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Abstract. A dielectric liquid layer with an electric field created
inside it is proposed as a means for demonstrating the phenom-
enon of self-organization. The field is produced by the distrib-
uted charge transferred by a corona discharge from the tip to the
liquid surface. The theory of the phenomenon is presented. An
analogy with the Rayleigh—Taylor instability is drawn and a
comparison with the Benard instability is given. The practicality
of the method for both natural sciences and the humanities is
discussed.

1. Introduction

Studying self-organization phenomena in systems of various
natures is the subject of the branch of science called
synergetics. In physics, the notion of self-organization stands
for spontaneous formation of stable patterns in nonequili-
brium dissipative systems. The first theoretical studies of
synergetic phenomena were carried out nearly half a century
ago by I Prigogine and colleagues, and by H Haken directly
afterwards. It was found that self-organization takes place in
open nonlinear systems at a certain critical value of the
external matter or energy flux. The best known and
thoroughly studied example of self-organization is offered
by the Benard convective hexagonal cells that emerge on
heating a horizontal planar layer of fluid from below.
Physical phenomena of self-organization also include Fara-
day ripples, von Karman vortex streets, Taylor vortices, and
the generation of light in a laser.

Current programs in natural sciences always mention
the phenomena of instability and self-organization: they
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are studied in courses of physics [1], and yet they are
seldom presented as laboratory experiments. For example,
a demonstration of Benard hexagonal cells requires using
a setup, albeit simple in its idea, that is rather cumber-
some and inconvenient in operation, takes significant time,
and does not allow showing the transition from one
dissipative structure to another. Offering the possibility
of observing the Taylor vortices to the audience requires
constructing a special physical setup that is rather complex
mechanically [2].

In a lecture, it would be preferable to demonstrate the
instability and self-organization phenomena in open systems
that do not require special preparation, use ordinary equip-
ment, and occupy a time span of several minutes. This
criterion is fully satisfied by the instability of a horizontal
layer of viscid fluid on the lower end of a plate and the process
of cell pattern formation in a layer of dielectric fluid placed in
the field of corona discharge [3].

2. Self-organization
in the field of corona discharge

Figure 1 shows a photo of the proposed demonstration setup.
A needle, 2, is placed above a horizontal metal plate, /. The
plate and the needle are connected to a low-power high-
voltage source, 3. A webcam, 4, is focused on the plate; its
signal after being processed by a computer is sent to the
monitor, 5, and displayed on a large screen with the help of a
multimedia projector.

During the demonstration, a drop of transformer or
machine oil is dripped on the plate, the needle is adjusted to
above the drop center at a distance of several centimeters, and
then the voltage between the electrodes is gradually increased.
The drop in this case spreads over the plate surface, acquiring
the form of a planar layer bound by a cylindrical rim. The rim
height is such that the hydrostatic pressure on the fluid in the
rim equilibrates the electrostatic pressure in the central drop
part. It is known that the electrostatic pressure is caused not
so much by an electric wind as by the interaction between the
drop surface charged by a corona discharge and the under-
lying metal plate.
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Figure 1. Experimental setup to demonstrate self-organization in a corona
discharge field: / — metal plate, 2— needle, 3— high-voltage source, 4 —
webcam, 5— computer monitor.

At a certain voltage, the fluid surface abruptly loses its
stability, giving birth to perturbations well seen in reflected
light. A further increase in the voltage leads to the onset of an
ordered pattern composed of cells of a roughly regular shape.
For a given voltage, full equilibration of the ordered structure
takes a certain time. It is possible that full equilibration of the
cells does not happen for any voltage. A further increase in the
voltage results in the decrease in the cell size, with cells
continuously appearing and disappearing and displaying a
particular structure at any given time moment. If the
experiment is realized with a drop of transformer oil 2 mm
in thickness and a steel sewing needle with a tip having the
curvature radius 0.05 mm, placed 50 mm apart from the drop,
the oil surface loses stability at a voltage of approximately
6 kV, while for 20 kV a vigorous process of the appearance
and disappearance of small cells can be observed. Figure 2
presents a photo of a typical cell pattern in an oil drop spread
in the field of corona discharge.

The phenomenon is apparently explained by the fact
that in the corona discharge, ions of the corresponding sign
precipitate in the drop surface from the needle tip, creating
a charge with a certain density on the surface. Inside the
drop, a vertically directed electric field E is generated. This
field creates the electrostatic pressure p, = oeE2/2 in the
fluid, in addition to the hydrostatic and capillary pressure,
causing the instability of the oil surface and the generation
of regularly placed cells. Thus, in this experiment, the
development of instability leads to self-organization in a
fluid layer.

3. Instability of a fluid layer in an electric field

To determine the instability threshold of a gravity—capillary
wave in an electric field, we need to derive a dispersion
relation that connects the wave increment « with the wave
number k. There are different ways of deriving it [4]. In our
opinion, the method of deriving the dispersion relation for
gravity—capillary waves outlined in Ref. [5] is the simplest and
most obvious. We follow it.

Let a planar layer of a fluid with density p and thickness /
reside on a horizontal, infinitely stretching electrode. We
introduce a Cartesian coordinate system with the z axis
directed vertically down and the plane z = 0 coincident with
the equilibrium fluid surface (Fig. 3). We assume the electric

Figure 2. A drop of oil in the field of corona discharge.

field to be confined to the fluid, to be homogeneous, and to be
directed along the z axis; we let Ey denote its field strength.

The equilibrium pressure inside the fluid is the sum of the
surface pressure and the hydrostatic pressure,

Pr = Pa + pgz. (1)

If there is a small surface perturbation
z= 607 )C) = él (t) exXp (_lkx) ’ (2)

the motion of an ideal fluid can be considered to be potential
and described by the linearized Euler equation

ov
P =Vps 3)

where |p| < p; is the pressure perturbation inside the fluid.
Using the continuity equation divv =0, for the velocity
potential @ in the expression v = V@, we derive the Laplace
equation

AD=0. (4)

Expressing v in Eqn (3) in terms of @, we obtain

V(paa—dtj—i-p):O. (5)

The expression in parentheses can be a function of time,
which we set equal to zero [5, p. 36]:

00
p=+tp=0. (6)

For a small perturbation ¢, the pressure perturbation on the
surface is composed of hydrostatic and hydrodynamic
components, p = pgé + p,, and it therefore follows from

Figure 3. Concerning the theory of the liquid interface instability in an
electric field.
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Eqn (6) that

od
pg = —pg& — p(g) ) (7)

On the other hand, in the presence of an electric field,
the pressure in the vicinity of the surface takes the form [6,
p- 94]

peoE? e ge

_ Lo 2 _ 2
P=pat— ap+2(E“ E}). (8)

By virtue of the fluid incompressibility and the constancy of
the electric field, we can neglect the striction term [7, p. 140].
Using the known relation

J rotEdV = #) (nx E)dS,
v s

the derivation of which is given, for example, in Ref. [8,
p- 589], we have the boundary condition

(mnxE)_.=0 9)

z=¢
on the fluid surface. It implies the absence of tangential
components of the field, E; = 0; hence, Eqn (8) gives
&€
P=pi+ E}.
If a perturbation occurs on the fluid surface, the electric
field can be written as

E=E,—-Vp, Ap=0, (10)
where ¢ is the potential of the field perturbation. According
to the preceding formula, the electrostatic pressure on the
surface is expressed as
&pé 2
P=pit [(Eo — Vo)n|~,

where n is a unit vector normal to the surface. Hence, up to
small first-order terms, we obtain the perturbation of the
electrostatic pressure

0p
e = —eoeEy [ — | .

The pressure should be balanced on the surface: its
hydrodynamic constituent must be equilibrated by the
Laplace and electrostatic ones:

1 1
Dy pe+o<R1+R2>zg’

(11)

(12)
1y (L) - %
R] o R2 2= - ax2 ’
From Eqns (7), (11), and (12), we find
o0\ oo o%¢
o o(ar) (@) o 00

Solutions of Laplace equation (4) for @ and ¢ that are
periodic in x and satisfy the boundary conditions ¢(z)._, =0,

(0 /0z)._, = 0 at z = h have the form
@ = Cy(t) cosh [k(z — h)] exp (—ikx),
(14)
@ = Cy(1) sinh [k(z — h)] exp (—ikx).

To determine C,(t), we use boundary condition (9). Accord-
ing to Ref. [9, pp. 406, 407], the normal to the perturbed
surface can be written as

- +0j+k
n=—"—"—"""".

\1+E2

Inserting this expression into Eqn (9) and taking (10) into
account, we have

0 /
—(—“’) +ELE =0,

ax (15)

where the prime denotes the derivative with respect to x. As
follows from Eqns (2), (14), and (15),

€= Gan (kh) S

and hence the electrostatic potential perturbation is

_sinh [k(z — h)]

¢ = b (k) D¢

(16)

For the velocity potential, we have the kinematic
boundary condition

(09 IS
v, = <§>ZO = o1 . (17)
Using Eqn (17), we reduce Eqn (13) to the form
pgé+p aa—d; = sosEOZ coth (kh) k& — ak?¢. (18)

We differentiate Eqn (18) with respect to time and recall
Eqn (17) to obtain

o0 Pd 0D > oo
Pg 5+ P 5oy ok o — kegeE coth (kh) 5—=0. (19)

Setting C;(¢) = exp («?), we obtain from Eqns (14) and (19)
that

pgk sinh (kh) + pa® cosh (kh) + ok sinh (kh)
— k?egeEg coth (kh) = 0.
Hence follows the dispersion equation

pa® = [k*eeE; coth (kh) — pgk — ok?] tanh (kh). (20)

The instability occurs under the condition o? > 0; the
critical field is determined from the condition &> = 0 or

cocER = (p—kg n ok) tanh (kh) . 1)

In what follows, it is convenient to take the unit length as the
fluid capillary constant ¢ = y/o/pg. Equation (21) can then
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Figure 4. Dependence N2 (k) for different h: I —h=1,2—h=+/3,3—
h=2325.

be rewritten as

2
N2 = Goeky (l + k) tanh (kh) . (22)

pga k

The dependence N2 (k) for different / is given in Fig. 4. From
the plot, it is seen that from the standpoint of instability onset,
the most dangerous perturbations for 42 =1 are long-wave
ones, k = 0, whereas for 4 = 3.5, these are perturbations with
the wave number k;, =~ 1. It can be shown [4] that the local
minimum on the curve N2(k) disappears for &, = v/3a.

Hence, for i > h, (hisin units of @), we obtain ky,, ~ 1 and
N? =2tanh h. Because we already have tanh /s = 0.964 at
h =2, we can assume that N2 ~ 2 for 4 > h,. For thin fluid
layers, h < h,, we have the asymptotic behavior k,; — 0 and
N? = h. In dimensional form, it gives gy¢EZ, = pgh. In that
case, for the difference in potentials between the charged
surface of the oil layer (p = 0.88 x 10° kg m—3, ¢ = 2.3) and
the electrode carrying this layer, we obtain

U2, =P8 3~ 0.40n3. (23)
&pé

4. Experimental substantiation
of the theoretical model

Semiquantitative substantiation of the theory presented
above can be obtained in a model experiment using a
cylindrical container of small diameter with a metal bottom
and dielectric walls. Figure 5 presents a series of four photos
of the cell structure in the oil layer seen under a sequential
increase in the potential difference between the discharging
needle tip and the metallic container bottom. It is clearly seen
that the phenomenon has a wave origin. By the volume of oil
poured into the container, we can estimate the layer thickness
and then, for each thickness /, determine the critical voltage
Uom at which the surface loses its stability.

Figure 6 plots dependence (23), UZ, = 0.42h° (the
straight line) and the experimentally retrieved points in
logarithmic axes. We can see encouraging agreement
between the experiment and the theory.

5. Analogy with the Rayleigh—Taylor instability

Very roughly, the phenomenon described here can be
considered an electric analog of the Rayleigh-Taylor instabil-

Figure 5. Cell structure in the oil layer upon subsequent increase in the
potential difference between the needle in the corona discharge and the
metal container bottom for the potential difference of (a) 4.8 kV, (b) 7.7k V,
(¢)9.3kV,and (d) 11 kV.

U2, kV?
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O
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Figure 6. Dependence U2, = 0.42h3 (straight line) and the experimental
points in logarithmic axes.

ity. As is known, this type of instability unfolds if a lighter
fluid underlies a denser, but immiscible one. In that case, any
perturbation leads to oscillations of the flat interface between
these fluids. If the length A of a standing wave excited on this
interface exceeds a certain critical value A,, the system
becomes unstable, and the denser fluid at the top sinks into
the troughs of the wave.

In order to create conditions leading to the Rayleigh—
Taylor instability, it suffices to switch off the high voltage
source in the setup shown in Fig. 1 and turn over the plate
with the oil layer on it. In the absence of voltage, the electric
field Ey = 0, and from Eqn (20) we find

pa’ = —(pgk + ok?) tanh (kh) . (24)
For the plate with oil turned upside down, we can assume that
there is a dense fluid above the lighter one with a negligibly
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Figure 7. Formation of a gravity—capillary wave on the oil layer (Rayleigh—
Taylor instability).

small density. To take this into account, it suffices to reverse
the sign of g in Eqn (24).
In that case, all perturbations satisfying the condition

or /1>/1*:2n1/i,
124

exponentially grow as a consequence of the Rayleigh—Taylor
instability. The extremum analysis of (24) with the sign of g
changed in the limit k4 — oo indicates that the fastest growth
is observed for perturbations of the wavelength

k2 <P (25)
g

A=l =21 3—0.

rg 26)

Eventually, just these perturbations lead to the formation of
the periodic pattern shown in Fig. 7.

It is not difficult to demonstrate the Rayleigh-Taylor
instability in a simple experiment. One fills a shallow
container with a sufficiently viscous machine or transformer
oil, immerses the edge of a vertical metal plate approximately
5 mm in thickness into the oil, and then takes it out, keeping it
over the container. The oil flowing down over the plate forms
a layer on its lower edge, whose surface is unstable. As a
result, a gravity—capillary wave appears and grows on the
surface (see Fig. 7), its crests transforming into drops, which
then detach from the plate.

The length /.. of the evolving wave can be measured with
a ruler to confirm the validity of expression (26) directly
during a lecture.

Returning to the phenomenon of instability of the oil
surface in the field of corona discharge, we can draw attention
to the analogy between the electrostatic pressure on the oil
surface and the hydrostatic pressure of a denser fluid above it.
In both cases, the external pressure on the layer surface leads
to pattern formation in the layer, which presents an example

of self-organization. However, there is an energy flux from
outside in the first open system, but a flux of substance in the
second.

We note that gravity—capillary waves are studied in all
courses of theoretical physics [5], and even if the Rayleigh—
Taylor instability is not explicitly mentioned there, the
corresponding dispersion relation (24) is derived. Contem-
porary textbooks [10, 11] present the linear theory of
Rayleigh—Taylor instability at the interface of immiscible
fluids in sufficient detail.

6. Comparison with the Benard phenomenon

One of the tasks pursued in lecture demonstrations is to form
a sensible idea of the physical phenomenon being studied.
That is why there is a firm basis for setting up experiments
such that the same experimental setup enables visually
comparing two physical phenomena whose similarity is
revealed by theory.

A comparative demonstration of the instability of a fluid
layer in an electric field and under thermal forcing can be
readily accomplished if one does not strive to reproduce
strictly hexagonal Benard cells. For this, a duralumin
container with an internal diameter of 90 mm, wall height of
5 mm, and bottom thickness of 20 mm is placed on an electric
heater. The container is filled with transformer oil to form a
layer 2-4 mm thick. A discharge needle is placed over the
container and the process of cell pattern formation is
demonstrated (Fig. 8a,b). Attention is drawn to the confine-
ment of the structure defined by the characteristic geometry
of corona discharge.

After that, the heater is switched on, which provides
heating of the container bottom, and some powder of
aluminum filings is mixed into the oil. With the appearance
of convective Benard cells, the heater is turned off and the
phenomena taking place in the oil layer are demonstrated
(Fig. 8c). The layer thickness can easily be modified by

Figure 8. Cell patterns on the oil surface: (a,b) in the field of corona
discharge, (c) Benard convective cells, (d) the development of Benard cells
on adding a drop of cold oil.
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pumping the oil out with a syringe fitted with a silicone tube.
Amazingly beautiful dynamically evolving patterns are
observed if a drop of cold oil is added to the center of the
system of Benard cells (Fig. 8d).

7. Conclusions

The phenomenon of instability of a dielectric fluid layer in the
field of corona discharge is notable for the richness of its
physical content, the ease of making it available, and the
ability to essentially extend the scope of lecture demonstra-
tions of self-organization. The theory of this phenomenon is
tightly linked to traditional courses in general and theoretical
physics, and can be studied by solving a series of practical
exercises. A qualitative explanation of fluid self-organization
in an electric field can be taught as an analogy to the
Rayleigh—Taylor instability, which provides a possibility of
using the phenomenon in question in a broad spectrum of
disciplines, both natural sciences and the humanities.
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