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Irreversible Adiabatic
Compression of an Ideal

Gas

Carl E. Mungan, U.S. Naval Academy, Annapolis, MD

onsider the following problem.! A friction-

less, massive piston partitions an insulated

box vertically into two parts. The upper
compartment is evacuated, while the lower contains
an equilibrated ideal gas. A weight is suddenly placed
on the piston. How much is the gas compressed when
equilibrium is again restored, neglecting the heat ca-
pacity of the cylinder and piston?

Solution by Conservation of Energy

Referring to Fig. 1, suppose the piston has mass
Mpiscon and the added mass is 72ejgh,, for a total of
= Mpiston + Myeight- Choose the zero level of the gravi-
tational potential to lie at the final equilibrium height
of the piston, and let its initial position be at height 4
above this. The internal energy of an equilibrated
ideal gas is U= PVI(7y—1), where y = Cp/Cy, is the
ratio of the isobaric and isochoric heat capacities. La-
bel the initial equilibrium state by subscript “i” and
the final equilibrium state by “” to obtain

LV PeVe
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But the force balance on the piston (of cross-section-
al area A) in its final position implies mg = P¢A, and
the net displacement of the piston is # = (V; — Vp)/A.

Substitute these two relations into the second term
in Eq. (1) to obtain?
_1 P
= ’)/_+ l. (2)
Yy v

Note that the pressure ratio can be expressed in
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Fig. 1. An ideal gas in the lower portion of an insulated
box (as indicated by the cotton wool), with the top por-
tion evacuated. Initially the gas pressure balances the
weight of the piston. A mass is then suddenly placed on
the piston. Eventually a new equilibrium state is
attained, in which the final pressure again balances the
total weight.

terms of the masses as P2/ Pp = (1 + myeigh/ mpiston)'l.
Consequently, the right-hand side of Eq. (2) correct-
ly reduces to unity when 72,¢ign, = 0. In the oppo-
site limit, note that the fractional compression (V; —
Ve)!'V; of the gas becomes 1/7y when an infinite
weight (and hence final pressure) is applied. In par-
ticular the maximum compression is 60% for a
monatomic ideal gas, as graphed in blue in Fig. 2.
An ideal gas cannot be compressed to zero equilibri-
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um volume no matter how heavy of a boulder is sud-
denly placed (or dropped) onto the piston!

An interesting variant on this problem is described
in Ref. 3. A stone whose weight is equal to that of the
piston is dropped from some height 4 above the pis-
ton. What is that height if the equilibrated volume of
the gas is the same before and after the stone’s fall, V; =
Vi = AL, where L is the distance from the bottom of
the cylinder to the piston? Since the pressure of the
gas has doubled from P; = mg/A to Pg= 2mgl/A, the an-
sweris b= L/(y—1) from Eq. (1). When dropped
from this height, the initial (gravitational potential)
energy of the rock exactly suffices to double the ab-
solute temperature of the gas.

Comparison with a Reversible
Compression

Suppose that instead of suddenly placing the
weight on the piston, it is lowered on infinitesimally
slowly (using a crane say). A quasistatic adiabatic
compression? of an ideal gas obeys the law PV? = con-
stant. Thus, V;/V; = (P/Pp"Y, which is plotted in red
in Fig. 2. In contrast to the irreversible compression
(blue curve), the final volume now tends to zero as the
final pressure (due to the added weight) becomes infi-
nite. However, the irreversible and reversible curves
overlap for small fractional changes in volume AV/ V.
This explains why Riichhardt’s method of measuring
v, in which a marble oscillates in the tightly fitting
neck of a gas-filled jar, can be analyzed using this re-
versible law even though the compressions and expan-
sions of the gas are actually irreversible.?

The contrast between the irreversible and reversible
compressions can be made even more apparent by fol-
lowing up the reversible compression with a second
reversible process that drives the system to the final
state of the irreversible compression. As one sees from
Fig. 2, this second process must be isobaric because
the total weight establishing the final pressure P has
already been added. This is a specific example of an
equivalent reversible path® connecting the initial and
final equilibrium states of the actual irreversible
process, such as can be used to calculate the change in
volume, entropy, or any other state function of
interest.

The mathematical details are worked out in the

Appendix. Although this method of solution requires
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Fig. 2. The blue curve is a graph of V; from Eq. (2) for P;
varying from P; = mpstong/A to 20P; in a sudden com-
pression of a monatomic ideal gas; the dashed black line
represents the value that V¢ asymptotically approaches
in the limit as Pz = (mpjston + Mweight)9/A > . The red
curve plots the compression that results if the extra
weight my,ejght is instead added slowly. The green line
connects the final states of a reversible and irreversible
compression for the same (arbitrary) weights, as dis-
cussed in the Appendix. (Note that the irreversible curve
is the locus of final equilibrium volumes for different
applied weights and so the blue arrow should not be
interpreted as an actual trajectory in configuration
space, unlike the portions of the reversible curves
labeled with the red and green arrows.)

more computation, it shows that even though the gas
volume after a quasistatic adiabatic compression can
be made as small as one likes by choosing 72,igh large
enough, the equilibrium volume after a sudden adia-
batic compression using the same weight is no smaller
than the original volume multiplied by (y—1)/7. In
the irreversible case, all of the potential energy of the
weight went into doing work? on the gas; but in the
reversible case, some of this potential energy went into
doing work on the outside world (viz. the crane).
Since less work is done on the gas in the reversible
case, the final internal energy (and hence volume) of
the gas is smaller for the same final pressure. In ther-
modynamic terms, only configuration work is done in
the reversible case, while both configuration and dissi-
pative work are done on the gas in the irreversible
case.” This reveals a shortcoming in the problem
statement: Some dissipative mechanism must be pro-
vided to damp out the oscillations of the piston and
enable the gas to attain a final state of equilibrium.
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One might suppose that introducing friction between
the piston and the cylinder walls would do the trick.
However, this would heat up the cylinder, allowing
energy to leak out of the gas. A better option is to en-
able dissipative work to be done by the relaxation of
turbulent pressure gradients in the gas,® although this
goes beyond the ideal gas model.

As an alternative to the crane, one can avoid doing
work on the outside world in the reversible case if,
rather than gently lowering one large weight onto the
piston, infinitesimal weights are instead dribbled onto
the piston bit by bit.” One imagines sliding tiny
weights onto the piston from a multitude of shelves of
gradually decreasing height as the gas compresses.
Hence, the center of mass of the whole set of weights
is lower than the initial height of the piston,'? and it is
once again clear that less energy is added to the gas in
the reversible case than in the irreversible case, so that
a larger compression is attained for a given weight.
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Appendix: Connecting the Final
States of the Reversible and
Irreversible Compressions

Consider a reversible path from the initial to the fi-
nal states of the system, consisting of an adiabatic
compression followed by an isobaric expansion (cf.
Fig. 2). First, adiabatically lower the weight onto the
piston infinitesimally slowly using a crane. During
this process, work W, .. is done on the crane. Use
this work to, say, charge up a capacitor by turning the
axle of a generator with the crane’s cable. Disconnect
the crane when the gas pressure reaches the final equi-
librium value Py = mglA.

The tension 7 exerted on the weight by the crane
must always balance the net downward force mg— PA
during the lowering, where P is the (varying) gas pres-
sure. Unlike in the irreversible case, the gas pressure is
always well defined during this quasistatic process.
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Writing PV = k, where £ is a constant, implies

%
1 r
‘Wcrane=_de)/=Z_‘£ (PA—mg)dV
Vi i
' PV, PV
k[ VYAV =PV~ V) = Py — L T
Vi y-1 vy-1
3)

where V is the gas volume at the end of the re-
versible adiabatic leg of the two-step process. Next,
during the isobaric step, the gas remains at pressure
Prwhile the energy stored in the capacitor is used to
slowly add heat Q = W,
cal heater. Consequently, the gas will expand to its
final volume V;and negative work W= —P¢(Vy— V)
will be done on it by the weight. The internal ener-

to the gas via an electri-

gy of the gas correspondingly changes from U, =
PV/(y—1) to U= PVi/(y—1). Applying the first
law of thermodynamics, Ur— U, = W+ Q, and sub-
stituting the above expressions finally reproduces Eq.
(2). But note in the limit as Pr = o that V, = 0,
whereas V= (y— 1) Vi/y.
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