, we have

Zma ¥+ +mavy+ =2maw, +mavy-. (5)

Egs. (3)-(5) give

2 1
VW = Z(140w)awn + = (5—20w)  Va+ &n ) (6)
7 7 Up
5 ferd 1
a)‘r/lh = %(1 + 0tw) (Vn + u—:) + 7(2—5aw)wnv 7

and (6) and (7), together with (2), furnish the launch velocities for
the rebound from the wall.

We now consider the return of the ball to the floor and its
rebound. The initial height of the centre of the ball above Ox is y,,
given by (1), and its horizontal range is x,.;. Again, elementary
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mechanics of the parabolic trajectory of C shows that

ewln

Xny1=—

VI (V) +2gy)' %), ®)

Vi = (v +2gyn)' 2, )
where (6) supplies vy +, and further
w=uvr, of =0l (10

Applying the law of restitution normal to the floor and making use
of (1), (6) and (9) shows that

Vhyt1 = _efvﬁ

n

2 1 2
= ef{ <7 (1+ow)awy + 7(572<xw) (Vn + ‘%))

28X, 2\
I (V”+2un . (11)

Further, tangential restitution and conservation of angular
momentum about the point of contact Pr with the floor give
equations analogous to (3) and (5) [1,3] given by

1 2a
Upy1= 7(5—21f)u’;—7(1 + o),
1 2
= 7(5—20<f)u¥+ —7(1(1 + o)y +
n

1 2a 5 gx
=— 7(5—2ocf)ewun—7(1 +ocf){7—a(1 +Olw) (vn + u—“)

+ %(Z—Saw)wn} (12)

and
5 1
On1=—o-(1 +op )+ 7(2—5af)w),}
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= %(1 +op)uy+ + 7(Z—Scxf)w)’;’+
=2 LIS ) &
= 70(1 “+op)ewln + 7(2 Saf){7a(1 + ) (vn+ I, >
1
+7@-S5mon ), a3)
using (10), (2) and (7). We complete the mapping from the nth

floor bounce to the (n+1)th by quoting the full expression for
Xn+1; from (1), (6) and (8),

ewln
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28%n 2a\1"?
— T <Vn + 2_Un . (14)

The mapping (11)-(14) must be supplemented by initial data.
Thus we assume that the ball is launched from the floor with
velocity components ug < 0, vo > 0 and wy, with the centre C at an
initial position (xo,0). These initial data are the output of a zeroth
bounce arising from projecting the ball onto the floor. To simplify
matters we assume that the floor and the wall are constructed
from the same material so that o, =0y =o and ey, =ef = f3, say.
We also non-dimensionalise by defining

Vp=Vn/Vo, fin=1Up/Vo, @n=0awn/vy and X,=gx,/v3.

The mapping (11)-(14) in these non-dimensional coordinates
takes the form

Xn1 =f1Rn,On,1p,Vp) = — Py <2t:z<un+61 (Vn+ a_>
n

)\ 2% )\
26,6 Un+ 2] ) =2 (V4 o
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n

X
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n
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where

a=31(56-20), = 1+a), c3=132-50.

Note that cq,c; >0 for all 0 <o <1 but that c3 may be positive,
negative or zero depending on the value of «. Later, we will also
make use of the relation

103 —cic3 = . 19)

The formulation of the problem ensures that v, >0 for all n
since the ball bounces off the floor in the upward direction. In
addition, we require three further constraints for the iterates to be
valid, given by

in <0, Rn>0, Xp+2i,vy<O0. (20)

The first of these ensures that the ball is moving towards the wall
after the bounce and also implies that X,,, 1 > 0, the second is a
physical constraint, since we require the bounce to occur at a
positive distance from the wall, while the third is required for the
ball to hit the wall before returning to the floor (i.e. y, >0 in (1)).
We note that the first condition of (20) is necessary for the third
condition of (20) to hold, assuming that v,,,x, > 0. If the first or third
of the conditions (20) is violated, then the ball will next bounce
again on the floor, not the wall, and the process breaks down.

One can conceive of the limiting situation of a wall impact in
which y, =0 with the ball grazing the floor without impacting and
interacting elastically with it. From (1) this occurs when
Xn= —2U,V,/g, but to avoid the ball immediately interacting with
the floor we also need from (6) that vy >0, i.e.

(5-20)vp
W > 720(1+“) > 0.

The requirement of a sufficiently positive impact angular velocity
is intuitively clear, but the grazing scenario seems so unlikely that
we choose to ignore it. Hence strict inequality as in the third
condition of (20) will be used. It is also of interest to note that the
problem in which the ball simultaneously impacts both floor and
wall in the corner is indeterminate within the context of the
model. Essentially there are seven unknowns in the impact,
namely four impulsive force components, two at each point of
contact, and the three velocity components after the bounce.
Whilst seven equations, four of restitution and three moment
equations, can be written down, it is found that they are not
consistent. Hence the ball is unable to respond simultaneously at
the two distinct points of contact.
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Finally, we note that iy is the horizontal velocity immediately
after the initial (zeroth) bounce. To determine the horizontal
velocity immediately before this bounce, we note that

L~l0 C1 ) ﬂa
d)o = -5¢, C3 d)a !

where i, and @, are the horizontal and angular velocities
immediately before the bounce [1,3]. Inverting the matrix and
using (19), we find that

L 1 . .
g = —&(c3uo +2C2(0).

The ball is initially thrown towards the wall prior to the zeroth
bounce if &i; <0 and this implies that

~ C3 .
Cl)0>—2—é}2l10. 21)

3. Some illustrative motions

In this section we give some numerical examples of the
motions predicted by the mapping (15)-(18). We illustrate
motions in which exactly m successive collisions with the wall
take place. It follows from (20) that for this to be the case it is
required that
0<Xj<-20y; forj=0...m-1 with Xy, > —2UVp. (22)
Note that since the first condition of (20), namely i, <O, is
necessary for the third condition to hold, we do not need to
include this as one of the constraints in (22).

Since Vo =1, we need consider only three initial values. Thus,
we define the open set S,, in (%o,ilg,®o)—parameter space for
m=1,2,...by

Sm = {(f(o,flo,(,bo) :0 <)~(j < 72&1'\7]' fij= 0,...,m—1};

then since the ball when making its pth successive impact on the
wall must already have made p—1, it follows that

$125>0---25o--- .

If the initial data (Xo,%ip,@0) € Sp, then the ball bounces off the wall
at least p times. For exactly p bounces, (Xo,i9,@®0) € Sp\Sp+1-

Consider first the case of a single impact with the wall. The
region S; of parameter space is shown shaded in Fig. 2(a) for
representative ranges of X, ilg and @g. The open set S; is bounded
by the planes Xq =0 and Xy = —21i,.

In the following examples, we take the two coefficients of
restitution as «=0.5 and f=0.9, which are close to the experi-
mental values obtained by Cross [4] and which were also used in our
previous paper [1]. As an example of a trajectory with exactly one
rebound from the wall, the parameters in Fig. 2(b) are chosen as
X0=0.2, lig =—0.5, @g =0 which clearly satisfy Xy < —2iio. Then,
from (15)-(18) with Vg =1, we find that X; = 0.546, ii; = —0.018,
@1 =-0.528, V; =0.783 which give X; > —2ii;v;. In physical
variables suppose that up=-5m/s and vo=10m/s; then
Xo =V3Xo/g =2m and x;=5.46m, using the approximate value of
g=10m/s. The ball is launched from the plane at an angle of 63.4°
and subsequently rebounds from the plane nearly vertically.

Consider next the situation in which the ball makes precisely
two impacts with the wall, that is X, < -2V, m=0,1 with
X5 > —1i,V,. The parameter space S, within which the initial data
must lie is shown from three different aspects in Figs. 3(a)-(c). We
note that this set is “glued” to the boundary plane %o =0 over
quite a large region of this plane and so having the initial bounce
close to the wall is clearly desirable in this case. In contrast,
having Xy too large will mean that a second bounce against the
wall is impossible, although the upper bound on X, varies
significantly with @,.

We recall that the condition for the ball to be thrown towards
the wall before the initial bounce is given by (21). With our value
of o =0.5, this condition becomes

(Z)o > — % .
On the scale of the axes used in Fig. 3(a), the plane defined by
Mo = —1(/6 (which separates the two regions where the ball is
thrown towards or away from the wall) is almost indistinguish-
able from the vertical plane @ = 0. Thus, the region with @ >0
corresponds to the initial throw of the ball being towards the wall,
but almost all of the region with &g < 0 corresponds to the initial
throw being away from the wall, but with backspin on the ball so
that it reverses direction and moves towards the wall after the
initial bounce. We note from Fig. 3(a) that the volume of S, is
significantly greater for negative values of &g, corresponding to
the initial throw of the ball being away from the wall, than for
positive values of @, where the ball is initially thrown towards
the wall. Thus, having a finite height wall, standing on the wrong
side of it and throwing the ball over the wall with backspin is
much more likely to give two bounces against the wall than
standing in front of the wall.

Fig. 2. (a) Three-dimensional representation of the parameter space S; satisfying 0 <Xy < —2iip. The colours are used to show a grid in the i{ip and & variables.
(b) A trajectory for precisely one rebound from the wall with initial conditions %y = 0.2, {ip = —0.5, ®¢ = 0. Red indicates negative (i.e. clockwise ball rotation), blue
positive and black zero angular velocities. Refer supplementary data for an animation. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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@y

Fig. 3. (a) A three-dimensional representation of the region of parameter space S, satisfying X, + 2ilmV, <0, m = 0, 1. (b) The left-hand view of the region depicted in (a).
(c) The right-hand view of the region depicted in (a). (d) A typical trajectory with two rebounds from the wall with initial conditions Xy = 0.05, il = —0.2, @¢ = 0.

Refer supplementary data for an animation.

In order to explain this result, we refer back to the work of
Aston and Shail [1]. We first consider the case where the ball is
initially thrown away from the wall (ii; > 0) but with backspin
(relative to the direction of motion, i.e. @, > 0) to make it reverse
direction at the bounce. In this case, if there is a reversal of
direction, then there must also be a reversal in the spin (for o > Z;
see Fig. 2 of [1]). Thus, after the initial bounce, we have iig < 0 and
@ < 0. On the other hand, if the ball is initially thrown towards
the wall, then in a similar way, it can be shown that @q
will almost always be positive. Reverting back to the dimen-
sional variables @y and ug, clearly these will have the same
sign as the corresponding non-dimensional variables, as just
discussed.

Using (7) and (4), the spin after the bounce on the wall is given
by

5¢c,
w w_
(,OO+ = TVO +C3Mg,

where v~ is the vertical velocity just before the bounce on the
wall. We assume that the bounce on the wall occurs before the
ball reaches its maximum height so that vy~ > 0. Now ¢, > 0 also
and so clearly 5c,vy~ > 0. However, ¢3 < 0 for « = 0.5 and so when
o <0, then wy* consists of the sum of two positive quantities,
which will therefore be quite large and positive. This corresponds
to the ball having a large amount of backspin after bouncing on

the wall (relative to the direction of motion) and so the ball is very
likely to reverse direction at the next bounce on the floor and
return to hit the wall a second time. However, if wg > 0, then
c3wp <0 and so w]* is obtained from the sum of a positive and
negative quantity. While this may still be positive, corresponding
to backspin, it is likely to be small in magnitude, which means
that there may not be enough backspin for the next bounce on the
floor to result in the reversal in direction that is required for the
second hit on the wall. This explains why an initial throw away
from the wall but with backspin is much more likely to result in a
second hit against the wall.

To illustrate the two wall-bounce trajectory,take initial values
of X9 =0.05,lip = —0.2,0¢ = 0 which satisfy %y < —21i,. Then, from
(15)-(18), we find that %; =0.219,ii; = —0.242,&>; = —0.250 and
V1 =-0.709 with X; < —-2i11V;. A further iteration gives X, =
0.108,ii; = 0.207, @, = —0.219 and v, = 0.644 with X, > —21{i,V,.
The trajectory of the ball is shown in Fig. 3(d), with the same
colour coding as in Fig. 2(b). To relate the non-dimensionlised
motions to a physical situation, take up=—2my/s, vo=10m/s and
wo=0; then xo=0.5m, x;=2.190m and x,=1.078 m. After its
second bounce on the floor the velocity components of the ball are
Uu,=2.072m/s and v,=6.443 m/s and the ball moves away from
the wall.

With an increase in the number of wall impacts the parameter
regions S, become both sparser and more contorted. Thus Fig. 4
shows the parameter regions Ss, S4 and Ss, pertaining to at least
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Fig. 4. (a) The set S3: at least 3 impacts on the wall. Note the development of a “depression” on the top left-hand side. (b) The set S4: at least 4 impacts on the wall. (c¢)

The set Ss: at least 5 impacts on the wall.

three, four or five impacts with the wall, respectively. A finer
search procedure would give better resolution for Ss. In contrast
to S,, we note that a small region of S3 becomes “unglued” from
the boundary plane Xo = 0 and so, in some cases, an initial bounce
very close to the wall will not give rise to three impacts with the
wall. This small bubble in S; becomes very much larger in S4 so
that an initial bounce close to the wall is unlikely to give four
impacts with the wall, at least for negative values of @& (which is
just as well as this corresponds to throwing the ball away from
the wall!). An exception to this rule is the region lower down
which is still attached to the Xy =0 plane. However, for positive
values of @¢, corresponding to throwing the ball towards the wall,
small values of iig and X, are essential in order to achieve four
impacts with the wall.

The change in volume from S, to S3 appears to be relatively
small, so achieving three bounces against the wall should not be
much harder than achieving two. However, there is then a very
significant reduction in volume between S; and S,, indicating that
four bounces against the wall would be very difficult to generate,
except possibly under carefully controlled laboratory conditions.
Clearly the volume has shrunk still further when going to Ss,
a pattern that is presumably repeated for successively higher
values of m.

In Figs. 5(a) and (b) we present trajectories for three and four
wall impacts. Again, the same colour coding as in Fig. 2 is used.
A student project has achieved three bounces against the wall
experimentally [11] and the video of this can also be seen from
the link in Fig. 5(a).

a b

Fig. 5. (a) A typical trajectory with three rebounds from the wall with initial
conditions %y = 0.025, {ip = —0.05, @ = 0. An experiment demonstrating three
rebounds from the wall can be seen. (b) A typical trajectory with four rebounds
from the wall with initial conditions %, = 0.29, iip = —0.5, ®¢ = —5. Refer
supplementary data for an animation.
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4. Scaling invariance

Egs. (15)-(18) have a scaling invariance which occurs since the
whole problem can be scaled in the horizontal and vertical
directions together without essentially changing the dynamics.
This scaling invariance can be expressed, for any ¢ > 0, as

fl(cz)?nde)naCﬂnvC‘N/n) = szl (inv(bmﬁnyf/n), (23)

fi(czknvC(bn,Cﬁn‘C‘?n) = Cfi(;(nv(fbn,ﬁn‘vn)v i: 2v3v4~ (24)

This implies that for any orbit of (15)-(18) given by (X, n,tin,Vy),
n=0,1,2,..., then (¢2X,,c@n,Clln,cVy), n1=0,1,2,..., is also an orbit
for any ¢ > 0. This scaling is effectively eliminated by the initial
condition vg = 1.

As a consequence of this scaling invariance, it is possible to
express the equations in terms of canonical coordinates [12],
where three equations depend only on three (scale-free) variables
and the fourth equation involves all four variables, with the
scaling acting by addition on the fourth variable. Choosing
c=1/v, in Egs. (23) and (24) gives

s o~ o~ = 2. (Xy G 1
fl(xnvwnvunvvn):‘/nfl (_v_v_vl)v

= 3+ (25)
Vit Xn Wp Up
fa ~—2.‘~,—,‘7—.1
vy, Vn Vn
(im0
T T
Wny1 Va Vn Vn (26)
Vnt1 Xn @n Uy
fa ~—2,~—y~—,1
v, Vn Vn
Xn p ~n.l
N f oS T
Up41 Vn Vn Va
Vit Xn QOn Un
f4 TZ'T,TJ
v, n Vn
~ ~ Xn On U
logv,, .1 =logv, +logfs %; 120, 27)
v, Vn Vn

thus expressing the equations in terms of the canonical co-
ordinates >~<n/\7§, @®n/Vy, Uy /vy and logv,. Note that Egs. (25)-(27)
depend only on the three scale-free coordinates.

The advantage of these coordinates is that the new variables
are always well defined since v, # 0 and so the singular behaviour
associated with i1, =0 (which is a boundary of our region of
interest since we require ii, <0) is contained in the equations.
However, we find it more convenient to use a different set of
canonical coordinates, given by X, /(TinVp), Wn/Vn, Un/V, and logv,.
For these variables, the singularity associated with i, =0 is
brought into the first variable but is removed from the equations.
In terms of these variables, the equations are given by

i (Ko tn On Un g
)?11+1 ! ﬂnvn \7n ,‘711 ,‘7n,
I Un @n Un 1)'

Uy, 1V X Wy U X
n+1Vn+1 f3< n _nY n.v—",1>f4(~—n
n

UV Vi "V "V

(28)

(bn+1 — (29)
Vet g ( Fo Gn On Gy )
UnVp V"V "V,

o (o)
Unpy1 _ UnVnVn Vn Vi (30)
Vot g (Fn o O G

N\ UV V0V V0

. R Xp iy @n iy

logV; 4.1 =logV, +logfy (am R ,1>. (31
We define the new coordinates

Xn iy @n
Xn=——=, U=+, Qp=—-—, 32
n ¥ n Vi n T ( )

where the minus sign in the definition of X, ensures that this
scale-free distance function is positive (since ii, <0). We then
define the new functions
Fl(xn-anUn) :fl(_XnUanannyl)

= _ﬁUn[ZCLQn"'Cl (1 _Xn)+F(Xann)]v (33)

FZ(Xanann) :f2(_XnUanann,1)
= 5pc2Un+5€263(1—Xn) + 32, (34)

F3(Xn-Qn-Un) :f3(_XnUn-Qn-Un.1)
= —Bc1Up—10c2(1-Xn) 262632, 35)

F4(Xn.Qn.Un) :f4(_XnUn.Qn.Unv1)
= BF(Xn,2n), (36)

where

F O Q0) = /26220 +c1(1-X0) +2X,-X3. 37

The function F, is independent of U, and therefore this variable
can be omitted from its list of arguments. Egs. (28)-(31) can then
be written as

Fl (Xn--Qn-Un)

X1 = C1n O Un) = = 5 Un)Ea (K ) 38)
F>(Xn,Qn,U

Q1 =G62(Xn, 2, Un) = %. 39)
ny n
F3(Xy, 20, U,

Un-1 = GalXu 2 Un) = g 5 ) (40)
Ny n

‘711+1 :VnF4(Xnan)- (41)

Note that we prefer to work with the variable v, rather than the
canonical coordinate log¥,. Since the variable ¥,, occurs only in
the last of these equations, we study the three equations (38)-
(40), which involve only the three variables X, 2, and U, in
detail. The values of the fourth variable v, are then easily
determined from (41).

In the new coordinates, the three conditions in (20) become

U, <0, 0<X,<2, (42)

and these constraints define the region of the three-dimensional
phase space that is of interest. Thus, we define the region

W={((X,QU): U<0,0<X<2).

If (Xn,Q5,Un) € W then the ball will bounce against the wall before
returning to the floor. On the other hand, if an iterate leaves W,
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then the ball will not hit the wall before returning to bounce again
on the floor. Note that there are no constraints on Q, as the
angular velocity can be in either direction. We observe that the
condition 0 < X, < 2 implies that 2X, —Xﬁ > 0 and this ensures that
F(Xn,2p) is well defined and hence that ¥, > 0 for all n from (41).

It is easily shown that X,,=2 corresponds to the ball hitting the
wall and the floor simultaneously at the next bounce, while X,,=1
corresponds to the ball hitting the wall at the highest point of its
parabolic trajectory. Clearly, X,, approaching zero corresponds to
the bounce of the ball on the floor getting correspondingly close to
the wall.

Finally, the condition (21) for the ball to be thrown towards
the wall initially is now given by

c
Qo>—73

76 Uo. (43)

5. Numerical results

We now present numerical results for regions that will give a
specified number of bounces against the wall in the new
coordinates, which are analogous to those presented in Section 3.
As before, we consider parameter values of « =0.5, f=0.9.

Following the approach used in Section 3, we define the open
set R, in (Xo,Q0,Up)—parameter space for m=1,2,...by

Ry = {(Xo,.Qo,Uo) : (X],.Q],U]) eW fOI'j =0,...,m-1}.

Clearly, these sets also have the inclusion property that
RiDR;o - DRy ---.

The region R; is defined by the inequalities Uy <0 and 0 < X, < 2,
with no restriction on . The regions R», R3, R4 and Rs are shown
in Fig. 6. Finer resolution is required to obtain Rs more accurately.

We note from the comparable numerical results in Fig. 4 that
the regions S; all seem to connect to the line g =1iig = 0. The new
variable Xj as this line is approached is given by
lim X, — lim — 0 — 1 %o g
g0 ip—0 oo
Thus, Xo evaluated at Up=0 (which implies that iy = 0) indicates
the direction of approach to the line %y = iip = 0, and so opens out
this region so that more detail can be seen.

With o =0.5, the condition (43) for the ball to be thrown
towards the wall before the initial bounce becomes

Uo

QO > ?
and again, the dividing plane defined by Qq = U, /6 is very close to
the plane Qy =0 on the plots shown in Fig. 6.

6. The plane X=0

To study the non-linear map defined by (38)-(40) analytically
would be very difficult. However, we can gain more understanding

Fig. 6. (a) The set R: at least 2 impacts on the wall. (b) The set R3: at least 3 impacts on the wall. (c) The set R4: at least 4 impacts on the wall. (d) The set Rs: at least 5

impacts on the wall.
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of the behaviour of the map and of the regions R,; by considering
the dynamics on the two boundary planes of W defined by X=0
and U=0. In this section, we consider the boundary plane X=0.
The plane U=0 is studied in the next section.

One of the conditions in (42) that define W is X;, > 0. However,
it is interesting to consider the boundary to this region defined by
X,=0 since this will help us to understand the dynamics for small
positive values of X,,.. From (32), X,=0 requires that X, =0. In
terms of the behaviour of the ball, this implies that the ball
bounces at the point where the wall and the floor meet. While our
modelling has ignored this specific point, it is useful to consider
the dynamics in this plane from a mathematical perspective as
the limiting case of nearby points which are in W.

6.1. Analysis of the plane X=0

We first note from (37) that
F(0,Qn) = 12620 +011.
Substituting this into (33) gives

F1(0,24,Up) = —BUn[(2C2@2n +C1) + 120220 +C11]
0 if 2c,Q,+c1 <0,
T —2BUn2c2Q2,+¢1)  if 2¢2Qn+¢4 > 0.

We note that the condition 2¢,Q2,+c; <0 is equivalent to

¢ 20-5
S T Te Et
since ¢; > 0.
We define a straight line in this region by
£1(Q2n,Un) = Bc1Up +10¢3 +2¢2¢32, =0. (44)

Note that ¢,(2,,U,) = —F3(0,2,,,U,)). There are now five different
cases to consider.

1. Qn <—-C /(2C2), 0 (Qn,un) # 0.
In this case, F;(0,2,,U,) =0, F3(0,Q,,Uy) # 0 and F4(0,2,) #0
and so, from (38), we must have X,,.;=0 also. We note that if
£1(24,Uy) > 0, then Uy, 1 <O0. This corresponds to region (a) of
Fig. 7. Similarly, if ¢1(2,,Uy) <0, then U, . 1 > 0, which violates

0 T T T (d) T
0.2 ©
04 | -
(a) (e)
=] -0.6 - + - —
08 | Pra 1
1 L ) _
(b)
-1.2 | | | | |
-4 2 0 2 4
Q

Fig. 7. The plane X,;,=0 for «=0.5, #=0.9. In region (a), X;+1=0, U,,1<0;
in region (b), Xy+1=0, Up;1>0; in region (c), X,,1€(0,2), Uyy1 <0 and
Xn12¢(0,2); in region (d), Xni1,Xn42€(0,2), Uny1,Uni2<0; in region (e),
Xni1>2, Upyp1 <0; in region (f), X, 1 <0, U, 1 >0. The + symbol indicates the
fixed point discussed in Section 6.3.

the first condition of (42), and hence is of no further interest.
This corresponds to region (b) of Fig. 7.

L Qn>—C /(2C2), f](.Qn,Un) #0.

In this case, F1(0,Q2,,Up) >0, F3(0,Q2,,U,) # 0 and F4(0,2,) >0
and so, from (38), X1 #0.

If £1(2,,Uy) <0, then U, 1 > 0 and X,,, 1 <0 which is not in W.
This corresponds to region (f) of Fig. 7. Conversely, if
£1(2y,Uy) >0, then U, .1 <0 and X, .1 > 0. However, to be in
W, we also require that X, 1 < 2. The boundary of this region
can be found by solving X,.;=2. Assuming that X,=0 and
Q> —c1/(2cy) gives

X, _ Fl (OinyUn)
" T T F3(0,20,Un)Fa(0,2,)
__ ZﬁUn(2C2Qn+C1)
[BcrUn +10¢2 4+ 2¢2 3 2n][f(202 20 +€1)]
2U,
- ) 4
Bc1Un+10c3 +2¢203Q2, (45)
Thus, X,+1=2 when
£(2n,Un) = (1+ Bcy)Un + 1062 +2¢503Q, = 0. (46)
On this line, U, <0 if and only if
5¢,+c30, >0, (47)

since f,c1,c2>0. If o> %, then c3 <0 and this condition
becomes Q, < —5c;/c3. Conversely, if o < % then c3 >0 and
so condition (47) is 2, > —5c,/c3. Since —5¢, /c3 < —c1/2c; for
all o satisfying 0 < o < Z, then (47) is satisfied in the whole of
this region. Clearly, (47) is also satisfied when o= 2.
We note from (45) that as U, -0, then X, 1 —0 also. Thus, we
conclude that 0 < X, 1 <2 provided that U, <0, ¢,(2,,U,) >0
and these conditions imply that Q, <—5c,/c; when o> 2.
Observe also that U,,; <0 in this region since ¢;(Q,,U,) >0
and so the next iterate satisfies all the conditions (42). This
area is given by regions (c) and (d) of Fig. 7. Within this region,
it is possible to find another region ((d) of Fig. 7) where
0<Xn,2<2and U, ., <0. This region is bounded by the line
defined by X,,+>=2 and is a complicated function of 2, and U,,.
It can be shown that it intersects the 2, axis at

5c2(1—¢3)

Qp=—"—-=2.
" af—c3+c3

(48)

It can be verified that this intersection point is always greater
than —cq/(2c,) for all o > 2 and so always occurs in the region
under consideration for this range of «. When o« =0.5 and
B=0.9, the intersection point is Q, = 4323 =2.0457.

- OQn <—€1/(2¢2), €4(2n,Un) =0.

On this line, which separates regions (a) and (b) of Fig. 7, we
find that F;(0,92,,U,) = F3(0,2,,Uy) = 0 and F4(0,Q2,,U,) # 0 and
so X,,+1 is not defined. However, a limiting process with X;; -0
can be used to determine a value of X,,.; in this case. We will
consider this case in more detail in Section 6.2.

. Qn > —C /(2C2), f](.Qn,Un) =0.

On this line, which separates regions (e) and (f) of Fig. 7, we
find that F;(0,2,,U,) # 0, F3(0,2,,U,) =0 and F4(0,2,) # 0 and
so X,+1 is not defined in this case. As the line is approached,
Xn+1 tends to either oo or —oo.

. Qn=— /(2C2).

Along this line, F1(0,Q2,,Up) = F4(0,2,) =0 and so X+ is not
defined. In the plane X,=0, the line Q, = —c;/2c; is a line of
discontinuity for the evaluation of X, since

C1

Xny1—0 for Q,J—E,
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2U, C1
—m for Qn\_E'

where we have used (45) and (19).

Xny1—

With «=0.5 and =0.9, the lines which define the different
regions are given by

Qn = —%. fl(Qn-Un):%Un‘F%—g—g n=0,

0(2p,Un) = % U, +% _93_8‘9” =0.

These results, summarised in Fig. 7, show that region (a) maps
back onto this half-plane (X=0, U < 0), region (b) maps onto the
other half of this plane (X=0, U > 0), which is outside of W,
regions (c) and (d) map into W and regions (e) and (f) do not
map into W. Note that the boundary of regions (a), (c) and
(d) can clearly be seen in Fig. 6(a) on the plane X,=0. Moreover,
the boundary of region (d) can also be seen on this plane in
Fig. 6(b).

6.2. Analysis of the limit in case 3

We recall that case 3 listed above is the line defined by
H@Un)=0, Qu<—5t (49)
2¢o
and that this is the line that divides regions (a) and (b) of Fig. 7.
Solving the defining equation for U, gives the alternative
representation of the line as
B 1063 +2c2¢3Q2,

U=t e

Consider first the range of values of Q, which ensure that
U, <0 along this line. At the end point of the line Q, = —c; /(2¢3),
we note that Up,=—a/(fc;)<0 (using (19)). When o> 2
then c3 <0 and so the slope of the line (50) is positive and this
implies that U, < 0 along the whole line. However, if o < 2, then
the line (50) has a negative slope and in this case, U, < 0 requires
that

5¢c+c30Q, > 0. (51)

We observe for future reference that the inequality (51) also holds
along the line when a > £

We have already noted that X, . is not defined on this line but
if we consider nearby points with X;, >0 and take the limit as
X, —0, then a limiting value can be obtained. Consider the surface
defined by

51(Qn,Un)=ﬁC1Un+10C§+2C2C3Qn =kX, (52)

for some constant k. Clearly this corresponds to the line (49)
when X,=0. Substituting for U, from (52), we find that on this
surface

kX —10c2 —2¢503Q20)[2¢2 2 + ¢4 (1=Xp) + F (X, 2
F](Xn.Qn.Un)=*( n 2 203 n)[ 254n 1( n) (n n)]’

&
(53)
o 5c¢:
Fo (X0 Q0 Un) = = (56, +c39n>—c—f<c1 c3—k)Xn,
F5(Xn,2n,Up) = (10c3 — k)X (54)
We also note that
~ €12, Q2n+c¢1)—-1
FXn,Qn) = /(202 Qn+c1)? [ 1-1=22n T U x4+ O3
(Xn,$2n) (2¢2€2, 1) ( (ZCZQn+C1)2 n ( n)
D N S A (C.Ls s Vil VNG Y 'CY (55)

200+

since 2¢,Q;, +cq < 0. Substituting this expansion into (53) gives

(kXn—10c3—2¢50320)[Xn +0(X2)]
C1(2628n+¢1) ’

F] (Xanann) =

The limiting values as X;, —»0 are now found as

X 2¢2(5C2+C382))
T B (2022 + 1210 + k)’
Q. = O+
T B 26Qn 01’
Un+1 =0. (56)

We note that 2,1 <0 (using (49) and (51)) and that the next
iterate is on another boundary of W as U,.;=0. This boundary
will be considered in more detail in Section 7.

We now consider conditions on k for the next iterate to lie in
W, for which we require that U,,; <0 and 0<X;,; <2. Using
(54), we see that U, <0 for small X;, > 0 provided that

k> 10c3. (57)

By (56) and (51) this condition also ensures that X,,; > 0 in the
limit as X, —0.
From (56), the condition on k such that X, <2 is given by

c2(5¢, +c3!2n)2 N lOc%. (58)
pc1(2c,Q2+c1)

The first term on the right-hand side is positive (using (51)), and
so if this inequality is satisfied, then so is (57). Thus, we conclude
that all the required conditions hold if (58) is satisfied.

Note that it is possible to solve for k the full equation X,.+;=2,
where F; and F3 are given by (53) and (54). Substituting this
solution back into (52) gives the surface defined by

_46(562(1—Xn) +C3Qn)F (Xn, 2n)
26,20 +¢1(1=Xn) +(1+2Bc1)F (Xn, 2n)'

U, = (59)

which is shown in Fig. 8. Note how this surface intersects the
plane X,,=0 along the lines which bound regions (a) and (c) of
Fig. 7. The region above the plane (59) and bounded by the planes
U,=0 and the X;,=0 is the region R, which is shown in Fig. 6(a).

X

Fig. 8. A contour plot of the surface given by (59) which is defined by X,.;=2.
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6.3. Fixed point

In the plane X=0, there is a fixed point (X,Q,U) = (0,Q¢,Up) in
region (a) of Fig. 7 which can be found by solving the two
equations

_ F»(0,20,Up) _ 5ﬁC2U0+5C2C3 +C§Qo
0 F4(0,€0) BR2cQ0+c1)

(60)

Us = F3(O,Q(),Uo) . ﬂC] U0+10C%+2C2C3QO
°T F0Q) — BRaQ+c)

where we have used (55) to evaluate F4(0,9y). Solving (60) for Uy
gives

(61)

P02 Q0+ 1) +3(5¢2 +¢3)

Uy = 550, (62)
and substituting into (61) provides the cubic equation
2c, Q3+ (Bey +¢3)Q5+10cyc3Q0425¢3 = 0. (63)

Similarly, solving (61) for Q, and substituting into (60) gives
another cubic equation

B2UZ—BcsUR+ By Up+0c = 0. (64)

To investigate the character of the roots further, we form the
discriminant 4, the product of the squared differences of the
roots, of the cubic Eq. (63). We find that, in terms of « and f,

A =4900(1 +0)*{7(20—5)° f* +(250* —235003 —95220/2
—23500+25)—7a(50—2)°}.

If 4 <0, the cubic (63) has one real and two complex conjugate
roots, whereas if 4 >0, (63) has three real roots with a repeated
root in the case of equality. Suppose now that we plot the curve
A=0for 0<a<1, 0<f<1. The result is a concave arc joining
the points (2/5,0) and (0,1/35) (put f=0 and =0 in 4=0).
Three negative real roots correspond to values (o,f8) in the area
bounded by the arc and the segments 0 <o < £ and 0 < f§ < 55 of
the axes. The remainder of the square 0 <o, <1 corresponds to
values of («,f) for which (63) has a single real root. The tiny
p—values for which there are three real roots are of no interest
physically and so we consider only the region where there is a
single real root. Note that the same discriminant (up to a positive
scalar) is obtained from the cubic equation (64).

We now show that the one real solution of Egs. (60) and (61)
lies in region (a) of Fig. 7. To do this, we must verify the three
conditions (i) Uy <0, (ii) 2c29Q¢+c; < 0 and (iii) ¢1(29,Up) > 0. We
consider each of these conditions in turn.

(i) If & > 2, then all the coefficients in Eq. (64) are positive. Since
there are no changes of sign in these coefficients, Descartes’
rule of signs (see, for example, [13]) says that there are no
positive roots to this equation, and either one or three
negative real roots. Since we have a single root, it must be
negative in this case.

If o < % then the coefficient of U3 is negative, and so there are
two changes of sign in the coefficients. In this case, Descartes’
rule of signs implies that there are either two or zero positive
real roots of the equation. Since we have only a single real
root, this must correspond to the case of zero positive real
roots and hence the one real root must be negative.

Thus, in both cases, the only real root of the equation must be
negative and so Uy < 0.

(ii) The cubic equation (63) can also be expressed as

(5c2+¢3Q0)% = —/395(2C2Q0 +c1). (65)

From this, it follows that any real solutions of this equation
must satisfy 2c,Q20+c; <0. We note that equality is only
possible if 5¢;+¢30Q¢=2c,Q9+c¢1 =0 and it can be shown
that this only holds if o« =0, which is outside our range of
interest. Thus, we conclude that the real solution must satisfy
2c,Qp+c1 <0.

(iii) Solving (61) for Ug gives

~

. 5¢c,+¢3Q0
Uo=""p0, %

and substituting this value into ¢1(2,Up) gives

(2¢2€0+1)(5¢2 4 ¢380)

QO :
Now from (ii) we know that 2c¢,2y+c; <0 and we have also
established that Qy <0. Thus, it remains to determine the
sign of 5¢c; +c3Q.
In (66), Uy <0 and Qg <0 which imply that 5c; +c329 > 0.
Thus, we conclude that ¢;(2y,Up) > 0 as required.

£1(£20,Up) =

When oo = 0.5 and f# = 0.9, the fixed point, as shown in Fig. 7, is
given by

Qo =-2.164886, Up=—0.629267.

We note that there is no corresponding fixed point in terms of the
original non-dimensional variables %, @, @i and v. Having this fixed
point and being able to analyse it is another advantage of studying
the three-dimensional system in the scale-free variables.

Having determined that there is a fixed point in region (a) of
Fig. 7, we now linearise about this fixed point and consider the
eigenvalues of the Jacobian matrix evaluated at this point. The
Jacobian is given by

J11(€20,Uo) 0 0

J(Q0,Up) = [ J21(20,Uo)  j22(20,U0)  j23(L0,U0) |,
J31(80,Up)  j32(20,Up)  j33(£20,Uo)

where
. Ue
Qo,Up) = — |
e (Be1Up+10¢5 +2¢26320)(2€220 + €1 )
J21(Q0,Up) = — (26290 +¢1)(5fc1c2Ug—0c3Q0)—C3(5¢5 +¢320)—5Bc Uy
| p2c2Qo+c1)’ :
] 10Bc3Uo +oc
J22(Q0,Uo) = 32703
B2 Q0+¢1)
j 5C2
13000 = =56, 00 vy
o (Q0.Up) = — 22206120220~ fctlUn) +262(5¢2 +320) +ferUo
‘ B2 +¢1) ,
' 2¢y(c1Uo +o
Js2(Q0.Up) = — 22 Fbo+n)
BR2cQ0+¢1)
i33(Qo.Ug) = =1 o
Pt o= 20Q0+¢1’

again using (19). Clearly, the eigenvalues of J(€2¢,Up) are given by
A1 =j11(Q0,Up) together with the two eigenvalues 1,3 of the
matrix

J22(80,Up)  j23(£20,Up)

J@oUo)= |5 00.U0) jas(Qo.Uo) |
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To find these two eigenvalues, we note that

10pc2Up+0c3 + Bc1(262820 +€1)
B2 Q0 +c1) .

Substituting for Uy from (62) gives
ﬁ(Zngo—C1)+C§

tr(J(Qo,Uo)) =

tr(f(Qo,Uo)) = —

B2c2Q20+¢1)
Similarly,
det((Qo,U o (68
e , =
(o Bo) B2 Q0 +c1)? )

which is clearly positive since 2c,Q+c; < 0 (see (ii) above).
When «=0.5 and =0.9, it is found that

tr(J(Qo,Up)) = —4.190944, det(J(Qo,Up)) = 6.137029,

and so the two eigenvalues in this particular case are given by
A23=—2.095472 + 1.321372i. We now show that these eigenva-
lues are complex for most values of « and f. To do this, we must
show that the discriminant of the quadratic eigenvalue equation
is negative. The boundary of this region occurs where the
discriminant is zero, which is defined by the equation

tr(J(Qo,Up))* —4det(J(20,Up))
8823 +4BAB2E PR +2c2(c— B Qo +c1 (Ber —c3)* +4o? B
a BRcQ+c1)
—0. (69)

The problem we have now is that Qg is the solution of the cubic
equation (63) and so is not easily obtained in a form that can be
substituted into this equation. Thus, we regard (63) as an
equation involving Q, o and f and solve it for . Substituting
this value of f into (69) gives an equation which involves only Qg
and o, and which is quadratic in €. This equation can be solved
for Qg in terms of o. Substituting these solutions back into (63)
gives an equation involving only o and § and which can be solved
for 5. One of the two solutions gives rise to negative values of f§
and so is of no interest. The other gives a complicated function of
o which is plotted as the blue line in Fig. 9. It is easily verified that
the eigenvalues are complex in the large region above this line,
and real in the small region below it. Clearly this small region is of
no interest to us as f is very small there.

Consider next the magnitude of |1, 3|, since this determines
whether the fixed point is attracting or repelling in the plane. We
note that

det](Qo,Up) = 12231,

and so the boundary between stability and instability of the fixed
point (in the plane) is defined by

detf(Qo,Ug) = 1. (70)
Solving (63) in the factorised form (65) for # and substituting into

(68) gives
Qo )2
(5¢24¢3Q20)(2C2Q20+¢1)/) '

det](Qo,Up) = (

and so (70) is equivalent to
(5¢2+¢3Q20)(2c2Q0+¢1) = + ol (71)

For o> % c3 <0 and so 5¢;+c3Q¢ > 0. Since 2¢c;Qp+c¢1 <0, we
must take the positive sign in the above equation in this case.
Solving for g in terms of &, we find that

ocy

200Q0+c1=— &
3

(72)

1 —_
0.8
0.6
[«
0.4
0.2
(d)
0 \"L T
0 0.2

Fig. 9. The eigenvalues of J(Qy, Up) in the («, ) plane. (a) The eigenvalues 1,3 are
complex and |/;3] > 1, 41 > 1. (b) The eigenvalues 1,5 are complex and |4,3| <1,
Z1>1. (c) The eigenvalues 4,3 are complex and |Ay3]<1, A1 <1. (d) The
eigenvalues 1,3 are real, A; > 1. The solid red line gives parameter values at
which |4, 3| = 1. The blue line gives parameter values at which the discriminant
(69) is zero. The dashed red line gives parameter values at which 4; = 1. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

where we have taken the negative square root since
2c,Q0+¢1 <0. Solving (70) with the determinant given by (68)
for f and substituting using (72) gives

o2

h=- (26,20 +¢1)?

:\/&<_%)3/2

50—2\ 32
5—2cx> ’

:ﬂ(

This curve is plotted as the solid red line in Fig. 9. There are four
solutions in total of (71), of which we have considered only one.
For the other three, two have f negative and the other curve lies
in the region where the eigenvalues are real, and hence is of no
interest.

Finally, we consider the eigenvalue A; =j11(Q9,Up). Substitut-
ing using (61) in j;1(20,Up) gives

1

PP —
B2 Q0+¢1)

Clearly, A1 > 0 since 2¢;Q29+c¢1 <0. When oe=0.5 and =0.9, we
find that A; = 24.5481 with corresponding eigenvector v, given by

1
v = | 0.7940
0.2627

This eigenvector gives the tangent direction to the one-dimen-
sional unstable manifold from the fixed point out of the plane
X=0. This unstable manifold is easy to find by iterating a small
line segment from the fixed point in the direction of the
eigenvector. Since the eigenvalue 4, is so large, the iterates very
quickly escape from W along this manifold. Two projections of the
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Fig. 10. Two projections of the one-dimensional unstable manifold coming from
the fixed point in the X=0 plane. Also shown is the point where this manifold
crosses the plane X=2 and two preiterates of this point.

manifold are shown in Fig. 10 together with three iterates on the
manifold.

Stability of the fixed point with respect to perturbations out of
the plane is determined by the magnitude of ;. In particular, the
boundary between stability and instability is defined by A; =1.
We note that this condition is very similar to the condition
det(J(Qo,Up)) = 1, where det(j(Qo,Up)) is given by (68). Thus, we
use a similar approach to determine the line in parameter space
corresponding to 4; = 1. It can be shown that this line is given by

- (2)'

and this is illustrated by the dashed line in Fig. 9. It is easily
verified that 4; > 1 to the left of this line and that 4; <1 to the
right of the line.

Fig. 11. A typical trajectory with o =0.95, = 0.6 where there are infinitely many
bounces of the ball against the wall as the iterates converge to the stable fixed
point. The initial conditions are %y = 0.3, iig = —1.2, @®¢ = —2.5. Refer supplemen-
tary data for an animation.

If a material could be found which gave coefficients of
restitution o and f in region (c) of Fig. 9, then this would imply
that a large region of the space of initial conditions would give rise
to trajectories that converge to the fixed point and thus do not
escape from W. Physically, this implies that there are infinitely
many bounces of the ball between the floor and the wall.
Simulations with «=0.95, f=0.6 confirm these conclusions.
One such trajectory of the ball is shown in Fig. 11.

We summarise all these results as follows.

Theorem 6.1. For all values of f§ satisfying 5= < <1, the plane
X=0 has a fixed point in region (a) of Fig. 7. The two eigenvalues of
the Jacobian evaluated at the fixed point associated with perturba-
tions in the plane are always complex, so that iterates near to the
fixed point spiral around it. The eigenvalue associated with
perturbations out of the plane is positive. As o increases from zero
to one for a fixed value of f3, three scenarios are encountered which
are, in order,

(i) all three eigenvalues are unstable, and so the fixed point is
linearly unstable with respect to all perturbations (region (a) in
Fig. 9);

(ii) the two complex eigenvalues are stable while the real eigenvalue
is unstable. Thus, iterates in the plane sufficiently close to the
fixed point will converge to the fixed point, while iterates near
the fixed point but out of the plane will spiral around the one-
dimensional unstable manifold of the fixed point, moving away
from the plane X=0 but converging towards the unstable
manifold (region (b) in Fig. 9);

(iii) all three eigenvalues are stable, and so the fixed point is linearly
stable with respect to all perturbations (region (c) in Fig. 9).

6.4. Iteration in region (a) of Fig. 7

We recall that iterates in region (a) of Fig. 7 map to somewhere
else in the half-plane defined by X,,=0, U, < 0 and so some parts
of region (a) will map back onto region (a). However, the regions
for which this holds will clearly get smaller for more iterations,
assuming that the parameters o and f are chosen in region (a) of
Fig. 9, so that the fixed point is linearly unstable in the plane.
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To determine these regions, the boundary lines of region (a)
defined by Q, = —c1/(2¢3), €1(24,Un) =0 and U,=0 can be back
iterated.

The iteration on the part of the plane defined by Q, < —c;/(2¢3)
is given by

_ 5BcUn+5¢c2c3+c3Qy

Qny1=- PR Q2n+c1) 73)
_ PcUn+10c% +2¢,632n

Uit = 06, G0 en) @

since F(0,Q,) =12¢;Qn+¢1] = —(2¢2Qn+¢1). These equations can
be solved for 2, and U, to give the inverse map explicitly, but we
do not require this form.

We can now back iterate each of the three boundary lines. We
start by setting Q,,;, = —c1/(2¢2) and substituting this into (73)
gives the line

_ 265(Bc1—c3)Q2n + B3 —10c3c3

U
" 10c2

(75)

Similarly, we write the second line as ¢1(€,,1,U,;1)=0 and
substituting for 2,7 and U, . from (73) and (74) gives

2
P(Pc2—10c3c3)

The third boundary line is U, =0 and substituting this into (74),
we derive the preimage

Un= [(10Bc% + Bercs—c3)Qn +10Bc1 ¢, —5¢5¢3).

10¢3 +2c2¢32
Y T 70
which we note is the line ¢1(2,,U,) =0.

The region defined by these three preimage lines must be
partly cut off by the line Q, = —c;/(2c3), so that the resulting
region is bounded by a quadrilateral. For «=0.5 and #=0.9 the
required region is shown in Fig. 12 as the lightest shaded area,
which is the preimage of region (a). Further inverse iteration of
this quadrilateral region can be performed, resulting in smaller

Q

=3.5 -3 =25 -2 -1.5 -1
IS Y E U I S E S S S B P .

= =11

Fig. 12. The blue regions show the parts of the X,=0 plane for which X, .,=0 and
U,k <0 for k=2,3,4,5, for 2 =0.5, #=0.9. The red plus sign indicates the fixed
point. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

regions at each stage which are converging towards the fixed
point found previously in Section 6.3. The next few steps of this
process are also shown in Fig. 12.

Clearly some points in region (a) will end up, under forward
iteration, in regions (c), (d) or (e) of Fig. 7. Thus, we can define
more regions of this plane where 0 <X, ,, <2 and U, ., <0 for
increasing values of k.

We first note that for o = 0.5, = 0.9, if (Q,,U,) is in region (a),
then (2,,1,U;,1) will lie to the left of the line U,,, =621,
which is the forward iterate of the line U,=0. In particular, this
implies that Q,, 1 is always negative. Thus, for these parameter
values, iterates of points in region (a) will never lie in region (d). It
is likely that this will also be true for many other parameter
values, but we have not considered this in detail. However, we
concentrate our attention on region (c), since this is the region for
which 0 <X, ;1 <2 and U, 1 <0. It is bounded by the lines U,=0,
Qn=-c1/2c;) and Up= —2c3(5¢2+c3Q4)/(1+ fc1). We have
already back iterated the first two of these lines, and so it
remains to find the inverse iterate of the third. Using a similar
process to before, this gives the line

_ 2cy
B(Bc? +c1—10c3¢3)

+108c1¢c245¢,—5¢,¢3]. (77)

U, = [(10Bc2 + Beics +c3—C3)Qy

For future reference, we note that this line intersects the Q,,—axis
at

10Bc1¢3 +5¢2—5¢2¢%
10fc2+ feics +c3—c3

Qn= (78)
Thus, the region for which 0 < X,,,, <2 and U, <0 is bounded
by the lines (75)-(77) and is shown as the lightest shaded red
region in Fig. 13. Back iterating this region gives the next darkest
shaded region, which is now also cut off by the lines Q,=
—c1/(2¢2) and ¢4(2y,Uy) = 0, resulting in a pentagonal region. This
region can be further back iterated as shown in Fig. 13, again

Q
-3 -2 -1
1 . 1 L . 1 L -0.3

L -0.4

=05

- -0.6

L -0.7

- -0.8

- -0.9

- -1.0

F-1.1

- -1.2

Fig. 13. The red regions show the parts of the X,,=0 plane for which 0 <X, ,, <2
and Uy, <0 for k=2,3,4,5, for « = 0.5 and = 0.9. The red plus sign indicates the
fixed point. The boundaries of the regions shown in Fig. 12 are also given. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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resulting in smaller regions at each stage and converging towards
the fixed point.

Combining these two sets of results, we can find regions of the
plane X,=0 where 0 < X, ; < 2 (note the equality!) and U, , <0.
These regions consist of the combination of the corresponding
blue and red areas from Figs. 12 and 13 and are shown in Fig. 14.

Taking n=0, clearly these regions of the plane X=0 show
where the regions R,,, m=3,4,...intersect this boundary plane. In
Fig. 6(b), the intersection with the plane Xy=0 is similar to the
region bounded by the blue line of Fig. 14. If the resolution used to
generate Fig. 6(b) was finer, then better agreement would be
obtained. Similarly the regions where R, and Rs intersect the
plane X, in Figs. 6(c) and (d) should match with the regions
bounded by the red and green lines of Fig. 14, but again the
resolution in Fig. 6 is poor.

6.5. The iteration for X, >0

We have so far studied in detail the dynamics in the plane
X=0, even though this is only the boundary of the region W but is
not in W. However, the dynamics near to this boundary can be
understood in terms of the dynamics on this boundary plane.

Let (X,,Q,,Up) be a point at which the functions G4, G, and Gs
defined by (38)-(40) are differentiable. Then taking a Taylor series
of these functions in the variable X, about X,=0 gives

Xn+1 = G1(Xn, 2n,Un) = G1(0,24,Up) 4 G1 x(0,2n,Un)Xn + O0(X2),
Qu 1= G2(Xn, Qn,Un) = G2(0,2n,Up) 4+ G2.x(0, 25, Un)Xn + O(X2),

Uny 1 = G3(Xn,@n,Un) = G3(0,25,Un) + G3.x(0,Q20n,Up)Xn + O(X2),

where G; x = 6G /X, etc. Thus, the iterates are determined by the
iterates in the plane X;,=0, perturbed by terms of O(X,,), which we
assume to be initially small. Moreover, if the point (,,U,) is in
region (a) of Fig. 7, then G;(0,2,,U,) =0 and so

Xn+1=G1x(0,24,Un)Xn+0(X3).

-5 -4 -3 -2 -1
‘ ‘ ‘ ‘ --0.3

--0.4

- -0.5

- -0.6

- -0.7

U

--0.8

--0.9

--1.0

--1.1

--1.2

Fig. 14. Regions of the X,,=0 plane for which 0 <X, ,, <2 and U, 4 <0 for k=2
(blue), 3 (red), 4 (green), 5 (magenta), for «=0.5 and f#=0.9. The red plus sign
indicates the fixed point. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

We note that Gy x(0,Q,,Un) =j11(25,Un), given by (67). This
function tends to oo for points that tend towards either of the
boundary lines Q, = —c;/(2¢;) or ¢1(£2,,Uy) =0 and is zero along
the remaining boundary line U,=0. Solving the equation
Jj11(€2n,Up) =1 gives the line

20526220 +1)* (562 +32n)

Uy = .
14+ Bc1(2c2Qn+¢1)

and this line is shown in Fig. 15 for « =0.5 and f = 0.9. Clearly, if
(Qn,Up) is a point below this line, then X;, ;. ; > X, and if it is a point
above the line, then X, 1 < Xj.

In general terms, if (2,,U,) is a point in region (a) of Fig. 7 and
X, is small and positive, then the iterates will spiral out from the
fixed point, while generally moving away monotonically from the
X=0 plane (unless the dashed line in Fig. 15 is crossed) until an
iterate leaves region (a), in which case the next iterate will either
leave W or jump away from the plane X=0 while remaining in W.

We note that G{(0,2,,U,) is not defined along the line
£1(2n,Uy) =0, as considered in case 3 above and so the Taylor series
approach cannot be used on this line. However, the behaviour of
iterates with X, > 0 but near to this line was studied in Section 6.2.

7. The plane U=0

The conditions (42) which define the region W include U, < 0.
As in the previous section, it is interesting to consider the
boundary of W defined by U,=0, since this will help to under-
stand the dynamics for small, negative values of U,. From a
physical point of view, this condition implies that the ball bounces
vertically from the floor, which necessarily implies that it will not
hit the wall before returning to the floor. However, insight can be
gained by considering this plane from a mathematical perspective
as the limiting case of nearby points which are in W.

We first consider which points (X,,2,) in the plane U,=0
ensure that Uy, 1 < 0. The boundary to this region will occur when
U,+1=0, and this occurs when

F3(Xn,21,0) = —10¢3(1—-Xp)—2¢2¢3Q2, = 0.
This is equivalent to

C:
Xn:Ll(Qn)ES—san—b—l.

It is easily verified that U,,; >0 when X, > L{(€,) and so this
immediately implies that the region of interest in the plane U,,=0
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Fig. 15. The dashed line shows points at which j;1(2,U)=1 for «=0.5, f=0.9.
Above the line, j11(2,U) < 1 and below the line j;1(Q,U) > 1.
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is initially given by
0<Xn <Li(Qn). (79)

The behaviour of iterates near to the line X, = L{(Q,,) with U, # 0
is also of interest. We consider these two cases separately.

7.1. The region 0 <X, <L1(Qy)

In the region defined by (79), X,,+1 =0 which is one of the other
boundary planes that we considered in the previous section. We
note that in this case,

Qn+1 _ FZ(Xn,Qn,O) =_C73
Un+] F3(Xn,Qn,0) 2C2 !

and so the region defined by (79) in the plane U,=0 maps onto
the line
c

Qn+1=*27C32Un+l (80)
in the plane X,.;=0. We note that points (X;,$2,) in the plane
U,=0 that approach the line X, = L(€2,) map, under iteration, to
points on this line that approach the origin U, 1 =Q,,1=0.

We now determine where the line (80) intersects the line
(24,41, Un;1)=0 which is defined by (46). This point of
intersection is given by

5663 10c3
por+1-c2" Pei+1-c% )’

(Qﬁl’uﬂﬂ = (
It can be shown that the function Q;ZJ’J +c1/(2cy) is positive for all
o, €[0,1], which implies that this point of intersection lies to the
right of the line Q,,, 1 = —c1/(2c¢3). From this, we conclude that the
line (80) intersects regions (c¢) and (e) of Fig. 7 for all o, €[0,1].

Similarly, the point of intersection of the line ¢1(2,,1, Uy4+1)=0
defined by (44) and the line (80) is found to be

5¢;¢ 10c¢?
o ,U(l) _ 243 — 2 )
( n+1 n+1) ﬁcl—(% ﬁcl—(%

In this case, solving

Qﬂ] + 2%2 =0

gives f = —oc3 /c?, using (19). To the left of this line in the parameter
plane, the point of intersection (@ ;,US" ,) lies to the right of the
line Q,,1=—c1/(2c3), which implies that the line (80) intersects
region (f) of Fig. 7. However, to the right of this line, the point of
intersection (@) .U ,) lies to the left of the line
Qn 1 = —¢1/(2¢2), which implies that the line (80) intersects regions
(a) and (b) of Fig. 7. In this case, it is possible that period 2 orbits of
the map may exist, since points that approach the line ¢;(;,,U,) =0
as X; —»0 map onto the plane U,.;=0 (see Section 6.2) and some
points on this plane map back onto the line (80) in the plane X;,+>,=0
which intersects the line ¢1(2,,U,) =0.

The example that we are considering of «=0.5, =09
corresponds to the case where the line (80) intersects region (f),
and so we do not consider the possibility of period two points further.

We now determine the line in the U,=0 plane which maps
onto the intersection point (¢} ;,UY” ,) in the plane X;.,=0. This
can be found by solving

Q(Z) _ FZ(XnmeO) _
" FaXn20,0)

5¢2¢3(1—Xn) + 22
B/1262Qn+ 1 (1-X)P +2X0—X3

P )
Substituting for Q7 ,,

[(5¢2(1—Xn) +€3Qn)(Bey +1—c3)?
= (5B¢2)*[(2€22n +€1(1—Xn))? +2Xn—2X2].

squaring and simplifying gives

This equation is quadratic in X, (and in ©,). We note that of the
two solutions to this equation, only one of them will be a solution
of the original equation as the second has been introduced due to
squaring. The solutions are complicated functions of « and . We
denote the one solution of the original equation by X, = L,(;)
and the graph of this solution for «=0.5, §=0.9 is shown in
Fig. 16. It is easily verified that the region between the lines
X, =L1(Qp) and X, = L,(L;,) maps onto the intersection of the line
(80) with region (c) of Fig. 7.

The two intersection points of the line X, =L,(Q,) with the
Q,—axis can be found and are given by (48) and (78). Thus, this
line in the plane U,=0 joins up with the boundary of region (d) of
Fig. 7 in the plane X,=0 and the boundary of the lightest red
region of Fig. 13, again in the plane X,=0.

For the parameter values ot = 0.5, § = 0.9, the line (80) does not
intersect the boundary of region (d). (This is likely to be the case
also for many other values of « and /3, but we do not explore this
in detail.) Thus, in this case, the region in the plane U,=0 bounded
by the lines X, = L1(2,) and X, = L,(Q,) iterates as follows:

e in one iteration, it maps onto the intersection of the line (80)
with region (c) of Fig. 7 in the boundary plane X,.=0;

e in two iterations it maps into W, so that 0 <X,,, <2 and
Uni2<0;

e in three iterations, it escapes from W.

Thus, this region defines the boundary of the set R3 (see Section 5)
where it intersects the U,=0 plane, as can be seen from the
numerical results in Fig. 6(b).

When U,, is small but non-zero, a similar approach to that used
in Section 6.5 can be used to show that iterates are O(U,,) from the
corresponding iterates starting with U,=0.

One question of interest in this case is whether X, >0 for
sufficiently small U, <0 and 0 < X, < L{(22,)? We note from (38),
(33) and (36) that

Un[2¢2Q2n +c1(1-X3) +F(Xn,9n)]
F3(Xn, 2, Un)F (Xn,2n)

Xn+] = (81)

0.6

0.2

0.1 1

T T T T T T T
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Q

Fig. 16. The line X, =L,(2,) in the U,=0 plane that maps onto the point
(@2 ,,U2 ) in the X,.;=0 plane.

n+1""n+



220 PJ. Aston et al. / International Journal of Non-Linear Mechanics 46 (2011) 204-221

Now F(X,,©2,) >0 by definition. The region 0<X, <L(Q,) is
defined to ensure that F3(Xp,£2,,0) < 0 and so, for sufficiently small
U,, F3(Xn,21,Un) <0 also. Therefore, the denominator of (81) is
negative. In the numerator, we have by assumption that U, <0,
and so it remains to consider the term in the square brackets. The
following result shows that this quantity is positive.

Lemma 7.1. If 0 <X, <2 then
20,Qn+¢1(1-Xn) +F (X, 20) > 0,
where F(Xn,Qy) is defined by (37).
Proof. We first define

FXnQn) = 20220+ 01 (1-Xp).

The expression of interest can then be rewritten as

2620 +61(1=X)+ F (X 2n) = F X, Q) 4/ F X, @02 +2X—X2.
Since 0 < X, < 2, it follows that 2X,—X2 > 0 and so
F(Xn,2n)? +2Xn—X2 > F(X,Q2n)? > 0.

The square-root function is monotonically increasing, and so we
conclude that

VEKn, Q)2 +2X0—X2 > [E (X, Q).

Hence,

F X, 20)+ /K, Q)+ 2X0—X32 > F (X, @)+ 1F (X0, 20| = 0

which gives the required result. O

Combining the signs of all these terms, we conclude that
Xn41 >0, and so the first iterate is on the valid side of the
boundary plane X,.;=0. We finally note that this also implies
that the region of the plane U,=0 defined by 0 < X, < L{(£2;,) must
define the intersection of the set R, with the plane U,=0. This
region can clearly be seen in Fig. 6(a).

7.2. The line X, = L1(Q;,)

The line X,=L{(2,) is found from the condition that
F3(Xn,92,,0)=0 and so, from (38), X,,.1 is not defined along this
line. However, a limiting process with U,—0 can be used to
determine a value of X, in this case, using a similar approach to
that used in Section 6.2.

We consider the surface defined by

—10c3(1—Xn)—2¢23Qn = kUy (82)
for some k. Clearly, this corresponds to the line X, = L{(€,) when
U,=0. On this surface, we find that

kc
F (X, @ Un) = <5ﬁcz— ﬁ) Un,

FB(Xn’anUn) = (k—ﬁC1)Un.

Clearly, F4(X,,Q5) does not depend on U, and so we do nothing
with this function. We also leave F;(X;,2n,Uy) in its current form
at this stage. On the surface defined by (82), we then find that

260+ 1 (1=Xp) +F (X0, 2n)

Xn = = ’
! (Ber—K)F (X, 2n)
o - (5Bca—kc3 /(2¢2))Un
n+1= 2
BF(Xn,2n)
g = kBl 83)

 BE(Xn, )

Taking the limit as U, — 0 therefore gives Q,, 1 =U,,1 =0 (since
F(Xn,Q4) > 0) and since X, in (83) above does not depend on U,
there is no limit to take here.

We now consider conditions on k, assuming that U, <0 and
0 <X, <2, for this next iterate to lie in W. We note that the
following analysis does not require U, to be small.

Since F(X,,2,) >0, then U, 1 <0 provided that

k> Bci(> 0). (84)

For X,.; defined by (83), we note that the denominator is
negative, using (84) and since F(X,,Q,)>0. Lemma 7.1 ensures
that the numerator of X,.; is positive and combining these
results, we conclude that X, ,; > 0 as required.

The final condition we require is that X,,; <2. To find the
values of k which correspond to the boundary of the region
satisfying this condition, we substitute X,.;=2 into (83) and
solve for k, giving

_26Qn+¢1(1-Xn) +F (X0, 2n)

k =
2F (Xn,2n)

+par. (85)

The required inequality is then

> 2CQy +C1(1_Xn)+F(Xann)

k =
2F (Xn,2n)

+fcq > ey

Note that the second inequality follows from Lemma 7.1 and since
F(Xn, Q) > 0. Clearly, if this condition holds, then so does (84) and so
this is the only condition that we need on k to ensure that the next
iterate lies in the region of interest. The surface defined by (82), with
k given by the limiting value (85), is the same as was found
previously and is given by (59). This is the surface shown in Fig. 8.

8. Concluding remarks

We have derived an impact map which describes one cycle of
the ball from leaving the floor, bouncing on the wall and then
bouncing on the floor again. We have analysed this map in detail
to determine some of its properties. This has shown that it is
much easier to obtain a higher number of bounces against the
wall if the ball is initially thrown away from the wall, but with
backspin to bring it back towards the wall after the bounce, than if
the ball is initially thrown towards the wall. However, this work
still leaves a number of questions:

e How many hits against the wall are possible? Is it a fixed finite
number or can it be arbitrarily large?

e What happens to the region of initial conditions as the number
of hits against the wall increases?

e How many hits against the wall are possible experimentally?

It is possible to answer the first of these questions from the
work that we have done. From Theorem 6.1, in case (iii) there is a
stable fixed point and so there will be a large region of initial
conditions that are attracted to this fixed point. In this case, the
number of iterates in W, and hence the number of hits against the
wall, can be arbitrarily large (see Fig. 11). However, even in cases
(i) and (ii) where this fixed point is linearly unstable, there is a
one-dimensional unstable manifold associated with perturbations
out of the plane X,=0. By taking points closer and closer to the
fixed point on this manifold, it is possible to find initial conditions
that will give rise to an arbitrarily large number of hits against the
wall. However, we note that for the parameter values we have
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been considering of o« = 0.5 and f = 0.9, the unstable eigenvalue is
21 =24.5481 and so there is strong repulsion from the fixed point.
Thus, the intervals on the unstable manifold which correspond to
a given high number of hits will be exceedingly small!

The third question poses an interesting challenge for experi-
mentalists!
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Appendix A. Supplementary material

Supplementary data associated with this article can be found
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