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An obstacle in the path of a water jet emerging from a tap gives rise to a stationary wave pattern
upstream of the obstacle. In this paper, the wavelengths and the damping coefficients of these waves
are calculated for various jet radii and velocities. The calculations indicate that the wavelength
decreases and the damping coefficient increases with increasing jet velocity, in qualitative

agreement with observations.

I. INTRODUCTION

The insertion of an obstacle in the path of a fluid jet cre-
ates a distinct stationary wave pattern upstream of the ob-
stacle. The wavelength of these waves decreases as the jet
velocity is increased and their amplitude, which is greatest at
the point of contact, decreases rapidly with distance up-
stream. These characteristics can be easily observed in a wa-
ter jet issuing from a faucet, and are referred to in Jearl
Walker’s collection of problems.! A search of the literature
revealed few papers®™ dealing with stationary waves in cy-
lindrical geometries. These, however, do not explicitly con-
sider the relationship between jet velocity and wavelength
nor do they consider viscous effects which, as we will show,
are significant. There are a large number of papers dealing
with stationary waves in planar geometnes One of the early
papers was due to Lord Rayleigh.® In that paper, he analyzes
the wave pattern created by an obstacle in a flat running
stream. That analysis, with minor modifications, has found
its way into well known treatises on fluid mechanics.” Sur-
face waves on large bodies of water are created by the inde-
pendent effects of gravity and capillarity (see Ref. 7, p. 461).
The resulting waves have very different characteristics from
the purely capillary waves considered in this paper.

In this paper, we obtain the wavelength and amplitude
damping coefficients for linear capillary waves on cylindrical
fluid jets. The ‘‘jet stretching”” effect of gravity is ignored.
Most of the work on waves on cyhndncal fluid jets has been
driven by questions of jet stablllty It was in this context that
Lord Rayle1§h obtained the dispersion relation for an invis-
cid fluid jet.” In a later paper, he obtained the dispersion for
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a viscous jet.!” In the next section, we derive the inviscid
dispersion relation and use it to calculate the wavelengths of
stationary waves as a function of velocity, for jets of differ-
ent radii. The derivation is a detailed version of the one
presented in Lamb (Ref. 7, p. 472). In the final section, the
viscous dispersion relatlon is derived, closely following Ray-
leigh’s original paper.! % The dispersion is then used to cal-
culate the damping coefficients of stationary waves.

II. THE INVISCID JET

Consider an infinite, inviscid, cylindrical fluid jet of radius
a and velocity V. The fluid density is p and the surface
tension, 7. The axis of the jet is assumed to lie along the z
axis. We wish to obtain the dispersion relation for axisym-
metric capillary waves that propagate along the surface of
the jet. The surface disturbance is denoted by 7(z,t). The
following analysis is carried out in a frame moving with the
jet. We assume that the flow that results from the disturbance
can be described by a velocity potential. Neglecting the ef-
fect of the surrounding medium and assuming incompress-
ibility, the velocity potential satisfies Laplace’s equation

bt b+ 6,20 &)
in the domain 0<r=a+ 7, subject to
¢, =+ b7, (1a)
and
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T 1 7,
p(1+ D)2 | r (1+7)

T TN
p—a—¢;—§(¢z+¢’r)—

(1b)

at r=a+ 7. Equation (1a) states that a particle on the fluid
boundary remains on the fluid boundary (kinematic condi-
tion). Equation (1b) is obtained by using Bernoulli’s equa-
tion

§+¢,+;—<¢3+¢3>=0 @

and the fact that there is a pressure discontinuity at the sur-
face given by

1 1

+ R
where p, is the extemal pressure, p is the pressure just be-
neath the jet surface, and R, and R, are the principal radii of
curvature of the surface. The constant pressure in the unper-
turbed jet is chosen as the reference value. Subscripts in the
above equations denote derivatives of the subscripted vari-
able with respect to the subscript.

The problem as stated cannot be solved exactly due to the
complexity of the boundary conditions (1a) and (1b). In or-
der to proceed, the boundary conditions must be linearized.
The linearized boundary conditions are

p—p.=T 3)

¢r = nt s (43)
and
T
¢t=; (a_712+ 7722)’ (4b)

In the linear approximation the boundary conditions are ap-
plied at r =q instead of the unknown surface r =a+ 7. Solv-
ing Eq. (1) subject to the boundary conditions (4a) and (4b)
and the condition that the velocity potential be nonsingular at
r=0 yields

n(z,t)= 7y cos(kz—Qt), (5)
and
Q79
o(r,z,t)= i (k ) Io(kr)sin(kz—Q¢), ©6)
with the dispersion relation
w2=%223 a(a®—1), 7

where 7 is the disturbance amplitude, « the dimensionless
wave number, ka and o the d1mens10nless frequency Qa/V,
and B the Weber number paV?/T. I, and I, are the modified
Bessel functions of the first kind of order 0 and 1, respec-
tively. Note that w is imaginary for @<(1. This corresponds
to the well-known mstablllty that causes the spontaneous
breakup of a fluid ]et A physwal explanation of the origin
of this instability is given in Ref. 11. The stationary waves,
however, are amongst the stable waves that occur for a>1.

Equation (7) holds in a frame of reference moving along
with the jet. The transformation to laboratory coordinates is
effected by the mapping z+>z' — Vt. The phase in the labo-
ratory frame is therefore, kz' — (Q +kV)¢. Thus, the disper-
sion in the laboratory frame is obtained by replacing w by
w+a in Eq. (7). The equation for the wave number of the
stationary waves is then obtained by setting w=0 in the re-
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Fig. 1. Wavelength of stationary waves as a function of jet velocity. The
triangle denotes the 1-mm radius jet and the unfilled square denotes the
5-mm radius jet.

sulting equation (stationary waves are steady in the labora-
tory frame). Alternatively, one could simply set w=a in Eq.
(7) to obtain

11
a= \/— I(Z; ala®-1). 8)

This equation was solved numerically using the Newton-—
Raphson method. The modified Bessel functions, / and /,,
were evaluated using algorithms adapted from Ref. 12.

In Fig. 1 we show a plot of the wavelength of the station-
ary waves, A (= 27ra/a), as a function of velocity for water
jets (p=1000 kg/m T=0.073 N/m) of radius 1 and 5 mm.
The wavelength is longest at low velocities and decreases
rapidly as the velocity is increased. This is in qualitative
agreement with observations made on a ~1-mm radius water
jet issuing from a tap. It should be mentioned that the mini-
mum jetting velocity for a 1 mm jet is ~0.15 m/s. Below this
velocity the flow is in the form of drops rather than a jet.
From the plot, it is also seen that at a given velocity the
wavelength is greater for the thicker jet. It is difficult to
observe this variation in jets from household taps as the ra-
dius cannot be varied without changing the flow rate. The
situation is further complicated by the presence of gravity
which causes an increase in velocity, and a consequent de-
crease in radius, along the length of the jet. From the figure,
it is also seen that the wavelength becomes independent of
the jet radius at high velocities. This can also be seen by
taking the limit of Eq. (8) as k—o. In this limit,

I,(a@)/Iy(@)—1 and we recover the expression for wave-
length of capillary waves on a flat surface, A\=27T/pV>.

It is interesting to note that group velocity of the stationary
waves is greater than the jet velocity. This is required if the
waves are to be established upstream of the disturbance. It
can be shown that the wave energy is propagated at the
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group velocity, not the phase velocity (see the Appendix).
Thus the energy that is input at the obstacle is carried up-
stream. If the group and phase velocities were equal (i.c., if
the wave were nondispersive), we would have shock wave
formation with the accumulation of energy at the obstacle.
Stationary wave formation is thus possible only if the waves
are dispersive.

Im1. THE VISCOUS JET

The linearized Navier—Stokes equations for an axisym-
metric viscous jet are

(ru),, (ru)
pu=—p,tu ~—~ 2 ’ Uzzis (93)
r r
U,
pv,=—p,tpu|v,+ T+vzz s (9b)

where u and v are the radial and axial velocities in the jet
frame. The equations hold in a frame moving with the jet
velocity. The equation of continuity, assuming incompress-
ibility, is

u
U+~ +v,=0. (10)

The linearized boundary conditions to be satisfied at r =gq are

T|#n
—pr2pu,=—|—5+1,|, (11a)
pla
and
ulu,+v,)=0. (11b)

Equation (11a) is the normal stress balance and (11b) is the
tangential stress balance.

The symmetry of the problem permits the definition of a
stream function, ¢, with u=4,/r and v=—¢,/r. Equation
(10) is then satisfied identically. The elimination of the pres-
sure from Egs. (9a) and (9b) yields

9
DZ(DZ— % 5) ¥=0, (12)
where
D?= (L3 + il (13)
o \¥ o) T e

The boundary conditions are specified by Egs. (11a) and
(11b) and the condition that there be no si.r(lkgularity in ¢ at

r=0. Assuming a solution proportional to e’
shown that

W(r,z,0)=[Arl (kr)+Arl (kyr)]ei®e =99, (14)

where A; and A, are constants of integration and k,
= Jk?—iQp/u. The dispersion relation is obtained by sub-
stituting the above solution in the boundary conditions and
eliminating the constants A, and A,. The nondimensional-
ized dispersion relation is

z=0) "t can be

2a%(y*+a?) (@) |\ Y+ ()
R? Il(a) _
+(y*—at)- B Iy(a) a(1-a?)=0, (15)
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Table I. Calculated values of a, a,, and «; for a water jet of 1-mm radius.

v (m/s) a (Eq. 8) a, (Eq. 15) a; (Eq. 15)
0.05 1.038 1.038 0.002
0.10 1.148 1.148 0.005
0.20 1.548 1.548 0.012
0.30 2.168 2.167 0.025
1.00 14.34 14.30 0.69
2.00 56.02 55.38 5.39
3.00 126.8 123.6 17.82

where y = \/az— iRw, R being the Reynolds number, pav/

To obtain the wave number and damping coefficient for
stationary waves, we first note that, in, the laboratory frame,
these waves will be of the form e ~**' where k is the com-
plex wave number k,+ik;. Here, we have assumed that the
origin is at the obstacle and the the stationary wave is set up
along the negative z' axis. Transforming to the jet frame, it is
easily seen that the required wave number and damping co-
efficient is obtained by setting Re(w)=¢, and Im(w)=aq; in
Eq. (15) and solving the resulting transcendental equation.
Note that the damping is purely spatial in the laboratory
frame, but is spatiotemporal in the jet frame. The equation
was solved using the multivariable Newton—Raphson
method. Results from the inviscid calculation were used as
initial guesses. For V<<1 m/s, the complex modified Bessel
function was evaluated using a well-known series
representation.> Asymptotic expansions'* for the Bessel
function were used for V=1 m/s. Some results of the caicu-
lations are displayed in Table I.

For high jet velocities (V=2 m/s), we have a&1. In this
limit Eq. (15) reduces to the expression for damped linear
capillary waves on planar surfaces (see Ref. 7, p. 627):

mZ
(2a’—iRw)*+ 5 -4 ¥ = iRw=0. (16)

Using this expression, for V=3 m/s, we find that a,=123.1
and «;=17.83, which is in good agreement with the values
obtained by solving Eq. (15).

In order to get a feel for the magnitude of damping, we
have plotted the distance in which the amplitude falls to 1%
of its original value as a function of the jet velocity in Fig. 2.
The y axis scale is logarithmic. It is seen that these waves are
strongly damped; the damping increasing dramatically with
increasing jet velocity. Further, as in the case of wavelength,
it is seen that the damping becomes independent of jet radius
at high enough jet velocity. The strong dependence of damp-
ing on jet velocity is qualitatively borne out by observations
on a jet emerging from a tap. However, as mentioned in the
previous section, it is difficult to make a quantitative com-
parison between experiments and the theory since the theory
ignores gravitational effects altogether.

APPENDIX: ENERGY PROPAGATION VELOCITY

Consider a cross section of the jet. The rate at which work
is done by the fluid on one side of the cross section on the
fluid on the other side consists of two contributions. One is
the contribution of the bulk, and the other is the direct con-
tribution due to the surface tension. Thus, in a linear approxi-
mation, we may write

K. M. Awati and T. Howes 810
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Fig. 2. Distance in which the wave amplitude decreases to 1% of its original
value plotted as a function of jet velocity. The triangle denotes the 1-mm
radius jet and the unfilled square denotes the 5-mm radius jet.

- a —_—

P=f pd2wr dr—2waTn,n, (A1)
0

where P is the rate at which work is done by the fluid on one

side on the fluid on the other. The bar indicates that the

quantities are averaged over a wavelength. The average en-

ergy per unit length of the jet, E, is given by

E= 2[ = (¢ + ¢2)27r dr, (A2)
where the factor of two is because the average total energy is
twice the average kinetic energy in a linear approximation.
The velocity at which the energy is propagated, v, , is then
given by

P
V= E: . (A3)
Linearizing Eq. (2), we obtain
pP=—pe,. (A4)

P and E may then be evaluated using Egs. (5) and (6). The
integral
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* 2 ’ _x2 r2 n2 2
JO I,,()\u)du=—2—[1,, (Ax)— +W)I"()\x)],
(A5)
and the identities
21,’,(X)=In_1(X)+I”+1(X), (A6)
2n
_x_In(x)=1n—1(x)-In+1(x) (A7)

are useful in evaluating the expressions. The resulting ex-
pressions are

= | In(a) Ii(a@) a?
P_CE{E(Il(a) Io(a))+az—1l’

where ¢ is the phase velocity (k. From Eq. (7), it is easily
shown that the group velocity, ¢, , is given by

aQ {a([o(a) Il(a)) a? ]
=c{ = .

(A8)

s~k (@ Iy =1 (A9)

Using asymptotic expansions™* for I and I, it can be shown
that this expressmn yields the expected planar surface result,
cg—3c/2 in the limit @—.

Equations (A3), (A8), and (A9) yield the result v,=c,.
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