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Resistivity measurement is a weighted averaging of local resistivities. We develop a formalism 
to calculate the weighting function, applying it to square van der Pauw samples and to 
linear and square four-point probe arrays. In each case, some regions of the sample are 
negatively weighted, but these regions can be reduced or eliminated by van der Pauw 
averaging. We discuss negative weighting, which we feel is responsible for spurious reports of 
superconductivity above room temperature. We show how a square four-point array can 
be more effective at measuring local resistivity than a linear one. Finally, we show how to apply 
our formalism to anisotropic materials. 

I. INTRODUCTION 

Resistivity is one of the most useful measurements for 
characterizing materials. To measure the resistivity p one 
makes one or more four-point resistance measurements on 
a sample of the material, and then converts resistance(s) 
into resistivity by means of some geometrical factor. This 
factor may depend on the shape and size of the particular 
sample and the position of contact leads. Ideally it should 
be both easy to calculate and infinitely accurate. Geomet- 
rical factors are well known for the most popular measure- 
ment techniques, including moveable four-point probe 
arrays,'-5 bridge, and van der Pauw techniques6 for isotro- 
pic materials, and Montgomery's method7 for anisotropic 
materials. 

For materials with nonuniform resistivity, use of the 
geometrical factor will result in the calculation of an aver- 
age resistivity. We shall consider this act of averaging and 
how it depends on the local values of resistivity. We will 
start with materials of isotropic, although slightly nonuni- 
form resistivity, considering one van der Pauw geometry 
and two fixed-probe geometries. We will finally show how 
one can generalize the results to anisotropic materials. 

II. METHOD 

Calculating the geometrical factor generally assumes 
the uniformity of the local resistivity in the sample. If the 
material's composition varies in the volume of the sample, 
then any measurement of resistivity gives only an average 
value, with some regions being weighted more strongly 
than others. This average can be written as 

where p(x,y) is the local resistivity and f (x,y) is a weight- 
ing function which measures the sensitivity of the measure- 
ment to the local resistivity. This weighting function de- 
pends on the sample shape and the arrangement of current 
and voltage leads. Knowledge of the function f(x,y) for 

various geometries would allow one to choose the geome- 
try that would minimize errors due to inhomogeneities. 

To calculate the weighting function at a point (xo,yo), 
we consider how the voltage across two voltage probes 
changes when we perturb the resistivity at that point while 
keeping the total current fixed. If 

then 

where V is the potential difference between the voltage 
probes and A V is the change in this quantity due to the 
perturbation. 

To solve for the potential in an inhomogeneous mate- 
rial, we start with the steady-state continuity equation 

where J is the current density. Equating J to E/p= -VQ/ 
p leads to 

The potential due to the perturbation of Eq. (2)  is thus 
equivalent to the potential due to a point dipole located at 
point (xo,yo). We will consider the limit of small pertur- 
bation, such that the denominator in Eq. (3)  can be re- 
placed with the unperturbed resistivity. For an ideal point 
perturbation, as in Eq. (2),  this means choosing E-0 in 
such a way that E ~ ( X  - xo)6(y - yo) -0 as well. For an 
actual physical sample, this means that the relative varia- 
tion of the local resistivity from its average value Ap/p is 
much less than one. 

We have solved Eq. (3) for a square van der Pauw 
sample both numerically-using the discretizing technique 
mentioned in Ref. 8-and exactly-using a Green's func- 
tion technique. We chose to have current flow between 
electrodes on two adjacent comers and to measure voltage 
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FIG. 2. Four-resistor model of a four-point resistance measurement. The 
measured resistance R, is the ratio of the voltage drop across Rb to the 
total current flowing through the network. 

FIG. 1 .  Contour map of the weighting function for resistivity measure- 
ment. Current enters and leaves the sample through the left-hand corners. 
The voltage probes are on the right-hand corners. 

between electrodes on the other two. We calculated the 
unperturbed electric field at an interior point and then cal- 
culated the effect of the dipole of Eq. (3)  on the electrical 
potential for either approach. The calculations were per- 
formed on a 386/33 with a 30387 coprocessor using 
PASCAL. 

Il l .  RESULTS 

The weighting function f ( x g )  is shown as a contour 
graph in Fig. 1. The current flows between the left-hand 
comers and the voltage drop is across the right-hand cor- 
ners. The function has a maximum in the center region, 
where the weight is over three times greater than it would 
be if all regions were equally weighted. There are two re- 
gions of the sample in which the function f (x,y) is nega- 
tive. We have confirmed this experimentally with a 0.001- 
in. thick square of brass shim stock, using solder to alter 
p(xg) .  The existence of regions of negative weighting 
means that the measured resistivity p, may lie outside the 
range of local values occumng in the sample. Further- 
more, gross inhomogeneities can cause unphysical results. 
In the same way that a student can get a final grade of 
100% for less than perfect work in a class in which some 
grades are negatively weighted, one can measure a zero 
resistance state in a normal conductor if negative weighting 
exists. This may explain several reports of zero resistance 
at high temperature made since 1987. 

A simple model confirms how negative weights can 
occur while measuring resistivity. Imagine four resistors 
forming the network in Fig. 2. We can use this to model 
the square van der Pauw sample with the voltage V mea- 
sured across Rb when a current (I) flows through the net- 
work. The measured four-point resistance of this network 
equals 
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The derivative of this quantity with respect to either R, or 
R,  is negative, so that increasing either one reduces R,. 
This corresponds to the negative-weight regions of Fig. 1. 

It is possible to eliminate the effects of negative weight- 
ing. Since the van der Pauw technique requires swapping 
one current lead with the voltage lead opposite to it and 
averaging the two resistances, we have averaged the results 
from Fig. 1 with the results obtained by rotating the plot 
by 90". This new f(x,y) function is plotted as a contour 
plot in Fig. 3. The area of the material that is most sensi- 
tive to inhomogeneities [f(x,y) > 31 has diminished from 
about 30% of the total area to about 4%. The area of the 
material where f ( x g )  < 0 has vanished. 

This process for calculating f(x,y) can be applied to 
four-point probe array measurements. Probe arrays are 
electrodes that are attached to a holder that keeps them a 

FIG. 3. The weighting function f (x ,y)  for an averaged van der Pauw 
measurement on a square sample. Contours are spaced 0.5 apart. 
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(a) 

FIG. 4. The weighting function f(x,y) for a single resistance measure- 
ment on (a)  a linear four-point probe array and (b) a square four-point 
probe array. 

known, fixed distance from each other, but which can be 
positioned anywhere on the surface of the sample to be 
measured. The most studied of these are the linear and 
square arrays. We calculated f ( x , y )  for both of these ge- 
ometries on an infinitely large sample by analyzing the 
effect of an electric dipole placed at the point of interest. 
The function f (x ,y )  is displayed in Fig. 4 for both geom- 
etries. In both cases, there are singularities at the current 
and voltage probes, and regions of negative weighting. The 
finite size of actual physical probes will eliminate the sin- 
gularities near the probes, but the measurement of resistiv- 
ity is still very sensitive to variations in these four regions. 

Making the second resistance measurement as pre- 
scribed by van der Pauw and averaging these two resis- 
tances will reduce the singularities for both geometries, as 
shown in Fig. 5, eliminating them for the square array. It 
will also reduce the negative weighting regions, eliminating 
them for the square array. Comparing these two figures, 
one sees that the square array measures the resistivity in a 

FIG. 5. The weighting function f ( x g )  for resistance measurements av- 
eraged over two configurations of current and voltage probes for (a)  a 
linear four-point probe array and (b) a square four-point probe array. 

more local region. However, one needs to average over two 
independent measurements to eliminate singularities and 
negative weighting. 

Van der Pauw observed that, for a given configuration 
of voltage and current leads on a sample of thickness t and 
resistivity p, for which the measured resistance was R,, 
that the quantity R,t/p is invariant under conformal 
 transformation^.^ Likewise the local quantity 

is invariant under mapping from one geometry to a con- 
formally equivalent one. Since the Montgomery method 
relies on conformal mapping to model an anistropic mate- 
rial as an isotropic one, our formalism can be readily 
adopted to calculating the weighting function for Mont- 
gomery measurements on anisotropic materials. 

We are presently studying the weighting function for 
various measurement geometries. This work, combined 
with our present knowledge of the relative sensitivity of 
different geometries to the effects of finite contact 
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