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The radial spread of a liquid jet over a horizontal plane 

By €3. J .  WATSON 
Department of Mathematics, University of ManChester 

(Received 13 August 1963 and in revised form 6 May 1964) 

When a smooth jet of water falls vertically on to a horizontal plane, it  spreads 
out radially in a thin layer bounded by a circular hydraulic jump, outside which 
the depth is much greater. The motion in the layer is studied here by means of 
boundary-layer theory, both for laminar and for turbulent flow, and relations 
are obtained for the radius of the hydraulic jump. These relations are compared 
with experimental results. The analogous problems of two-dimensional flow are 
also treated. 

1. Introduction 
It is a familiar observation that when a smooth jet of water falls vertically 

from a tap on to a horizontal plane, such as the bottom of an empty sink, the 
water spreads out in a thin layer until a sudden increase of depth occurs. This is 
an hydraulic jump, or standing wave, the stationary counterpart of a tidal bore. 
The formation of the thin layer and the circular jump was noticed by Rayleigh 
(1914), who derived the properties of bores and jumps. Rayleigh’s analysis 
refers to flow along a channel of constant breadth, and assumes the speed ahead 
of the wave to be uniform. In  the present case the flow in the thin layer is radial 
and strongly influenced by viscosity, but the principles of momentum and 
continuity apply at the jump as in Rayleigh’s theory. 

Since the central layer of fluid is thin, it  is natural to apply the ideas of 
boundary-layer theory in order to discuss the motion. A necessary condition 
for this approach to be valid is that the Reynolds number of the impinging jet 
shall be large. The depth is observed to be much greater on the outside of the 
jump than on the inside, and hence the condition at the jump may be simplified. 
This observation is equivalent to the statement that the Froude number for the 
flow outside the jump is small. It will further be assumed that the radius of the 
standing wave is much greater than that of the incident jet. No account is 
taken of the structure of the hydraulic jump, or surface tension effects. 

The first problem, treated in 0 2, is the simple case in which viscosity is com- 
pletely ignored. It is more realistic, however, to assume that a boundary layer 
will grow on the plane from the central stagnation point, and that this boundary 
layer will gradually absorb the whole of the flow until the whole layer is a 
boundary layer. Thus, for large values of the radial distance r ,  a similarity 
solution of the laminar boundary-layer equations may be sought, and this is 
obtained in $3.  This similarity solution is found to involve the combination 
( r3 + Z3), where I is an arbitrary constant length. In  $4 the value of 23 appropriate 
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to the flow considered is estimated from an approximate solution of the 
Pohlhausen type for the growth of the boundary layer. 

In  Q 5 the principle of momentum is applied at the hydraulic jump (neglecting 
its radial width), and a relation is derived for rl, the radius of the jump. This 
relation involves the depth d of the water outside the wave, and d is regarded as 
prescribed by the conditions of outflow at a great distance. The other physical 
quantities appearing are Q (volume rate of flow), a (radius of the jet), v (kine- 
matic viscosity) and g (gravitational acceleration). From these 6 quantities 
4 dimensionless parameters can be formed. It is assumed that R = Q/va (jet 
Reynolds number) is large and that Q2/r:gd3 (proportional to the Froude number 
outside the wave) appears only in a small correction. When this correction is 
ignored the relation connects rld2ga2/Q2 with ( rJa)  R-4. In  addition, the radial 
width of the jump must be small compared with rl ,  and since the width may be 
of the order of 5d this requires that d/rl shall be small. 

In  this application of boundary-layer theory the gravitational pressure 
gradient, due to the variation in height of the free surface, is neglected. An 
earlier theory, due to Kurihara (1946) and Tani (1948), regards the hydraulic 
jump as a separation of the flow, induced by the gravitational pressure gradient. 
Consequently some investigations are made in $ 6 of the conditions in which this 
neglect of gravity may be justified. These conditions are adequately fulfilled in 
the experiments described in Q 8. 

The treatment so far described applies only to laminar flow. To deal with 
turbulent flow use has been made of the hypothesis, introduced by Glauert (1956), 
of an eddy viscosity which varies across the boundary layer like us, where u is 
the radial velocity. A solution analogous to that of $0 3-5 is given in $7 .  

Experiments were made in an attempt to verify the theoretical predictions, 
and are described in Q 8. Although the results show a wide scatter, they appear 
to be consistent with the assumptions of the theory. 

Finally, a brief treatment is given in $ 9  of the analogous problems of two- 
dimensional flow. 

2. Inviscid theory 
When viscosity is ignored, the motion produced by a round jet falling vertically 

on to a horizontal plane is one of potential flow with free streamlines. Methods 
for the solution of problems of this type are described by Birkhoff & Zarantonello 
(1957). When T ,  the distance from the axis of the jet, is large compared with a, the 
radius of the impinging jet, the depth h of the fluid on the plane is small and the 
motion is almost radial with speed U,, the speed with which the jet strikes the 
plane. Hence the volume rate of flow is 

Q = na2Uo = 2nrhUo, (1)  

so that h = a2/2r. (2) 

The condition to be applied at the jump (due originally to BBlanger 1838) is 
that the thrust of the pressure is equal to the rate at which momentum is 
destroyed. The depth on the inside of the jump is given by (2) with T = rl ,  the 
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radius of the standing wave. If d is the depth outside, the thrust of the pressure 
per unit length of wave is *pg(d2-h2), where p is the density. The speed of flow 
is V, inside the jump, and'outside it is 

U, = Q/2m,d.  (3) 

The rate of destruction of momentum per unit length of wave is therefore 

When h < d, this reduces to 

that is 

A better approximation is to neglect only (h/d)2 in (4), so that the pressure thrust 
inside the wave is ignored but the momentum outside is included. This gives 

r,d2ga2 a2 1 +--- 
Q2 2m2r,d - n2' 

The ratio of the second term of (6) to the first is 2lJ:/gd so that, if the correction 
term is to be small, the Froude number of the outer flow must be small. 

Equation (4 )  can be solved exactly, to give 

(7) 
r,d2ga2 1 gda4 

Q2 n-2 2Qz' 

However, in the solutions considered later, the equations corresponding to (4 )  
cannot be treated so simply, and therefore results analogous to ( 6 )  will be 
derived by neglecting (h/d)2. 

-__ = -- __ 

3. Similarity solution of the boundary-layer equations 

satisfies the equations 
According to the boundary-layer approximations the flow in the thin layer 

(8) 

(9) 

a(ru)/ar + a(rw)/az = 0 ,  

u(au/ar) + w(aujaz) = v(aZu/az2), 

with the conditions u = w = O  at z = O ,  

8ula.z = 0 at x = h(r), 

Here r ,  x are cylindrical co-ordinates, with z measured vertically upwards from 
the plate, and u, w are the corresponding velocity components. In  equation (9) 
the gravitational pressure gradient ( - pgdh/dr) has been ignored. Equation ( 1  1) 
asserts that the shearing stress falls to zero at the free surface z = h(r), since the 
viscosity of air is negligible, and ( 1 2 )  is the condition of constant volume flux. 

In  this section a similarity solution will be derived by assuming that 

( 1 3 )  
31-2 
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p = M T ) ,  (14) 

f(0) = 0, f(1) = 1, f’(1) = 0, (15) 

(16) 

where U(r )  is the speed at the free surface. Then from (10) and (11) 

and from (12) Q = 2nr Uh IO1 f(y) dy. 

Hence r Uh is constant, and (8) then leads to 

w = Uh‘rf(q). (17) 

The equation of motion (9) now reduces to 

v f” (y )  = h2uY(r),  
from which i t  follows that h2U‘ is constant. Also f”(y) < 0, since the shearing 
stress is greatest at the plate, and it is convenient to write 

h2U’ = -3 2 

where c is a number. Then 2f “= - 3 ~ 7 2 ,  which, from (15), may be integrated to 
f ’ 2  = c2(1 - f3 ) .  Sincef’ 2 0, 

(18) 2c v ,  

n f  

c p  = J ’ (1 - x3)-+dx. 
0 

The conditionf(1) = 1 now gives 

rUh = 3 1 / 3 ~ ~ & / 4 7 ~ 2 ~ .  
Consequently (16) gives 

The only conditions on U(r),  h(r) necessary for the similarity solution are (18) 
and (22). The general solution of these equations is 

27c2 Q2 
8774 v(r3 + P )  ’ U ( r )  = - 

2+ v(r3+Z3) 
3 4 3  Qr ’ h(r) = ~ ___ 

(23) 

where I is an arbitrary constant length. 
In  the actual flow this similarity solution can only be expected to hold when 

r is sufficiently large for the conditions in the incident jet to have lost their 
influence. The value of I, however, depends on these conditions, and must be 
found by consideration of the growth of the boundary layer from the point of 
impact of the jet. A method for the estimation of I will be described in 5 4. 

The velocity profile in the similarity solution is given by (19), which can also 
be expressed by means of Jacobian elliptic functions (Neville 1944) as 
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where the modulus is sin 75'. Hence, in terms of the elliptic integral F(0)  with 
this modulus, 

v(r3 + Z3) u/Q2 = (27c2/8n4) (1 - 4 3  tan2 48), 
(26) I ~ r z / v ( r 3 +  13) = ( w / 3 4 3 )  (1 - 3-aC-1qe)). 

8 = 0 corresponds to the free surface and 8 = cos-l(2 - 43)  c 744" to the surface 
of the plate. The profile (25) is shown in figure 1. 

T 

FIGURE 1. The velocity distribution function. 

It is of interest to observe that the analogous problems of the wall jet (Glauert 
1956, 1958) and the radial free jet (Squire 1955) also yield similarity solutions in 
which the combination (r3+Z3) occurs as in equations (23) and (24). In  this 
connexion see Riley (1961, 1962). 

4. General approximate solution 
As already remarked in $1 ,  the boundary layer grows from the stagnation 

point on the axis of the jet until it  absorbs the whole of the flow. In  fact, four 
regions of flow may be distinguished, though they pass continuously into one 
another. 

(i) When r = O(a),  the speed outside the boundary layer rises rapidly from 0 
at the stagnation point to U,, and the boundary-layer thickness is O(va/Uo)* 
(Homann 1936). 

(ii) For greater values of r the speed outside the boundary layer remains 
almost constant, equal to U,, as the fluid here is unaffected by the viscous 
stresses. The boundary-layer flow in this region is therefore given by equations 
(8) and (9) with the conditions 

u . = w = O  at x = O ,  u+U, as x-sm. (27) 
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If r % a, so that the conditions in region (i) do not affect the flow, a solution of 
these equations can be found in which 

where 

Thus the velocity distribution has the Blasius flat-plate profile, and the boundary- 
layer thickness is O(vr/&)&. It also follows that 

H = SJS, = 2.59, I 
where S,, S, are the displacement and momentum thicknesses. 

(iii) When the viscous stresses become appreciable right up to the free surface 
the whole flow is of boundary-layer type. The velocity profile changes as r 
increases, from the Blasius type (28) to the similarity profile (25). 

(iv) Ultimately the way in which the flow originated becomes unimportant, 
and the similarity solution of $ 3  is valid, with an appropriate choice of the 
length 1. However, as noted earlier, the value of I depends on the development 
of the flow in the inner regions. The order of magnitude of I can be found by 
elementary considerations, as follows. 

In  region (ii) the total depth h of the flow is O(a2/r),  as in equation (3). Since 
the boundary-layer thickness 6 is O(vr/U,)?, 6 becomes comparable with h when 
r = O(aRg), where R = Q/ua is the Reynolds number of the incident jet. The 
solution (28) is valid only when T % a, so that R must be large. 

In  region (iii), T = O(aR*) and the speed U at the free surface is O(U,,). Also, 
since there is a transition to the similarity solution, it follows from (23) that 
r3 + P = O(Q2/vU,) = O(a3R). Thus I = O(aR*), of the same order as the length 
scale for the radial development of the boundary layer in regions (ii) to (iv), and 
since R is large, I % a. 

It has been shown that the velocity profile must actually change through the 
transition region (iii) from the Blasius profile to the similarity profile. These 
profiles are not very different, however. A satisfactory approximation may 
therefore be expected if the Kkm&n-Pohlhausen method is applied with a 
constant velocity profile 

wheref(9) is the similarity-profile function, defined by (19) or (25), and 6 is the 
boundary-layer thickness. This has the effect of suppressing the region (iii) in 
which the velocity profile changes. Hence on this approximation there is 
unretarded fluid present when r < ro (say) so that S < h and U(r )  = U,, whereas 
for T > T, there is a similarity solution as in 3 3 with 6 = h and U(T) < U,. In  the 
region r < ro an approximation to the Blasius type of solution (28) will be 
derived; and ro is given by the condition S = h, so that the whole flow passes 
through the boundary layer. 

u = U(r)f(z/&, (31) 
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The momentum integral equation for the flow in the region r < ro is 

(U,u-u2)dx = v - , (Z:) s= , 
since in the unretarded fluid zc = U,. When u is given by the approximate profile 
( 3 1 )  with U ( r )  = U,, equation (32 )  becomes 

2 ( n - ~ J 3 )  TJ (d& -+- 6) =-- VU,C 
343c2 dr r 6 .  

Hence (33 )  

where Cis a constant. If (33 )  is to remain valid as r + 0, then C = 0. If allowance 
were made for the fact that the main stream actually has a stagnation point at 
r = 0 then, as already shown, 6, = O(va/Uo) when r = O(a) ,  so that C = O(va3/U,). 
Thus C would be O(a3/r3) relative to the other terms of (33 ) ,  and could therefore 
be neglected when r 9 a. Consequently when a < r < r,, 

It follows that on the present approximation 

Comparison of the approximate values ( 3 5 )  with the accurate values (30 )  shows 
that the errors are only about 6 %, which is adequate for the present purpose. 

The boundary layer just absorbs the whole flow when r = ro. Hence ro is given 
by the condition that the volume flux through the boundary layer reaches the 
value Q.  As found in (22 ) ,  

roU,6(r,) = (343c2/4n2)  Q. 

Since 6(r)  is given by ( 3 4 ) ,  this leads to 

or 
6 = {943c(n-cC2/3)/16n3} (Qa2/v), 

ro = 0.3155aR3, 

where R is the jet Reynolds number Q/va, assumed large. 
When r < r ,  the total depth h of the layer is given by the volume flux condition 

Hence h = (a2/2r)  + ( 1  - (2n/343c2)}  6, (38 )  

where 6 is given by (34 ) .  
The value of the length 1 in ( 2 3 )  and (24 )  can now be estimated on the present 

approximation. The free surface velocity U(r )  of (23 )  must be equal to U, when 

Z3 = (943c(343c-.rr)/ l6n3) (&a2/v),  
r = r,. Consequently 

that is 1 = 0.567aR*. (39) 
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Thus on the present theory the depth h of the fluid is given by (38)  for r < ro 
and by (24)  for r 2 r,, while the speed at the free surface is U, for r < ro and is 
given by (23)  for r 2 r,. Figure 2 shows the variation of U / V ,  and (hla) R), with 
(&/a) R*, as functions of (ria) R-4. It will be noticed that h has a minimum when 
r = 2-4Z = 1*43r0, and here - U'(r) reaches its greatest value. 

0 0.2 0-4 0.6 0.8 1 .o 1.2 
r 
- R-1 
a 

FIGURE 2. Variation of layer thickness and surface speed with 
radial distance (laminar flow). 

5. Jump condition 
The position, r = rl, of the hydraulic jump is determined, as in 3 2, by equating 

the rate of loss of momentum to the thrust of the pressure. This is legitimate 
provided that the width (measured radially) of the jump is small, so that skin 
friction can be ignored. As stated in $ 1 ,  this will hold if the depth d outside the 
jump is small compared with rl. Owing to the complicated form of the expres- 
sions for h, it is undesirable to include the term $pgh2, which is the pressure thrust 
on the inward side of the wave. This term, however, is only O(h2/d2) compared 
with the thrust on the outward side, where the depth is d .  Also the momentum 
outside the wave, which is O(h/d)  compared with that inside, will be included 
only approximately since it is assumed that the speed of flow Ul immediately 
outside the jump is uniform, and therefore given by (3). The condition of 
momentum is thus 

+pgd2 = p /  u2dz-pU;d ,  
h 

0 

so that 
r,d2ga2 a2 

Qa 2 n r 1  
+--- - 2:F/:u2dz.  
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It is necessary to evaluate the right-hand side of (40) separately for rl 2 ro and 
for r1 < To, since the jump .may occur at  any point in the development of the 
boundary layer. When r1 2 ro 

and (40) becomes 

rld2ga2 a2 271/3c3 r: +-=- ---1+ 

Q2 2n2r1d 8n6 [a3 1 6n3 (41) 
= 0.01676((r1/a)3R-1 + 0-1826)-l, 1 

provided that (r,/a)R-& 2 0-3155. When rl < ro 

In this case (40) takes the form 

= 0.10132 - 0.1297 (rl/a)g R-*, I 
where (rl/a)B-* < 0.3155. 

The actual form of the results (41) and (42) depends on the approximation 
made in 0 4 that the velocity profile could be taken as constant. Nevertheless, 
provided (h/d)2 and (a/r# are negligible, the quantity 

rld2ga2 a2 +- Q2 2n2r1d 

should be a function of (rl/a)B-* only, and the leading terms of (41) and (42) 
should be correct for large and small values, respectively, of (rl/a)R--*. This 
dimensionless jump radius may take a, wide range of values while the quantities 
(h/d)2 and (a/rJ3 remain small. 

6. Effect of the gravitational pressure gradient 
Tani (1948), following Kurihara (1946), regarded the hydraulic jump as a 

separation of the flow from the plane, due t o  the adverse gravitational pressure 
gradient, so that equation (9) is replaced by 

and rl is given by (au/az),, = 0 at r = rl. Tani assumed that h = 0 a t  r = 0. 
This approach leads to a relation between rl and &. Since the depth d outside 

the jump can be varied independently of Q (for instance, if the empty sink is 
allowed to fill gradually), and this produces a corresponding variation in rl, the 
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Kurihara-Tani theory cannot provide a full explanation of the jump. Never- 
theless, it  is important to test whether the gravitational pressure gradient might 
be significant. Some information may be gathered from the Holstein-Bohlen 
(1 940) parameter, which from (43) is 

where 6, is the momentum thickness and U the velocity at the edge of the 
boundary layer. Values of h may be computed for the solution of $0 3 and 4, and 
should give at any rate the order of magnitude of the true values, which wouId 
be derived from the solution of equation (43). 

As noticed in $4, h has a minimum value where T = 2-41 > r,. Consequently 
the pressure gradient is favourable for T < 2-f l ,  and it suffices to consider the 
similarity solution of $ 3. Here 

1 2(n- 4 3 )  
6, = h/ ( f - f 2 ) d q  = 3 J3c2 h, 

0 

so that 4(n- ~ 4 3 ) ~ g h ’ d h  
27c4 vUdr 

h(r )  = - 

(45) 
512n10(~-c J3)2gv3 - (r3+Z3)3(r3-4Z3) 

= -  
5 9 0 4 9 4 3 ~ ~  Q5 r4 

Since dhldr < 0, the worst value in any flow is that at the jump r = rl .  
The value of h indicates the progress of the boundary layer towards separation, 

in many approximate solutions. A typical value at separation is h = -0.082 
(Thwaites 1949), so it would be reasonable to neglect the gravitational pressure 
gradient if the values of ( - A )  derived from (45) were very small compared with 
0.082. 

7. Turbulent flow 
In  the analysis so far the motion in the layer has been assumed laminar. This 

may not always be realized, especially if the flow is unstable. The approximate 
formula of Lin (1945) for the velocity profile 

= U(r)f(q), q = 44 
gives the critical value for stability of 

- nf’(0) ~ ( ~ c ) f ” ( ~ c ) l / ~ ’ ( ~ c ) 1 3  = 0.58. (47) 

When f(q) is the function of $3, (47) becomes a cubic equation for f ’ (qc) ,  

f”+ ( 3 ~ ~ / 1 . 1 6 ) f ” -  ( 3 ~ ~ / 1 * 1 6 )  = 0. 
namely 

Hencef’(qc) = 1.327,f(qc) = 0.471, and (46) leads to the critical value 
Rl = 275. 
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Now 

and thus from ( 3 4 ) ,  when r < ro 
R -  3 439-277 (e)* 

- 3 4 { n c 4 3 ( 7 ~ - ~ 4 3 ) )  va2 * 

When r 2 ro, S = h, and (22 )  gives 

(49) 

(50) 

Consequently the greatest value of R, occurs at r = ro. 
less than 275 everywhere, so the required condition is 

(51) 

For stability R, must be 

However, the stability criterion may be substantially modified by the fact that 
there is a free surface, so that (52 )  may be of little significance in practice. 

If it is assumed that the motion is turbulent throughout, a solution for the 
flow within the jump may be obtained by introducing an eddy viscosity E .  In  
his treatment of the wall jet problem Glauert (1956) assumed that E varies across 
the boundary layer like u6, so as to agree near the wall with the Blasius law 

Tw = 0*0225pu2(v/uz)f,  (53 )  

= U ( r ) F ( r ) ,  7 = z / W ,  (54) 

8 = y U W F y v ) ,  (55) 

where rW denotes the skin friction. As Glauert showed, if a similarity solution 

exists, (53 )  requires that E shall be of the form 

where y is a constant. In  the case of the wall jet Glauert used this variation of E 

only in the region near the wall, where au/az 0, since it was inappropriate to 
let s-+O as z-fco. Since au/az 2 0 everywhere in the present problem, it seems 
reasonable to use the relation (55) throughout the layer, so that E is greatest a t  
the free surface. 

In the similarity solution analogous to that of 0 3, d = h and 

Q = 2nr johudz  = 2nrUh P ( p ) d y ,  so’ 
so that rUh is constant. The equation of motion 

now becomes 
Hence u’ = -@2yh-%U), 

y( Uh)2[d(PSP’)/d7] = h2U‘P2. 

where k is a constant, so that 
2[d(P6P’)/d7] = - 9k2F2. 

(57 )  
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After multiplication by F6P’, (59 )  may be integrated to give 

(F’gF’)2 = k2( 1 - Pg) ,  

since P’ = 0 when P = 1. Thus 

and the condition P(1) = 1 gives 

Also 

where 

Equation (56 )  therefore becomes 

rUh = (L/27i-A) Q.  

The constant y must be determined by the aid of (53 ) .  Since P6P’ -+ k as 7 -+ 0, 
kq - +F7. Also 

Equation ( 5 3 )  then leads to 

kyUzh-4 = lim [0 .0225U~Pfv%h-*q-* ]  
7-+0 

whence ky = 0 * 0 2 2 5 ( 7 k ~ ) * .  

With h and y eliminated by (65) and (66 ) ,  (58) becomes 

Consequently 

and from (65 )  

-K = 9 (0.0225) (7v)k 
u2 2 

100 Qg ~ U =  
9( 14) i  (nA)f  d ( r P  + It) ’ 

9k 
200 

h=---(14nA)& 

where 1 is a constant length, which has to be determined by the conditions where 
the boundary layer reaches the free surface. 

If the velocity profile (54 )  is assumed for r < T,, with U(r )  = U,, the momentum 
integral equation, the analogue of (32 ) ,  becomes 

(;+;) u;s(;-;) = 0 . 0 2 2 5 ( 7 k v ) m % s - ~ .  
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This gives, on integration, 
(d)' = " (C)'rz+C, 

80(A-$) Uo 

where C is a constant. If the flow is turbulent throughout, and this equation 
applies down to T = 0, then C = 0. Thus 

6 = [80(A - g ) ] - * h ( 7 ~ / U ~ ) * ~ t .  (69) 
The volume flux through the boundary layer is 2nrU06A/lc and this becomes 

equal to Q a t  r = T,,. Hence 

2mlUO[80(A -+)]-t(7v/&)*ro% = Q. (70 )  

I2 = 20( 1 - 2A) ( 14n)-~A-%(Q/v)fa2. 

Then from (67 ) ,  since U = U, when r = ro, 

( 7 1 )  

When r < ro the total depth of the layer is 

Figure 3 shows the variation of U/Uo and (h/a) R* as functions of @/a) R4. 

0 2 4 6 8 10 

T R-L 
a 

FIGURE 3. Variation of layer thickness and surface speed with 
radial distance (turbulent flow). 

The jump condition is derived as in 5 5. It is 
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8. Experiments 
The experiments to be described were carried out in the Hydraulics depart- 

ment at the Engineering Laboratory, Cambridge. The plate used was a circular 
disk of plate glass, Qin. thick and 2ft. in diameter, placed in a metal tray of the 
same diameter and supported on three screws arranged symmetrically 9 in. from 
the centre. Another screw at the centre of the tray was raised until it  just 
touched the plate, in order to take the thrust of the jet. The tray had a rim of 
height 1 in. which held the glass plate from sliding horizontally, and the height 
of this rim above the plate could be adjusted by means of the screws. The tray 
stood on three legs, also adjustable by screws, on the floor of a large tank, and 
the tray and plate were levelled by means of the screws. 

The jet was formed by a nozzle consisting of a circular hole drilled through 
a plug, which was screwed into a 2in. pipe leading from the water main. The 
rate of flow could be varied by means of a valve in the 2in. pipe. In  order to 
reduce the effects of turbulence in the pipe, the plug was hollowed out to provide 
a smooth contraction from the pipe to the nozzle. The jet was arranged to strike 
the plate vertically at its centre. 

In  the experiments two sizes of nozzle were used, with diameters +in. and 
ain. The depth d outside the jump was governed principally by the height of 
the rim above the plate, and d was measured with a point gauge. The diameter 
of the standing wave was measured with dividers, and the rate of flow Q was 
found by measuring the quantity leaving the tank in a known period of time. 
The temperature of the water was also noted in order to find the viscosity. At 
small rates of flow the jet diameter was less than the nozzle diameter, and was 
therefore also measured. 

The main difficulty found when taking measurements was the unsteadiness of 
the flow. The depth outside the jump was measured where it appeared to be 
greatest, slightly beyond the actual wave front, and had to be estimated by 
adjusting the point gauge until it was in and out of the water for equal amounts 
of time. The jump seldom formed a good circle about the jet, and a mean diameter 
was found and used for the calculations. At large rates of flow there was violent 
splashing from the point of impact of the jet, so that no observations could be 
made. 

The measured values of rl ranged from under 1 in. to nearly 7 in., those of d 
from 0-13in. to  0*65in., and those of Q from 0.00043 to 0-0158ft.3/sec. The 
resultant jet Reynolds number R = Q/av varied from 7 x lo3 to 1.2 x I05. 
Figure 4 shows log,, [(rld2qa2/Q2) + (a2/2n2r1d)] plotted against log,,[(r,/a)R-*] 
for these observations, together with the curve obtained from the approximate 
solution and given by (41) and (42). Most of the observations appear to be 
reasonably consistent with this curve. 

Following the suggestion of a referee that the discrepancies might be due to 
the neglect of the width of the jump, I have analysed the observations with 
respect to the ratio d/rl .  This ratio ranged between 0.02 and 0.5, and the analysis 
showed clearly that the points with d/r ,  < 0.1 all lie near or above the curve, 
whereas those lying well below the curve correspond to large d/r l ,  the worst 
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FIQURE 4. Comparison of experiment and theory for jump relation 
(laminar flow). 

point having the greatest d / r l .  When allowance is made in the momentum 
equation for the width of the jump there is a skin friction force on the bottom of 
the fluid, and a greater area on which the pressure outside the jump can act. 
These effects both tend to make the experimental points fall below the theoretical 
curve, so that the results noted above can be explained qualitatively. 

+ +  
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I I  I I  
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FIGURE 5. Comparison of experiment and theory for jump relation 
(turbulent flow). 

Since in some observations the jet Reynolds number R was considerably 
greater than the critical value 2.57 x 104 obtained by Lin's method, a comparison 
was also made with the theoretical result (73) for turbulent flow. This is given in 
figure 5, and is restricted to the observations with R > The agreement is 
less satisfactory than in figure 4. 
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From the measured quantities it was foynd that the greatest value of - A(rJ,  
obtained from (45), was 0.0015. Since this is less than 2% of the separation value 
0.082, the assumption of negligible gravitational pressure gradient is well 
justified in these experiments. 

It may be of some interest to compute the theoretical layer thickness and 
velocity for an experimental flow. The greatest jump radius attained was 
rl = 6*95in., and this was when Q = 0.00713ft.3/sec, v = 1.23 X 10-5ft.2/sec, 
a = Qin., and d = 0-135in. These values give R = 5-55 x lo4, (rJa)R-* = 1.46, 
[(rld2ga2/Q2) + (a2/2nzrld)] = 0.0059, and A(rl) = - 0.0015. If the flow is assumed 
laminar, (24) gives h = 0-028in., and (23) gives U = 1*4ft./sec, both at the jump. 
Hence at the jump the depth increased by a factor of about 5. The least thickness 
of the layer was about 0.0076in. where r = 2-15in. It might be difficult to 
measure such thicknesses experimentally, especially as the free surface often 
showed radial corrugations. 

9. Two-dimensional flow 
The corresponding problems in two-dimensional flow may readily be formu- 

lated, and the solutions are analogous. The flow might be realized by a two- 
dimensional jet striking a horizontal plane or, as suggested by Glauert (1956) for 
the wall jet, by the flow of water under a sluice gate. It will appear that the 
velocity profile in the similarity solution is the same as in the axisymmetric case. 
This applies both for laminar and for turbulent flow, and the result also holds 
for the wall jet and the radial free jet. 

If x, y are rectangular co-ordinates with y vertically upwards, and u, v are 
the corresponding velocity components, the analogues of equations (8) to (12) 
for Iaminar flow are 

(74) 

(75) 

u = v = O  a t  y=O,  (76) 

aulay = o at y = h(x), (77) 

aupx + aqay = 0, 

U(au/ax) + v(au/ay) = v(a2u/ay2), 

Here Q is the flow per unit span in the positive x-direction. Thus the total flow 
from the two-dimensional jet would be 2Q, and the flow under the sluice gate Q. 

The similarity solution of these equations, derived as in $3, is 

u = U(X)f(V)Y V = Y/h(X), 179) 

U(X) = (9c2/2n2) Q 2 / y ( x  + I ) ,  (80) 

h(x) = (m/J3) v(x + I ) / & .  (81) 

wheref(7) is the function defined by equations (19) or (25), and 

Here Z is an arbitrary constant length, whose presence merely indicates that 
a shift of origin is possible. 
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In  order to develop an approximate general solution corresponding to that of 
$ 4, the speed a t  the edge .of the boundary layer is taken as the constant Uo for 
0 < x < xo. If the flow were realized physically by one of the examples mentioned 
above Uo would be the speed of the impinging jet, or the speed attained by the 
flow under the sluice gate a short distance downstream. The corresponding 
inviscid flow has the uniform depth a = Q/Uo. The characteristic Reynolds 
number is now 

R = Uoa/v = Q/v. (82) 

= uo f(r>, r = Y / W Y  (83) 

If the velocity profile is assumed constant, of the form 

where f(7) is again the function of $ 3, substitution in the momentum integral 
equation leads to the result 

3 J3c3 vx 
2(n--cJ3) q’ P(x) = 

assuming 6 = 0 at x = 0. The total thickness of the layer is 

h = a+(l-2n/31/3c2)6. 
Since 6 = h when x = xo, 

The value of the length 1 in (80) and (81) can now be estimated as 

x0 = { 3 2 / 3 ~ ( 7 ~ - ~ 1 / 3 ) / 2 7 ~ ~ ) a R .  

(84) 

I = (3 J3c(2 J3c - n)/2n2} aR. (87) 

The use of the principles of momentum and continuity a t  the jump now gives 
the position x = x1 of the jump. When is neglected as before, 

for x1 < xo, 

for x1 > xo. 

X 1  _ -  

The inviscid theory, analogous to that of $ 2, is identical with Rayleigh’s (1914) 
theory, when the depth h is regarded as constant and equal to a. It leaves the 
position of the jump indeterminate but gives 

$(1+;) = 1, 

or, if the pressure thrust ahead of the wave is neglected as in (88),  

gd2a a j @ + d  = 1. 

Thus (88) shows that if the left-hand side of (90) is less than 1, the flow loses 
total head by friction over the length x1 until the jump can occur. 

The analysis for two-dimensional turbulent flow is analogous to that of $ 7 .  
The similarity solution is 

u = U(x)P(7 ) ,  7 = Y/hWY (91) 
32 Fluid Mech. 20 
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FIGURE 6. Variation of layer thickness and surface speed with distance, and 
jump relation, in two-dimensional laminar flow. 

where F(q)  is the function defined by (61), and 
800 &% U ( x )  = 

81 x 7fAS v)(x+Z)’ 

81(7A)fk v f 
h(x) = 800 (a) ( x + 4  

The corresponding approximate general solution gives, for x < xo, 

(320 (9.4 - 2) 6(x) = 

where 6 is the boundary-layer thickness, and the total thickness is 

Also 

and the value of I in (92) and (93) is found as 
160(1-2A) aR&. ’=  9x7)Af 

The jump condition now becomes 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 



The radial spread of a liquid j e t  over a horizontal plane 499 

2.0 

1.5 

0.5 

0 5 10 15 20 

FIGURE 7. Variation of layer thickness and surface speed with distance, and 
jump relation, in two-dimensional turbulent flow. 

The experimental work was carried out in the Hydraulics department at the 
Engineering Laboratory, Cambridge, by the kindness of Prof. J. F. Baker. I am 
greatly indebted to Mr A. M. Binnie, whose advice and encouragement enabled 
me to perform the experiments. To the many persons who have kindly interested 
themselves in this work I offer my apologies for the inordinate delay in its 
presentation. 
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