Purdue University

Purdue e-Pubs

College of Technology Directed Projects College of Technology Theses and Projects

Analysis of the Ping-Pong Ball Gun-Theoretical &
Computational Approac

JUN HAN BAE
bae21@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/techdirproj

BAE, JUN HAN, "Analysis of the Ping-Pong Ball Gun-Theoretical & Computational Approach" (2014). College of Technology Directed
Projects. Paper 49.
http://docs.lib.purdue.edu/techdirproj/49

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.


http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechdirproj%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techdirproj?utm_source=docs.lib.purdue.edu%2Ftechdirproj%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechdirproj%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techdirproj?utm_source=docs.lib.purdue.edu%2Ftechdirproj%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages

PURDUE

UNIVERSITY

INIVGURBINTNIAY  West Lafayette, Indiana

College of Technology

ANALYSIS OF THE PING-PONG BALL GUN
~THEORETICAL & COMPUTATIONAL APPROACH

In partial fulfillment of the requirements for the
Degree of Master of Science in Technology
A Directed Project Report

By

Jun Han Bae

=]
i
=
I

Committee Member ‘ ~ Approval Signature

Richard M. French, Chair W/a//ﬁ% / A /14
S—— WM%@W 302014
Eric T. Matson / LA J W ,7, /@// 2o1Yy




TABLE OF CONTENTS
Page
LIST OF TABLES .....coo oottt iv
LIST OF FIGURES ...ttt ettt e e e e na e e anee e vi
ABSTRACT ..ottt ettt sttt e st e st et e e st et e st e e re et et e e b e te e e ne et iX
CHAPTER 1. INTRODUCTION. ..ottt 1
1.1 Ping-Pong Ball GUN.......ccooiiiiii e 1
1.2 Types of the Ping-Pong Ball GUN...........ccoviiiiii e 2
1.3 RESEAICH SCOPE....ciuiiiiiiiiteeeie ettt ettt e et e e sae e s re e beeeesneenres 3
CHAPTER 2. PREVIOUS WORK .....coiiiitiitiieiee ettt 7
CHAPTER 3. METHODOLOGY ...ooii ettt 9
3.1 Development of Analytical MOdEelS............ccooceiiiiiiiiicc e 9
3. L1 ANAlYSIS CONUITIONS.....cuiiiiiiiiieiieieee e 9
3.1.2  Analysis CharaCteriStiCS .........ccueviivieiieiieiieseese et 10
3.2 Theoretical APProXiMatiON.........cccccvviiieiiieiiiiese e 12
3.2.1 The Ball Velocity Function of the Basic Model...............ccccocniniiinnnnen, 12
3.2.2  Theoretical Approximation for the Modified Model...........c.ccoovriernennnn. 14
CHAPTER 4. ANALSIS RESULTS ... .ot 15
4.1  Analytical Model Results — Basic Model ..o 15
4.1.1  Airflow Distribution of the Basic Model...........c.ccccoovivieiiiiiiiieinee e 16
4.1.2  Velocity Profile of the Basic Model.............cccoooveviiiiieiecccccce e 17
4.2 Analytical Model Results — Basic_2 Model...........c.ccoevveiiiiiiiciecc e 18
4.2.1  Airflow Distribution of the Basic_2 Model..............cccoovevviiiiiiiriieieee 19
4.2.2  Velocity Profile of the Basic_2 Model .............cooviiiiinenieee 20
4.3 Analytical Model Results — Modified Model............cccooeeiiiiiiiiiiiiee e, 21
4.3.1  Airflow Distribution of the Modified Model............cccccooiniiiiniininiee 21
4.3.2  Velocity Profile of the Modified Model...............ccooviiiiniiiiicce, 23
4.4 Verification on the Velocity Profile of the Basic Model.............ccocooviiiiinnnn 25
441 BaSIC MOUEL......c.oiiiiiiiie e e 25
4.4.2  BaSiC_2 MOEL.......coooiiiee e 27
CHAPTER 5. CONCLUSIONS AND FUTURE WORKS. .......ccccooviiiiireiee e 63

D1 CONCIUSIONS ettt e e e et et e e e e e e e ee e e e e e ee e e e e e e eeeeeeeeneeeeeeenennns 63



B2 FULUIE WWOTK oottt e e e e e e e et e e e e e e e e e,

LIST OF REFERENCES ...t
APPENDIX A L



LIST OF TABLES

Table Page
Table 4.1 Predicted ball velocity at x = 0.025m, 0.05m for different mesh sizes............. 30

Table 4.2 Predicted ball velocity at time t=0.001sec., t=0.002sec for different mesh sizes
(BaSIC MOEI) ....veeeeceeeeee e 30
Table 4.3 Predicted ball location at time t=0.001sec., t=0.002sec for different mesh sizes
(BaSIC MOEI) ....vveeeieeee e 31
Table 4.4 Predicted ball velocity at x = 0.025m, 0.05m for different mesh sizes............. 31
Table 4.5 Predicted ball velocity at time t=0.001sec., t=0.002sec for different mesh sizes
(BaSIC_2 MOAEI) ..o s 32
Table 4.6 Predicted ball location at time t=0.001sec., t=0.002sec for different mesh sizes
(BaSIC_2 MOAEI) ..o s 32
Table 4.7 Predicted ball velocity at x = 0.025m, 0.05m for different mesh sizes............. 33
Table 4.8 Predicted ball velocity at time t=0.0015sec., t=0.0025sec for different mesh
sizes (Modified MOTEI).........oooiiiie e 33
Table 4.9 Predicted ball location at time t = 0.0015sec., t = 0.0025sec for different mesh
sizes (Modified MOdEI).......c.oooiiiiiic e 34
Table 5.1 Ball velocity of three different analytical models when the ball located at

0.025M AN 0050 1.ttt e nnnnnenens 65



Table 5.2 Increase of the ball velocity from basic model to basic_2 model and basic_2

model to Modified MOl .........oovvee



Vi

LIST OF FIGURES

Figure Page
Figure 1.1 The Ping-Pong ball gUN ..o 4
Figure 1.2 The basic model of the Ping-Pong ball gun............cccccoiieiiiiiiiecece e, 5
Figure 1.3 The modified model of the Ping-Pong ball gun ............ccccov e, 5
Figure 1.4 Three different types of the analysis model ...........ccccccooveviiiiicii i, 6
Figure 4.1 Five different mesh sizes (Basic MOdel) ........ccceovveveeieiic i 35
Figure 4.2 Airflow distribution of mesh size 1 (Basic model) ........c.ccccooveveiveiiiininenn. 36
Figure 4.3 Airflow distribution of mesh size 0.8 (Basic model) ...........ccccoevveiviieieennn. 36
Figure 4.4 Airflow distribution of mesh size 0.6 (Basic model) .........c.ccceeevveeiiiieinennn. 37
Figure 4.5 Airflow distribution of mesh size 0.4 (Basic model) .........cccccoevevveiviieieennn. 37
Figure 4.6 Airflow distribution of mesh size 0.2 (Basic model) .........c.cccevevieviiieieennn. 38

Figure 4.7 The ball velocity - displacement plot of different mesh sizes (Basic model) . 39
Figure 4.8 The ball velocity - time plot of different mesh sizes (Basic model) ............... 40

Figure 4.9 The ball displacement - time plot of different mesh sizes (Basic model) ....... 41

Figure 4.10 Airflow distribution of mesh size 1 (Basic_2 model) ...........cccceevvevveinnennnn. 42
Figure 4.11 Airflow distribution of mesh size 0.8 (Basic_2 model) ..........cccccovevvvinnennn. 42
Figure 4.12 Airflow distribution of mesh size 0.6 (Basic_2 model) ..........cccccovevvrinnennn. 43
Figure 4.13 Airflow distribution of mesh size 0.4 (Basic_2 model) ..........cccoeovevvvinnennn. 43

Figure 4.14 Airflow distribution of mesh size 0.2 (Basic_2 model) ..........cccooevvrnrnnnnn. 44



vii

Figure 4.15 The ball velocity - displacement plot of different mesh sizes (Basic_2 model)

Figure 4.16 The ball velocity - time plot of different mesh sizes (Basic_2 model) ........ 46

Figure 4.17 The ball displacement - time plot of different mesh sizes (Basic_2 model) 47

Figure 4.18 Five different mesh sizes (Modified model) .........ccoccvvviiieniiiinnnicecee, 48
Figure 4.19 Airflow distribution of mesh size 1 (Modified model) ...........ccoovevviininnne. 49
Figure 4.20 Airflow distribution of mesh size 0.8 (Modified model) ..o 50
Figure 4.21 Airflow distribution of mesh size 0.6 (Modified model) ... 51
Figure 4.22 Airflow distribution of mesh size 0.4 (Modified model) ............ccoceovrinne. 52
Figure 4.23 Airflow distribution of mesh size 0.2 (Modified model) ... 53

Figure 4.24 The ball velocity - displacement plot of different mesh sizes (Modified model)

Figure 4.25 The ball velocity - time plot of different mesh sizes (Modified model) ....... 55
Figure 4.26 The ball displacement - time plot of different mesh sizes (Modified model) 56
Figure 4.27 The ball velocity - displacement plot of the analytical model and the

theoretical approximation (Basic Model) .........cccccoviiiiiiiiiiiiieieee 57
Figure 4.28 The ball velocity - time plot of the analytical model and the theoretical

approximation (Basic MOdEl) .........cccveieiieiiiiesiece e 58
Figure 4.29 The ball displacement - time plot of the analytical model and the theoretical

approximation (Basic MOGEl) ........cccoviiiiiiiie e 59
Figure 4.30 The ball velocity - displacement plot of the analytical model and the

theoretical approximation (Basic_2 model) ........ccovevviieniiie e 60



viii
Figure 4.31 The ball velocity - time plot of the analytical model and the theoretical
approximation (Basic_2 MOdEl) .......ccccuviieriiiiiieese e 61
Figure 4.32 The ball displacement - time plot of the analytical model and the theoretical
approximation (BasiC_2 MOdel) .......cccueiieriiiiiieieie e 62

Figure 5.1 Analytical model results of the ball velocity for three different models.......... 66

Appendix Figure

Figure A 1 Schematic drawing of ShOCK tUDE...........cccoveiiiiiiic e, 64
Figure A 2 Schematic drawing of the wave pattern in shock tube ..., 64
Figure A 3 Diagram of De Laval NOZzIe............ccooiiiiiiiiieeee s 65
Figure A 4 Scheme of converging-diverging N0Zzle ............ccccovevviieiieve e 65
Figure A 5 Characteristics of converging-diverging nozzle(subsonic inlet) .................... 66
Figure A 6 SUDSONIC FIOW ......c.oiiiiiiiiiie s 67
Figure A 7 ChOKEd FlOW .......oouiiiiiiiee s 67
Figure A 8 SNOCK IN NOZZIE.........ccueiiiciee e 68
FIgUrE A 9 SNOCK At BXIT ....viiuiiiiieiecie et sae e 68
Figure A 10 OVEr-exXpanded.........ccooeiiiiriiiniieieieiee sttt 69
Figure A 11 DeSign CONGITION.......cooiuiiiiiiiiiieriieieeie et 69
Figure A 12 Under-eXpanded.............covveireieiicie e 69
Figure A 13 ShOCK @t ENTIANCE........c.ueiiiiiicic e 70
Figure A 14 ShOCK IN NOZZIB........ooiiiiiie s 70
Figure A 15 Shock at N0Zzle throat............cooeiiiiiiiiiee s 70
FIQUIE A 16 NO SNOCK ......ccviiiiicic e 70
Figure A 17 (a) Before and right after shock generated (b) After shock reflected at

the neck of the ShOCK tUDE .........c.ooiiiii s 71
Figure A 18 Initial condition of shock tube with converging-diverging nozzle............... 72

Figure A 19 After Shock wave generated ...........ccccveivieiieiie i 72



ABSTRACT

Bae, Jun Han. M.S., Purdue University, August 2014. Analysis of the Ping-Pong Ball
Gun — Theoretical & Computational Approach. Major Professor: Richard M. French.

A Ping-Pong ball gun test is simulated using computational fluid dynamics
software, ‘Autodesk Simulation CFD 2014°. The ball velocity profile and airflow
distribution are analytically predicted. The predicted responses are verified using the
concepts of fluid mechanics and gas dynamics. In this paper, the development of the
analytical model, analysis results, and theoretical approximation are presented. The
analysis results and theoretical approximation demonstrate that the ball velocity profile of
a basic Ping-Pong ball gun test can be theoretically approximated. In addition, no clear

influence of the mesh size on the fundamental behavior of the gun can be observed.



CHAPTER 1. INTRODUCTION

1.1 Ping-Pong Ball Gun

A Ping-Ping ball gun is a vacuum - powered apparatus. It is often used in
experiments in physics and mechanical engineering classes. (Cockman, 2003; French,
Gorrepati, Alcorta, & Jackson, 2008; Peterson, Pulford, & Stein, 2005). Figure 1.1 shows
an image of the gun. This device shoots a Ping-Pong ball with an exit velocity close to
the speed of sound due to atmospheric pressure (French, Gorrepati, Alcorta, & Jackson,
2008). A simple modification is often required to the apparatus to achieve the exit
velocity greater than the speed of sound. (French, Zehrung, & Stratton, 2013).

The Ping-Pong ball gun experiments have been performed in many physics and
engineering classes in the past (Cockman, 2003; Pulford & Stein, 2004; Taylor, 2006;
Olson, et al., 2006; Mungan, 2009). Analytical analyses have been also conducted to
verify the experimental results. The verification analyses were performed based on
related theories in physics and fluid mechanics.

It often requires computational fluid dynamics to describe the mechanism of the
Ping-Pong ball gun precisely. Autodesk Simulation CFD 2014, a commercially available
finite element analysis solver, is used to estimate the airflow and predict the velocity

profile of the Ping-Pong ball.



1.2 Types of the Ping-Pong Ball Gun

There are two types of the Ping-Pong ball guns. They are basic Ping-Pong ball
gun and modified Ping-Pong gun. The basic Ping-Pong gun is a single pipe with the
diaphragm each end of the pipe. The pipe length is approximately 2.5m and the diameter
of the pipe is 0.044m (44mm). The diameter of the Ping-Pong ball is 0.04m (40mm).
Figure 1.2 shows the schematic drawing of the basic model. The modified Ping-Pong gun
is a single pipe (same as the basic model) with a pressure plenum and a converging-
diverging nozzle attached to the pipe. Figure 1.3 shows the schematic drawing of the
modified model. The main difference between these two types is that the ball velocity at
the end of the pipe. The ball velocity less than the speed of sound (subsonic) is achieved
using the basic Ping-Pong gun while the ball velocity greater than the speed of sound
(supersonic) is achieved using the modified Ping-Pong gun.

[>T g e RN | PN TN T AT
CiEmbENEnEonEinoEtiveDinemeEe The two ends of the pipe are sealed. The air
inside of the pipe is ideally vacuum condition and the chamber is compressed to a certain
level. This eventually differentiates the air pressure between the chamber and the pipe.
When the diaphragm is punctured airflow goes through the converging — diverging
nozzle and finally the ball is accelerated to supersonic speeds. More details will be
presented in Chapter 3. Both experimental and analytical studies have been conducted for
the basic Ping-Pong ball gun (details in Chapter 2). However, the experimental data for
the modified Ping-Pong ball gun is somewhat limited. Only the exit velocity of the ball

has been measured using the modified Ping-Pong gun so far. Therefore, an additional
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study is required to investigate the fundamental behavior and response of the modified
Ping-Pong ball.

The objectives of this research are (1) development of the analytical models to
predict the ball velocity profile and the airflow inside of the pipe (2) verify the analytical

model predictions with theoretical approximations.

1.3 Research Scope

Two modifications were done from the basic model to the modified model. It was
the pressure difference divided by the diaphragm and addition of the converging-
diverging nozzle. To make one modification at a time, the basic_2 model was introduced.
The difference between the basic model and the basic_2 model is the pressure difference
at the inlet of the pipe. Figure 1.4 shows three different type of the analysis model.

Analysis on the three different analytical models was conducted to estimate the
ball velocity profile and the distribution of the airflow inside the pipe. The analysis was
conducted using commercially available computational fluid dynamics simulation tool,
Autodesk Simulation CFD 2014. The analytically predicted results were compared with
the theoretical approximations to verify the results. However, the ball velocity profile for
the modified Ping-Pong ball gun could not be theoretically approximated since the ball
speed exceeds the speed of sound in the pipe. That is, the theory applied for the basic
Ping-Pong ball gun is not applicable to the modified Ping-Pong ball gun anymore. As a
result, the analytically predicted ball velocity profile of only the basic Ping-Pong ball gun

was verified with the theoretical approximation.



Figure 1.1 The Ping-Pong ball gun
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CHAPTER 2. PREVIOUS WORK

Both analytical and experimental studies on a basic Ping-Pong ball gun were
conducted by French, et al., 2008. The study mainly focused on the velocity profile of the
ball. First, the ball velocity profile was theoretically approximated. The approximation
was performed based on Newton’s second law of motion. The authors assumed the
pressure acting behind the ball is not constant. The authors reported the predicted ball
velocity profile along the pipe (French, Gorrepati, Alcorta, & Jackson, 2008). More
details about the theory are discussed in Chapter 3.

The analytical model simulation and the experiment were done from the previous
work to increase the accuracy of the analysis and verify the results (French, Gorrepati,
Alcorta, & Jackson, 2008). ANSYS FLUENT was used to obtain a precise airflow
analysis. ANSYS FLUENT is the most common use simulation solver for computational
fluid dynamic analysis. Dynamic mesh option was applied to calculate the ball motion
(French, Gorrepati, Alcorta, & Jackson, 2008). The geometry of the Ping-Pong ball gun
assumed that the ball diameter of 40mm and the pipe inner diameter of 44mm. The
contour plot of the velocity and the pressure distribution inside of the pipe was shown.
From the figure of the simulation results, the normal shock was observed at the gap
between the ball and the pipe (French, Gorrepati, Alcorta, & Jackson, 2008). The velocity

profile result of the ball was verified by the predicted velocity as a function of



displacement from theoretical approximation. However, comparing results from the two
different approaches were limited to the short length (from Om to 0.035m). Experimental
verification was done to compare with the theoretical approximation. The schedule 40
PVC pipe was used for the barrel. A Piezotronics PCB pressure sensor, laser diodes and
high-speed photo detectors on the three arbitrary locations were installed to collect data.
It showed the prediction for the velocity as a function of the displacement with
experiment data.

An experiment of the modified model was conducted by French, et al., 2013. The
exit velocity of the ball was measured and its velocity was over Mach 1. The detail of the
experiment setting was introduced. However, collecting only an exit velocity of the ball

was the limitation of this experiment.



CHAPTER 3. METHODOLOGY

3.1 Development of Analytical Models

Analytical models were developed to simulate the airflow distribution and the ball
velocity profile of a Ping-Pong ball gun in two dimensions. The models were developed
using commercially available computational fluid dynamics software, Autodesk
Simulation CFD 2014. They were developed for both basic and modified Ping-Pong ball
guns.

3.1.1 Analysis Conditions

All parts of the analytical models were developed using Solidworks and they were
exported to Autodesk Simulation CFD 2014. The material properties and boundary
conditions reported by French, et al., 2008 were applied to the models. More details of

the models are presented in the following sub-sections.

Material Properties

The material type and the volume inside the pipe was ‘air with a pressure of 0.3 psi’
(0.3psi is medium vacuum condition). It was the same pressure condition given in the test
conducted by French, et al., 2008. The Ping-Pong ball was made of polyvinyl chloride

(PVC). The common density value of PVC was used and it is 80.572 kg/m®.
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Boundary Conditions

The geometry of the Ping-Pong guns was symmetric along the length of the pipe.
For this reason, symmetric boundary conditions were applied to the analytical models. A
‘slip/symmetry’ option was applied on bottom edges of the models. For the inlet
condition, the pressure with latm was applied. The air pressure of 0.3 psi was applied on
the exterior surface of the pipe and the outlet. For analytical models for the modified
Ping-Pong ball gun, the same boundary conditions were applied. However, the air

pressure of 4 atm was applied to the inlet.

Mesh

The computational fluid dynamics calculation is influenced by the mesh size in
general. In this simulation, the mesh size varied from 1 to 0.2, to identify the influence of
the mesh size on the analysis results. All elements were triangles since the models were
analyzed in two dimensions. The corners and edges of the models were refined using the

‘enhancement’ function of the software.

Motion
The ball started move by airflow generated by the pressure different. The ball motion is

modeled using the ‘flow-driven’ option.

3.1.2 Analysis Characteristics

Compressible Flow



Yang
高亮


11

Compressible flow analysis is for the Mach number of the airflow is greater than
Mach 0.3 (velocity of air over 100m/s). Since the normal shock generated and airflow
inside of the pipe is supersonic flow, ‘compressible flow’ option was used in the

analytical model analysis.

Turbulent Model

Since airflow inside of the pipe were compressible and high Reynolds number flow,
turbulent model analysis was applied to the analytical model analysis. The governing
equation of the turbulent model which used for the calculation shows as Equation 3.1 and

3.2.

pk) | d(pku) _ 0 He) 3k o
at + 6xl- - ax] I:(# + O'k) Bxi] + Pk + Pb pE YM + Sk (31)

d(pe) |, d(peuy) _ 0 Ut 9k € _ e
o+ 2 = | (u+ 2) o] Ceg (Pt CacPy) = Caep T+ Se - (32)

Equation 3.1 and 3.2 is the governing equations of the k-epsilon turbulent model. It is

default turbulent model for the computational fluid dynamics calculation.

Transient Analysis

‘Transient analysis’ was selected as a solution mode since this simulation involves
unsteady flow. That is, a very small time-step size was needed. Time-step size of

0.00001s was selected and adequate time steps were decided as a number of iteration.
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3.2 Theoretical Approximation

After the diaphragm is punctured, air at atmospheric pressure rush into the pipe
and drives the Ping-Pong ball to the end of the pipe. Ideally, there should be no air in
front of the Ping-Pong ball and no resistance caused by air drag. The ball, therefore,
accelerates quickly down to the pipe. However, in the actual Ping-Pong ball gun, the in-
diameter of the pipe is slightly larger than the ball diameter. A small amount of air passed
through a very thin gap between the ball and the inner wall of the pipe. It propagates to
the end of the pipe and gets compressed. As a result, the pressure between the ball and
the diaphragm increases and the diaphragm ruptures (French, Gorrepati, Alcorta, &

Jackson, 2008).

3.2.1 The Ball Velocity Function of the Basic Model
Newton’s second law of motion is given in Equation 3.3. In the equation, P, is the
air pressure at the inlet (x = 0), p is air density, A is the cross-sectional area of the ball,
and v is the ball velocity. When Equation 3.3 is integrated, Equation 3.4 is produced. In

m

Equation 3.4, m is the mass of the ball. For the simplification, A is defined as a

characteristic length, A. Equation 3.4, then, is simplified as Equation 3.5.

PyA = % [(m + pxA)v] (3.3)
PyAt =m (1 + %) v (3.4)
PyAt =m (1 + ;) v (3.5

If Equation 3.5 is integrated, the equation is rearranged as Equation 3.6. The

solution of the equation is easily found as Equation 3.7. Equation 3.7 is the displacement
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of the ball as a function of time, t. By differentiating equation 3.8, the ball velocity is

calculated as given in Equation 3.8.

%PoAt2 =m (x + g) (3.6)
x(t) = A[/1+“°—;2—1l 3.7)
v(t) =5 = 2o (3.8)

apt?
1+—}\

In Equation 3.8, when t approaches infinity, the maximum velocity (Vmax ) is
calculated as Equation 3.9. When the equation is rearranged in the asymptotic form,
Equation 3.10 is produced. The theoretically approximated maximum velocity of the ball
calculated using Equation 3.10 for the basic model is 287.61 m/s. If Equation 3.6 is
substituted into Equation 3.10, the ball velocity as a function of displacement can be
calculated as Equation 3.11.

Py

Umax = QoA = r3 (3.9

v(t) = —2mex_ (3.10)

x
=

V(X)) = Vo lx% 11+ 2%] (3.11)

Equation 3.11 is the general form of the ball velocity function of displacement for the

basic model.
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3.2.2 Theoretical Approximation for the Modified Model
As mentioned in Chapter 1, the theoretical approximation of the ball velocity for
the modified model wasn’t analyzed. For the modified model, it was not possible to apply
the first-order approximation that used for the basic model. The ball velocity exceeded
the theoretical maximum velocity and the converging-diverging nozzle was attached. It is
very complicate to predict the airflow inside of the converging-diverging nozzle. A new

theoretical approximation will be required and leave this problem as a future work.
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CHAPTER 4. ANALSIS RESULTS

A Ping-Pong ball gun test was simulated using Autodesk Simulation CFD 2014.
Since it involves high-Reynolds number, compressible flow, and turbulent airflow,
simulating the test was quite challenging. The analytical models described in the previous
sections were used to predict the airflow distribution through the pipe and velocity profile
of the ball.

The airflow distribution and the ball velocity profile were analytically predicted
for the full length (approximately 2.5 m) of the Ping-Pong ball pipe. The predicted ball
velocity profile was reasonable and close to the theoretical approximation. However, the
predicted airflow distribution through the pipe was not realistic. The values of the air
velocity and pressure were too large at some locations. The cause of this unrealistic and
this strange phenomenon was not clear. For this reason, the simulation focused on a
limited length (up to 0.05 m from the inlet). The analysis results are presented in the

following sub-sections.

4.1 Analytical Model Results — Basic Model

As stated in Chapter 3, five different mesh sizes were considered in this study.
Figure 4.1 shows analytical models with five different mesh sizes. As shown in the figure,

the mesh size 1 was the coarsest mesh size and the mesh size 0.2 was the finest mesh size.
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4.1.1 Airflow Distribution of the Basic Model

Mesh size 1

Figure 4.2 shows the airflow velocity and pressure distributions of the model with
the mesh size 1. The figure shows the distributions when the ball was located at x = Om, x
=0.025m, and x = 0.05m. The ball moved 0.025m within 0.00177s and moved 0.05m
within 0.00212s. As shown in the figure, as the air is released, it propagates through the
pipe and the airflow velocity increases. In addition, some sharp-edges are identified in the
velocity profile. The air pressure should show the similar distribution to the airflow
velocity distribution. However, the air pressure appears to show no relevance to the

velocity distribution.

Mesh size 0.8

Figure 4.3 shows the airflow velocity and pressure distributions of the model with
the mesh size 0.8. The figure shows the distributions when the ball was located at x = Om,
X =0.025m, and x = 0.05m. The ball moved 0.025m within 0.00180s and moved 0.05m
within 0.00229s.The analytically predicted distributions are very similar to what is shown
in Figure 4.2. However, the velocity contour plot shows less sharp edges compared to the

mesh size 1.

Mesh size 0.6 & 0.4

Figure 4.4 shows the airflow velocity and pressure distributions of the model with

the mesh size 0.6. The ball moved 0.025m within 0.00284s and moved 0.05m within
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0.00374s. Figure 4.5 shows the airflow velocity and pressure distributions of the model
with the mesh size 0.4. The ball moved 0.025m within 0.00211s and moved 0.05m within
0.00284s. As shown in the figures, a shock wave at the entrance of the pipe appears to be
identified. In addition, the distributions are captured more smoothly as the mesh size gets
smaller. However, the model with the smaller mesh size shows reduction in the amount

of the air pass through the gap between the ball and the pipe wall.

Mesh size 0.2

Figure 4.6 shows the airflow velocity and pressure distributions of the model with
the mesh size 0.2. The ball moved 0.025m within 0.00154s and moved 0.05m within
0.00188s. A clear shock wave at the entrance of the pipe is identified from the airflow
velocity contour plot. However, only a little amount of the air passes around the ball
when the ball located at x = 0.05m. An irregular shape was observed on the pressure

distribution compared to the velocity profile.

4.1.2 Velocity Profile of the Basic Model

Ball Velocity - Displacement Response

Figure 4.7 shows the ball velocity — displacement responses predicted using the
analytical models with different mesh sizes. The velocity increases as the ball moves
away from the inlet in general. However, it appears that there is no tendency between the
mesh size and the response. Table 4.1 presents analytically predicted ball velocity at x =

0.025m and 0.05m for different mesh sizes. The predicted ball velocity varies from



18

25.7804 m/s to 69.9296 m/s at x = 0.025m and varies 28.9388m/s to 84.0754m/s at x =

0.005m . The tendency between the mesh size and the ball velocity response is not clear.

Ball Velocity — Time Response

Figure 4.8 shows the analytically predicted ball velocity — time responses for
different mesh sizes. As shown, the ball velocity increases as time elapses in general.
However, no clear tendency is observed. Table 4.2 presents analytically predicted ball
velocity at the elapsed time t = 0.001sec. and t = 0.002sec. for different mesh sizes. Again,

no clear influence of the mesh size is identified.

Displacement — Time Response

Figure 4.9 shows the analytically predicted ball displacement — time responses for
different mesh sizes. As shown in the figure, no clear influence of the mesh size on the
response is observed. Table 4.3 presents analytically predicted ball displacement at the
elapsed time t = 0.001sec. and t = 0.002sec. for different mesh sizes. The analytically
predicted ball displacement varies from 0.001 to 0.004 at t = 0.001 sec. and varies from

0.020 to 0.060 at t = 0.002 sec.

4.2 Analytical Model Results — Basic 2 Model

Same as the basic model, analytical model analysis of the basic_2 model was

conducted with five different mesh sizes.



19

4.2.1 Airflow Distribution of the Basic_2 Model
Mesh size 1
Figure 4.10 shows the airflow velocity and pressure distributions of the model
with the mesh size 1. The figure shows the distributions when the ball was located at x =
Om, x = 0.025m, and x = 0.05m. The ball moved 0.025m within 0.00177s and moved
0.05m within 0.00215s. As shown in the figure, as the air is released, it propagates

through the pipe and the airflow velocity increases.

Mesh size 0.8

Figure 4.11 shows the airflow velocity and pressure distributions of the model
with the mesh size 0.8. The figure shows the distributions when the ball was located at x
= 0m, x = 0.025m, and x = 0.05m. The ball moved 0.025m within 0.00190s and moved

0.05m within 0.00264s.

Mesh size 0.6 & 0.4

Figure 4.12 shows the airflow velocity and pressure distributions of the model
with the mesh size 0.6. The ball moved 0.025m within 0.00089s and moved 0.05m within
0.00110s. Figure 4.13 shows the airflow velocity and pressure distributions of the model
with the mesh size 0.4. The ball moved 0.025m within 0.00084s and moved 0.05m within
0.00105s. As shown in the figures, a shock wave at the entrance of the pipe appears to be
identified. In addition, the distributions are captured more smoothly as the mesh size gets

smaller.
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Mesh size 0.2

Figure 4.14 shows the airflow velocity and pressure distributions of the model
with the mesh size 0.2. The ball moved 0.025m within 0.00084s and moved 0.05m within
0.00105s. A clear shock wave at the entrance of the pipe is identified from the airflow
velocity contour plot. However, only a little amount of the air passes around the ball
when the ball located at x = 0.05m. An irregular shape was observed on the pressure

distribution compared to the velocity profile.

4.2.2 Velocity Profile of the Basic_2 Model

Ball Velocity - Displacement Response

Figure 4.15 shows the ball velocity — displacement responses predicted using the
analytical models with different mesh sizes. The velocity increases as the ball moves
away from the inlet in general. However, it appears that there is no tendency between the
mesh size and the response. Table 4.4 presents analytically predicted ball velocity at x =
0.025m and 0.05m for different mesh sizes. The predicted ball velocity varies from
29.1244 m/s to 104.938 m/s at x = 0.025m and varies 36.9561 m/s to 134.808 m/s at x =

0.005m . The tendency between the mesh size and the ball velocity response is not clear.

Ball Velocity — Time Response

Figure 4.16 shows the analytically predicted ball velocity — time responses for
different mesh sizes. As shown, the ball velocity increases as time elapses in general.

However, no clear tendency is observed. Table 4.5 presents analytically predicted ball
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velocity at the elapsed time t = 0.001sec. and t = 0.002sec. for different mesh sizes. Again,

no clear influence of the mesh size is identified.

Displacement — Time Response

Figure 4.17 shows the analytically predicted ball displacement — time responses for
different mesh sizes. As shown in the figure, no clear influence of the mesh size on the
response is observed. Table 4.6 presents analytically predicted ball displacement at the

elapsed time t = 0.001sec. and t = 0.002sec. for different mesh sizes.

4.3  Analytical Model Results — Modified Model

The modified Ping-Pong ball gun test was also simulated using the analytical
models. Again, five different mesh sizes were considered in this study. Figure 4.18 shows
analytical models of the modified model with five different mesh sizes. As shown in the
figure, the mesh size 1 was the coarsest mesh size and the mesh size 0.2 was the finest

mesh size.

4.3.1 Airflow Distribution of the Modified Model
Mesh size 1
Figure 4.19 shows the airflow velocity and pressure distributions of the model
with the mesh size 1. The figure shows the distributions when the ball was located at x =
0m, x=0.025 m, and x = 0.05 m. The ball moved 0.025 m within 0.00201 sec. and
moved 0.05 m within 0.00224 sec. The irregular contour plot was observed on the

velocity distribution according to the coarse mesh and sharp-edge nozzle geometry. It
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was possible to observe that air with 4atm pressure moved into the pipe on the pressure
distribution. The air pressure should show the similar distribution to the airflow velocity
distribution. However, the air pressure appears to show no relevance to the velocity

distribution.

Mesh size 0.8

Figure 4.20 shows the airflow velocity and pressure distributions of the model
with the mesh size 0.8. The figure shows the distributions when the ball was located at x
=0m, x =0.025m, and x = 0.05m. The ball moved 0.025m within 0.00211s and moved
0.05m within 0.00231s. The velocity distribution of mesh size 0.8 shows a clear but
angled shock wave at the entrance of the pipe. High velocity distribution was shown
inside of the nozzle and low velocity distribution showed close to the front surface of the
ball. The air pressure should show the similar distribution to the airflow velocity
distribution. However, the air pressure appears to show no relevance to the velocity

distribution.

Mesh size 0.6 & 0.4

Figure 4.21 shows the airflow velocity and pressure distributions of the model
with the mesh size 0.6. The figure shows the distributions when the ball was located at x
= 0m, x = 0.025m, and x = 0.05m. The ball moved 0.025m within 0.00219s and moved
0.05m within 0.00239s. Figure 4.22 shows the airflow velocity and pressure distributions
of the model with the mesh size 0.4. The figure shows the distributions when the ball was

located at x = Om, x = 0.025m, and x = 0.05m. The ball moved 0.025m within 0.00227s
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and moved 0.05m within 0.00246s. On the velocity distribution of mesh size 0.6 and
mesh size 0.4 showed a clear shock wave at the entrance of the pipe. However, the model
with the smaller mesh size shows reduction in the amount of the air pass through the gap
between the ball and the pipe wall. The high pressure region was shown at the entrance of

the pipe and the front surface of the ball on the pressure distribution of both mesh size.

Mesh size 0.2

Figure 4.23 shows the airflow velocity and pressure distributions of the model
with the mesh size 0.2. The figure shows the distributions when the ball was located at x
= 0m, x = 0.025m, and x = 0.05m. The ball moved 0.025m within 0.00317s and moved
0.05m within 0.00336s. The velocity distribution of mesh size 0.2 shows a clear shock
wave at the entrance of the pipe. However, only a little amount of the air passes around
the ball when the ball located at x=0.05m. An irregular shape was observed on the

pressure distribution compared to the velocity profile.

4.3.2 Velocity Profile of the Modified Model

Ball Velocity - Displacement Response

Figure 4.24 shows the ball velocity — displacement responses predicted using the
analytical models with different mesh sizes. The analytically predicted responses appear
to be close to each other for various mesh sizes except mesh size 0.2. The velocity of
mesh size 0.2 converges faster than other velocity plots. Table 4.7 presents analytically
predicted ball velocity at x = 0.025m and 0.05m for different mesh sizes. The predicted

ball velocity varies from 83.4149m/s to 102.16m/s at x = 0.025m and varies 128.651m/s
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to 165.18m/s at x = 0.005m. As the mesh size gets finer, the predicted ball velocity
appears to increases at a given location at x=0.025m. However, it appears that there is no

tendency at a given location at x=0.05m.

Ball Velocity — Time Response

Figure 4.25 shows the analytically predicted ball velocity — time responses for
different mesh sizes. As shown, the ball velocity increases as time elapses in general.
Table 4.8 presents analytically predicted ball velocity at the elapsed time t = 0.001sec.
and t = 0.002sec. for different mesh sizes. As presented in the table, the predicted ball

velocity appears to decrease at a given time as the mesh size gets finer.

Displacement — Time Response

Figure 4.26 shows the analytically predicted ball displacement — time responses
for different mesh sizes. The elapsed time at x = 0.05 m was 0.00224 sec. for the mesh
size 1, 0.00231 sec. for the mesh size 0.8, 0.00239 sec. for the mesh size 0.6, 0.00246 sec.
for the mesh size 0.4, 0.00336 sec. for the mesh size 0.2. Table 4.9 presents analytically
predicted ball displacement at the elapsed time t = 0.0015sec. and t = 0.0025sec. for
different mesh sizes. As the mesh size gets finer, the predicted ball displacement appears

to decrease at a given time in general.
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4.4 Verification on the Velocity Profile of the Basic Model

As mentioned in Section 1.3, only the analytically predicted ball velocity profile of
the basic model was verified with theoretical approximation. The analytically predicted

profile was averaged since no clear influence of the mesh size was identified.

441 Basic Model

Equations of the Theoretical Approximation-Basic Model

The basic model properties are

P, : latm

p:1.225kg/m3

A:1.13 x 1073m?

m:2.7x 10 3kg

where, P, is the initial pressure, p is density of the air A is cross-sectional area of the
Ping-Pong ball, and m is the mass of the Ping-Pong ball.

Define the characteristic length of the basic model,

m
pA

A=—=1.95

Insert properties and the value of the characteristic length to Equation 3.11. It is possible
to obtain the theoretical ball velocity function of displacement for the basic model as an

Equation 4.1.

, / 1.95
v(x)_basic = 287.61 lx+)1c.95 1+2 Tl 4.1)

Also, the theoretical ball velocity function of time for the basic model as Equation 4.2

and the theoretical ball displacement function of time for the basic model as Equation 4.3.
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287.61
v(t) = — 4.2)
42410t2
x(t) = 287.61 l 1+ “figtz - 1] (4.3)

Ball Velocity - Displacement Verification

Figure 4.27 shows the theoretically approximated ball velocity — displacement
response. It is shown by a black solid line. The averaged analytically predicted response
is also shown with a black dotted line in the figure. As shown in the figure, the theoretical
approximated ball velocity is slightly greater than the analytically predicted ball velocity.
However, the theoretically approximated response is very close to the averaged

analytically predicted response overall.

Ball Velocity - Time Verification

Figure 4.28 shows both the theoretically approximated and analytically predicted
ball velocity — time response. The theoretically approximated response is shown as a
solid black line and the analytically predicted response is shown as a dotted black line.
The theoretically approximated response shows a linear response. However, the averaged
analytically predicted response show some fluctuations. The time gap is observed
between the two responses. The reason of the time gap is that in the theoretical scenario,
the ball sits right front of the entrance, but in the case of the analytical model, the ball sits

10 mm offset from the entrance.
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Ball Displacement - Time Verification

Figure 4.29 shows the theoretically approximated ball displacement — time
response. The response is compared with the analytically predicted response in the figure.
The theoretically approximated response is shown in a solid black line and the
analytically predicted response is shown in a dotted black line. As shown in the figure,
the theoretically approximated ball displacement — time response has somewhat similar
tendency to the analytically predicted response. However, the theoretically approximated

response appears to be shifted more away from the inlet.

4.4.2 Basic_2 Model

Equations of the Theoretical Approximation-Basic 2 Model

The basic_2 model properties are

P, : 4atm

p 1 4.9009 kg /m3

A:1.13 x1073m?

m:2.7 x 1073kg

where, P, is the initial pressure, p is density of the air A is cross-sectional area of the
Ping-Pong ball, and m is the mass of the Ping-Pong ball.

Define the characteristic length of the basic model,

A= 2=0.451
pPA
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Insert properties and the value of the characteristic length to Equation 3.11. It is possible
to obtain the theoretical ball velocity function of displacement for the basic model as an

Equation 4.4.

. 0.451
v(x)_basic = 287.61 L‘*‘f‘m 1+ le (4.4)

Also, the theoretical ball velocity function of time for the basic model as Equation 4.5

and the theoretical ball displacement function of time for the basic model as Equation 4.6.

287.61

v(t) = =226 (4.5)
I asz002
x(t) = 287.61[ 1+ 18031‘;2“ — ] (4.6)

Ball Velocity - Displacement Verification

Figure 4.30 shows the theoretically approximated ball velocity — displacement
response. It is shown in a black solid line. The averaged analytically predicted response is
also shown with a black dotted line in the figure. As shown in the figure, the theoretical

approximated ball velocity is slightly greater than the analytically predicted ball velocity.

Ball Velocity - Time Verification

Figure 4.31 shows both the theoretically approximated and analytically predicted
ball velocity — time response. The theoretically approximated response is shown in a solid

black line and the analytically predicted response is shown in a dotted black line.
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Ball Displacement - Time Verification

Figure 4.32 shows the theoretically approximated ball displacement — time
response. The response is compared with the analytically predicted response in the figure.
The theoretically approximated response is shown in a solid black line and the
analytically predicted response is shown in a dotted black line. As shown in the figure,
the theoretically approximated ball displacement — time response has somewhat similar
tendency to the analytically predicted response. However, the theoretically approximated

response appears to be shifted more away from the inlet.



Table 4.1 Predicted ball velocity at x = 0.025m, 0.05m for different mesh sizes

(Basic model)

) Ball velocity, m/s
Mesh size
x=0.025m x=0.05m
1.0 60.8577 84.0754
0.8 41.3947 60.867
0.6 25.7804 28.9388
0.4 30.6974 36.6035
0.2 69.9296 77.9121
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Table 4.2 Predicted ball velocity at time t=0.001sec., t=0.002sec for different mesh sizes

(Basic model)

_ Ball velocity, m/s
Mesh size
t=0.001 sec. t=0.002 sec.
1.0 7.2832 75.962
0.8 13.416 49.7824
0.6 2.2790 13.6134
0.4 8.5864 29.2798
0.2 12.6014 78.5408
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Table 4.3 Predicted ball location at time t=0.001sec., t=0.002sec for different mesh sizes

(Basic model)

) Displacement, m
Mesh size
t =0.001 sec. t=0.002 sec.
1.0 0.002 0.041
0.8 0.004 0.034
0.6 0.001 0.007
0.4 0.003 0.020
0.2 0.003 0.060

Table 4.4 Predicted ball velocity at x = 0.025m, 0.05m for different mesh sizes
(Basic_2 model)

) Ball velocity, m/s
Mesh size
x=0.025m x=0.05m
1.0 40.0112 107.155
0.8 29.1244 36.9561
0.6 93.9353 134.808
0.4 97.7851 133.993
0.2 104.938 117.109
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Table 4.5 Predicted ball velocity at time t=0.001sec., t=0.002sec for different mesh sizes
(Basic_2 model)

) Ball velocity, m/s
Mesh size
t =0.001 sec. t=0.002 sec.
1.0 14.1597 71.0581
0.8 12.1122 30.8572
0.6 116.248 153.422
0.4 128.337 140.069
0.2 116.432 118.433(t=0.0015)

Table 4.6 Predicted ball location at time t=0.001sec., t=0.002sec for different mesh sizes
(Basic_2 model)

. Displacement, m
Mesh size
t =0.001 sec. t=0.002 sec.
1.0 0.004 0.037
0.8 0.005 0.028
0.6 0.037 0.185
0.4 0.044 0.183
0.2 0.044 0.103(t=0.0015)




Table 4.7 Predicted ball velocity at x = 0.025m, 0.05m for different mesh sizes

(Modified model)

) Ball velocity, m/s
Mesh size
X =0.025m X =0.05m
1.0 83.4149m/s 128.651m/s
0.8 85.9264m/s 165.18m/s
0.6 86.6714m/s 146.197m/s
0.4 102.16m/s 145.476m/s
0.2 113.306m/s 134.786m/s
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Table 4.8 Predicted ball velocity at time t=0.0015sec., t=0.0025sec for different mesh

sizes (Modified model)

) Ball velocity, m/s
Mesh size
t = 0.0015 sec. t = 0.0025 sec.
1.0 15.5609 156.1840
0.8 14.0038 202.6600
0.6 11.704 149.7630
0.4 6.1006 147.4380
0.2 0 2.2599
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Table 4.9 Predicted ball location at time t = 0.0015sec., t = 0.0025sec for different mesh

sizes (Modified model)

) Displacement, m
Mesh size
t = 0.0015 sec. t = 0.0025 sec.
1.0 0.0057 0.0884
0.8 0.0029 0.0863
0.6 0.0028 0.0658
0.4 0.0007 0.0559
0.2 0.0000 0.0002




35

Mesh size 0.8
Mesh size 0.6
Mesh size 0.4
Mesh size 0.2

Mesh size 1

Y
AN
Tt
a4

<
A
v,

L 4
LA
AVATAYAVEV,Y,

]
IA

N7
e

AYAY)
AVAYAY,

\/

BAvAVAVAY A §

]

3
1%
0

AYAYAYAYAV,

Figure 4.1 Five different mesh sizes (Basic model)
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Figure 4.2 Airflow distribution of mesh size 1 (Basic model)
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Figure 4.3 Airflow distribution of mesh size 0.8 (Basic model)
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Figure 4.4 Airflow distribution of mesh size 0.6 (Basic model)
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Figure 4.5 Airflow distribution of mesh size 0.4 (Basic model)
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Figure 4.6 Airflow distribution of mesh size 0.2 (Basic model)
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Figure 4.7 The ball velocity - displacement plot of different mesh sizes (Basic model)
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Figure 4.8 The ball velocity - time plot of different mesh sizes (Basic model)
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Figure 4.9 The ball displacement - time plot of different mesh sizes (Basic model)
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Figure 4.10 Airflow distribution of mesh size 1 (Basic_2 model)
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Figure 4.11 Airflow distribution of mesh size 0.8 (Basic_2 model)
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Figure 4.12 Airflow distribution of mesh size 0.6 (Basic_2 model)
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Figure 4.13 Airflow distribution of mesh size 0.4 (Basic_2 model)
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Figure 4.14 Airflow distribution of mesh size 0.2 (Basic_2 model)
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Figure 4.15 The ball velocity - displacement plot of different mesh sizes (Basic_2 model)
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Figure 4.18 Five different mesh sizes (Modified model)
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Figure 4.19 Airflow distribution of mesh size 1 (Modified model)
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Figure 4.20 Airflow distribution of mesh size 0.8 (Modified model)
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Figure 4.21 Airflow distribution of mesh size 0.6 (Modified model)
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Figure 4.22 Airflow distribution of mesh size 0.4 (Modified model)
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Figure 4.23 Airflow distribution of mesh size 0.2 (Modified model)
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Figure 4.24 The ball velocity - displacement plot of different mesh sizes (Modified model)
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Figure 4.25 The ball velocity - time plot of different mesh sizes (Modified model)
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Figure 4.29 The ball displacement - time plot of the analytical model and the theoretical

approximation (Basic model)
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CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

Both experimental and analytical studies were previously conducted on a basic
Ping-Pong ball gun test. To investigate the fundamental behavior of the gun and to
expand knowledge of the fundamental behavior of a modified Ping-Pong ball gun, an
analytical study was conducted using commercially available computational fluid
dynamics software, ‘Autodesk Simulation CFD 2014°.

Analytically predicted ball velocity profiles and airflow distributions for both guns
were reviewed. The analytically predicted profiles and distributions were compared with
theoretical approximations. However, applying the same theoretical approximation to the
modified Ping-Pong ball gun was not practical since the airflow in the gun exceeds the
speed of sound. Therefore, the analytical prediction for only the basic Ping-Pong ball gun
was verified.

Figure 4.27, 28, and 29 shows the results of the verification between the analytical
prediction and the theoretical approximation for the basic model. Figure 30, 31, and 32
shows the results of the verification between the analytical prediction and the theoretical
approximation for the basic_2 model. There was no significantly large difference

between two results.
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Figure 5.1 shows verification between the ball velocities along the pipe from analytical
model analysis for the three different models. Table 5.1 shows the ball velocity of the
three different models when the ball located at 0.025m and 0.05m. From the Table 5.1,
the ball velocity was increased when modification from the basic model was applied.
Table 5.2 shows that the increase of the ball velocity from the basic model to the basic_2
model and the basic_2 model to the modified model. At location 0.025m, the ball
velocity of the basic_2 model increased 68.22% compare to the basic model. And the
ball velocity of the modified model increased 22.58% compare to the basic_2 model.
At location 0.05m, the ball velocity of the basic_2 model increased 75.78% compare to
the basic model. And the ball velocity of the modified model increased 42.09% compare
to the basic_2 model.

From this result, both the pressure difference and addition of the converging-
diverging nozzle increased the ball velocity. However, the effect of the pressure

difference was larger than the effect of the converging-diverging nozzle.

5.2 Future Work
An additional experimental study on the modified Ping-Pong gun test is required.
The experimental results have to be obtained carefully since the test involves with high
speed ball motion and airflow. The experimental results then are to be compared with the
analysis results to verify the test results.
The fundamental behavior of the modified Ping-Pong gun test should be

theoretically approximated. A new theoretical approach has to be derived.



Table 5.1 Ball velocity of three different analytical models when the ball located at

0.025m and 0.05m
Ball velocity, m/s
Model x=0.025m x=0.05m
Basic 45.7320 57.6794
Basic 2 76.9281 101.3883
Modified 94.2957 144.0580
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Table 5.2 Increase of the ball velocity from basic model to basic_2 model and basic_2

model to modified model

Increased, %

Model x=0.025m | x=0.05m
Basic = Basic_2 68.22 75.78
Basic 2->Modified 22.58 42.09
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Figure 5.1 Analytical model results of the ball velocity for three different models.



LIST OF REFERENCES



48

LIST OF REFERENCES

Alpher, A. R., & White, D. R. (1957). "Flow in shock tubes with area change at the
diaphragm section." General Electric Research Laboratory, (pp. 457-470). New
York.

Avyars, E., & Buchholtz, L. (2004). "Analysis of the vacuum cannon.” American Journal
of Physics, 72(7), pp. 961-963.

Boyanapalli, R., Vanukuri, R., Gogineni, P., Nookala, J., Yarlagadda, G., & Gada, V.
(2013). "Analysis of Composite De-Laval Nozzle Suitable for Rocket
Applications.” International Journal of Innovative Technology and Exploring
Engineering (IJITEE), pp. 336-344.

Chowdhury, M., Ahamed, J., Faruque, P., & Bhuiya, M. (2011, June). "Computational
study of supersonic flow through a converging diverging nozzle." Engineering e-
Transaction, pp. 1(6), 37-42.

Chung, T. J. (2002). Computational Fluid Dynamics. Cambridge: Cambridge University
Press.

Cockman, J. (2003). "Improved Vacuum Bazooka." The Physics Teacher, 41(4), 246-247.

Downie, N. A. (2001). Vacuum Bazookas, Electric Rainbow Jelly, and 27 Other Saturday

Science Projects. New Jersy: Princeton University Press



48

French, R. M., Gorrepati, V., Alcorta, E., & Jackson, M. (2008). "The Mechanics of a
Ping-Pong Ball Gun." Experimental Technique , 24-30.

French, R. M., Zehrung, C., & Stratton, J. (2013). "A Supersonic Ping Pong Gun."
arXiv:1301.5188 [physics].

Kleinschmit, N. N. (2011). "A Shock Tube Technique for Blast Wave Simulation and
Studies of Flow Structure Interactions in Shock Tube Blast Experiments."
DigitalCommons@University of Nebraska - Lincoln.

Mungan, C. E. (2009). "Internal ballistics of a pneumatic potato cannon." European
Journal of Physics, 30(3), 453.

Munson, B. R., Young, Okiishi, & Huebsch. (2009). Fundamentals Of Fluid Mechanics,
6Th Ed, Si Version. Wiley India Pvt. Limited.

Olson, G., Peterson, R., Pulford, B., Seaberg, M., Stein, K., Stelter, C., et al. (2006). "The
role of shock waves in expansion tube accelerators.” American Journal of Physics,
74(12), 1071-1076.

Ower, E., & Pankhurst, R. C. (1977). The measurement of air flow. New York: Pergamon
Press.

Peterson, R. W., Pulford, B. N., & Stein, K. R. (2004). "The Ping-Pong Cannon: A Closer

Look." The Physics Teacher, 43(1), 22-25.



48

Peyret, R., & Taylor, T. D. (1983). Computational Methods for Fluid Flow. New York:
Springer-Verlag Inc.

Saad, M. A. (1985). Compressible Fluid Flow. New Jersey: Prentive-Hall INC.

Schreier, S. (1982). Compressible Flow. New York: John Wiley & Sons Inc.

Taylor, B. (2006). "Recoil Experiments Using a Compressed Air Cannon." The Physics
Teacher, 44(9), 582-584.

White. (1995). Fluid Mechanics. New York: McGraw-Hill Inc.

White, F. M. (1991). Viscous Fluid Flow. New York: McGraw-Hill Inc.

Zucrow, M. J., & Hoffman, J. D. (1976). Gas dynamics. New York: Wiley.



APPENDIX

49



50

APPENDIX A

Theoretical Analysis of the Airflow for Basic Model

The airflow cause by the pressure difference in the pipe with uniform cross
sectional area can be defined as ‘unsteady one-dimensional flow’ (Schreier, 1982). In gas
dynamics, this problem is called a ‘shock tube’ problem. The shock tube is device in
which a normal shock wave is produced by the sudden burst of a diaphragm that initially
separates a gas at high pressure from a gas at low pressure(Schreier, 1982). The pipe is
separated into two sections by the diaphragm. Figure A 1 shows the initial state of the
shock tube. The pressure in section 4 is higher than in section 1. When the diaphragm is
punctured, a shock wave forms instantaneously and propagates into section 1.
Simultaneously, an expansion wave forms and propagates into section 4. Figure A 2
shows the phenomenon after the diaphragm is punctured. The high-pressure section
(section 4) is called the driver, and the low-pressure section (section 1) is called the
driven section (Schreier, 1982). Section 1, which is ahead of the propagating shock wave,
is not yet influenced by the shock wave. Section 2, which is behind the propagating shock
wave, is bounded by shock wave and diaphragm. The pressure, temperature and density
of section 2 have been influenced by the propagating shock wave. Section 4, which is
ahead of the propagating expansion fan, is not influenced by propagating expansion fan.

Section 3, behind the propagating expansion fan, is bounded by the expansion fan and
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the diaphragm. The pressure, temperature, and density of section 3 have been influenced
by the propagating shock wave.

The relations across the shock wave (section 1 and 2) are given in Equation A l, A

2,and A 3.
s (- 3) s
%:1—%(1—%296) (A2)
Z—j=1+%(M2x—1) (A3)

In Equation A 1, u, and u, are the velocity of the x-direction in section 1 and 2, y is the
specific heat ratio of the air, M, is the Mach number of the shock wave. Equation A 2
shows the density ratio between section 1 and 2 where p; and p, are the density of
section 1 and 2 respectively. Equation A 3 shows the pressure ratio between section 1 and
2 where p; and p, are the pressure of section 1 and 2 respectively.

With the given condition of u; = 0 and eliminating M, from Equation A 1 and Equation

A 3, Equation A 1 becomes Equation A 4.

Pz 4
Uz
—= = —pil (A4)
a1 1+422(B2_y)

2y \p1

Now, the relations across the expansion fan (section 3 and 4) are given in Equation A 5.

(s o 2y (&)(V'”m] (A5)

ay - y-1 ay y-1 Da
In Equation A 5, us is the velocity of the x-direction in section 3, a; and a, are the speed

of sound in section 3 and 4, p; and p, are the pressure of in section 3 and 4.
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With the given condition of u, = 0, u3 = u,, p; = p, and assumption of a, = a,, then,

Equation A 4 becomes Equation A 6.

Z_i _ ﬁ 1— (Z_i)(y—l)/z)/ (Z_l)(y—l)/ZV] (A6)

Equating equations A 5 and A 6 then solving for p;/p,, the pressure ratio between

section 1 and 4, p;/p., is expressed as Equation A 7.

2y/(y-1)
1 P21
Pr_Pafq Y22 ___ P2 (A7)
P4 P2 2y 1.,.&(1’_2_1)
2y \p1

Equation A 7 shows the required ratio across the diaphragm for the desired pressure ratio
across the shock (Schreier, 1982).

To obtain the value of M, consider the case of the fluid in section 1 and 4 is
different (but, in this research, the fluid in section 1 and 4 is same, which is air). Also
assumption of u; = u,, p3 = p,, and y; = y,, itis possible to rewrite Equation A 5 as

Equation A 8 and Equation A 6 as Equation A 9.

us 2 3 ()/4_1)/2)/4]
o R 1-(=2 A
ay Ya—1 [ (194) ( 8)
Uy D2 2 2 M?,-1
a; [pl ] \/h[(]’l"‘l)zi"'(]ﬁ—l)] Yitl My ( )

Combine Equation A 8 and A 9, the pressure ratio between section 1 and 4, p,/pa, is

expressed as Equation A 10.

=2Y4/(Ya—1)
Da D2 a; Z_i_l
=221 -2y, —1) (A 10)
Pi P1 a4 \/Zn |01+ D224+ (1 -1)

Recall the normal shock relation expressed as Equation A 11.
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2 -1
b e not (A11)
P1 y1t+1 y1t+1

Substitute Equation A 11 into Equation A 10, Equation A 10 becomes Equation A 12.

1 )] —2v4/(ya—1) (A12)

B @M+ 1 -y |1 -2 () (M — o

r1  7itil Y1+l My

With these relationships, it is possible to calculate the shock wave Mach number of the
basic model. The high-pressure region of the basic model is p, = 1atm and the low-

pressure region is p; = 0.3psi, So the pressure ratio between the two regions was

approximately Z—“ ~ 49. y; and y, were the specific heat ratios of air, which was 1.4
1

respectively. Substituted the value of the pressure ratio and the specific heat ratio of air
into Equation A 12 and the shock wave Mach number of the basic model is,

M, = 2.1263

In this research, the pressure of section 1 is ideally vacuum condition, so it could

be considered that 2% @ and M, approaches a finite limit (Schreier, 1982). In
1

conclusion, limiting the Mach number of the shock wave when Z—“ — 00 Was
1

)/1+1 y1+1 2
Mxmax )/4 1 \/[ )/4 1 ] +1 (A 13)
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Theoretical Analysis of the Airflow for Modified Model

It is inadequate to apply same theoretical analysis to the modified model that
applied to the basic model. From the first-order approximation analysis of the basic
model, there is a maximum velocity of the Ping-Pong ball. However, the Ping-Pong ball’s
terminal velocity in the modified model exceeds the theoretical maximum velocity of the
basic model. It is a challenging problem to find the solution of the motion of the Ping-
Pong ball for the modified model. According to the converging-diverging nozzle attached
to the modified model, it is unsuitable to use the first-order approximation analysis based
on Newton’s second law of motion to predict the velocity of the ball. So in this section,
the focus is on the pressure chamber and converging-diverging nozzle as part of the
modified model and analyze on the theories related to it. First, the theoretical background
of the converging-diverging nozzle will be introduced. Second, the explanation of the
shock tube with area change will be analyzed. Third, analysis on the shock tube with

converging-diverging nozzle will be introduced.

Converging-Diverging Nozzle (De Laval Nozzle)

A nozzle is a device that used to control fluid flow out of a chamber or pipe. For
example, in rockets, the nozzle was used to maximize the thrust force. Expansion of
internal energy and the pressure increase the flow of kinetic energy. The ‘De Laval
Nozzle’ is not just a simple converging or diverging nozzle. It is shaped with a
converging section at the front and a diverging section at the end. This converging-
diverging nozzle was invented by ‘Gustaf de Laval’ in 1888 for use in steam turbines.

The De Laval nozzle relies on the properties of supersonic flow to accelerate gas beyond
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Mach 1. This nozzle is most widely used for the design of modern aerospace and rocketry

applications and was implemented in rockets by ‘Robert Goddard’.

Subsonic Inlet Case

In this section, the case of a subsonic inlet will be explained and specified into
seven cases. Figure A 3 is diagram of De Laval nozzle showing approximate flow
velocity with respect to temperature and pressure. Temperature and pressure drop as the
Mach number of the fluid increases. To accelerate fluid over Mach 1, fluid must be
choked at the throat of the nozzle. ‘Choked’ means that the fluid velocity at the throat
reaches Mach 1. In chocked conditions, it is not possible to accelerate the fluid beyond
Mach 1 at the throat by the increase of the pressure at the entrance. Acceleration over
Mach 1 is only caused by a change in the back pressure or ambient pressure. Equation A
14 is the relation between the velocity change and the area change. Equation A 14 shows

why the choked condition is require to occur for fluid to accelerate over Mach 1.

av 1 dA
v M%2-1 A

(A 14)

If M2 is less than 1, then dA must be negative to make dV positive. This means in
subsonic inlet flow, reduction of area is required to accelerate the velocity of the fluid. In
the case of supersonic inlet flow, area required to increase for acceleration to occur

because M? is greater than 1 so dA must be positive for dV to be positive.
For the De Laval nozzle, the ratio between stagnation and nozzle exit pressure %
0
A
A

depends on the area ratio of the exit and the throat, ==. Figure A 4 shows the scheme of

0
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the converging-diverging nozzle and properties related to it. To obtain the equation of the

area ratio, isentropic relations are required. It shows in Equation A 15, A 16, and A 17.

To _ 4 4 Y=l 2
p=1+0M, (A 15)
— v
Ii’—: = (1+ M (A 16)
1
2= (1+ =M (A17)

where, T,, P, and p, are stagnation temperature, pressure and density respectively. M, is
the Mach number at the exit, and y is specific heat ratio of the fluid.
From three isentropic relations, an equation of the exit and the throat area ratio is

obtained as Equation A 18.

v+1

L=+ M) (A18)

The characteristics of the De Laval nozzle are specified to seven cases depending on the
varying back pressure. Figure A 5 shows the characteristics of the De Laval nozzle. The
pressure and the Mach number distribution along the nozzle of seven different cases are
plotted in Figure A 5.

® Case (a): subsonic, un-choked flow.

Figure A 6 shows the scheme of un-choked flow. Flow is not choked, and there is
no shock wave through the nozzle. There is continuity in pressure, velocity, and
temperature.

® Case (b): choked flow
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Figure A 7 shows the scheme of choked flow. Subsonic flow shows downstream
of the throat.

Case (c): normal shock within nozzle

Figure A 8 shows the scheme of normal shock appeared within the nozzle.
Isentropic flow upstream of shock and downstream of the shock is subsonic flow.

Case (d): supersonic nozzle flow, normal shock at exit

Figure A 9 shows the scheme of normal shock appeared at the exit of the nozzle.
Isentropic flow within nozzle, but need normal shock to get P, to match P,. The
strongest normal shock occurs in this case.

Case (e): supersonic over-expanded flow

Figure A 10 shows the scheme of over-expanded flow. An oblique shock shows
outside of the nozzle.

Case (f): supersonic design condition flow

Figure A 11 shows the scheme of supersonic design condition. It is perfectly
expanded and supersonic flow at the exit. Flow is isentropic through the nozzle.

Case (g): supersonic under-expanded flow

Figure A 12 shows the scheme of supersonic under-expanded flow. An expansion
fan show outside of the nozzle. P, is low, such that P, > P, so flow must

continue to expand flow to reach equilibrium with the surroundings.
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Analysis of the flow characteristics of the De Laval nozzle is meaningful to find the

optimized design of the nozzle and to reach the maximum efficiency.

Supersonic Inlet Case (Supersonic Diffuser)

In this case, the converging-diverging nozzle is assumed as a supersonic diffuser.
Supersonic inlet flow of the converging-diverging nozzle is treated as a reversal of
subsonic inlet flow. In this section, supersonic inlet flow is divided by four cases.

® Case (a): normal shock at the entrance

Figure A 13 shows the scheme of the normal shock at the entrance of the nozzle.

® Case (b): normal shock at diverging section of nozzle

Figure A 14 shows the scheme of the normal shock at the diverging section of the
nozzle. Increase in Mach number of case (a), normal shock at the entrance
becomes unstable so that the shock wave moves downstream of the nozzle and
sits at the diverging section of the nozzle.

® Case (¢): normal shock at nozzle throat

Figure A 15 shows the scheme of the normal shock at the throat. Decrease in
back pressure of case (b), ; shock wave moving towards the throat. Normal shock
strength decreases.

® Case (d): no shock through nozzle

Figure A 16 shows the scheme of no shock through the nozzle. Decreasing the in

inlet Mach number of case (b) and adjusting back pressure properly, Mach
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number in the throat of the nozzle is Mach 1. Isentropic subsonic flow in a

diverging section of the nozzle is appeared.

Shock Tube with Area Change

In the last section, an analysis on the De Laval Nozzle was introduced in case of
subsonic and supersonic inlet. In this section, an analysis about shock tube with area
change will be conducted. In section 3.2, it was mentioned that the background theory of
the basic model is a shock tube with a uniform area problem. However, the modified
model has a converging-diverging nozzle attached to the pipe. Since the location of the
diaphragm of the modified model is at the entrance of the converging-diverging nozzle, it
will be assumed as a shock tube with area change. In case of the shock tube with area
change is usually called a ‘shock tunnel’. This case is a shock tube with a continuous tube
sufficiently small in diameter. Analysis of the shock tube with a converging-diverging
nozzle will be introduced in the next section.

Figure A 17 (a) represents the initial condition before the shock hits the neck of
the tube. Figure A 17 (b) shows the one part of the shock in which continuous flow
through the narrower tube and the rest of the part reflected back to the wider tube. The
strength of the Reflected and continuous shock is weaker than the original shock
(Schreier, 1982). Following the continuous shock, there is an interface which separates
the fluid that already passed through the continuous shock and the fluid that already
passed through the reflected shock (Schreier, 1982). The effect of area change is
approximated as the quasi-steady-state analysis (Schreier, 1982). If consider area change

acting as a converging nozzle, it is impossible to accelerate the flow over Mach 1.
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However, if the shock wave is strong enough to generate the supersonic flow in the
narrower tube, a rarefaction wave is generated which accelerates the flow to reach the
final velocity in region 3. The velocity of the left end of the rarefaction wave is u = a,
and the wave is stationary at the entrance of the narrow tube(Schreier, 1982). The right
end of the rarefaction wave velocity is u — a (Schreier, 1982). The purpose of using this

type of device is to increase the pressure and test time.

Shock Tube with Converging-Diverging Nozzle

It is assumed that the driven force of the Ping-Pong ball is generated by the shock
tube with the converging-diverging nozzle. This kind of device is called a ‘shock tube
driven wind tunnel’. In this section, an analysis on the effect of the shock tube flow
through the converging-diverging nozzle will be conducted. The stronger shock wave is
generated by the shock tube having an area reduction transforming a high-pressure region
to a low-pressure region compare to the shock tube having an uniform area (Alpher &
White, 1957). In this section, the procedures of calculating fluid properties through the
converging-diverging nozzle will be introduced.

Figure A 18 showsS a schematic drawing of shock tube with converging-diverging

nozzle. Assumptions of this analysis are isentropic flow except across the shock wave

and ideal gas condition. Recall the relationship between the pressure ratio 2%, 22 and the

P1 D1

shock wave Mach number M for the shock tube with uniform area in Equation A 10, A

11, and A 12.
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—2¥4/(¥a—1)
Pa | a Z_Z_l
ProPi [0+ DB 0n-0)]
& — 2)/1 M 2 _ Y1_1 (A 11)

p1 ya+1 S y1t+1

ps _ 1 (2V1M52 +1-y)[1- a ()’4—1) (Ms _ i)] —2v4/(ya—1)

p1 y1t+1 a, \y1+1 Mg

(A 12)

With these relationships, it is possible to calculate the shock wave Mach number of the
modified model. The high-pressure region of the modified model is p, = 4atm and the

low pressure region is p; = 0.3psi, so the pressure ratio between the two regions is

approximately Z—“ ~ 196. y; and y, are the specific heat ratio of air, which is 1.4. The
1

value of the pressure ratio and the specific heat ratio of air are substituted into Equation A
12. The shock wave Mach number of modified model Is,

M, = 2.6029

Now, consider the general case of the converging-diverging nozzle section. When

4

the shock wave flow is generated, the pressure ratio of region 4 and region 1, z— IS

1

expanded as Equation A 19 (Alpher & White, 1957).

D4 __ P4 P3a P3b P3bP3D2 (A 19)
P1 P3a P3p P3b P3 P2 P1

where 2% is the pressure ratio required to accelerate the low-pressure region fluid by

P3a

unsteady expansion from zero to M;,,. pi‘f is the required pressure ratio to proceed the

P3b

low pressure region fluid by steady expansion from M5, to M5,.. According to the flow
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from region 3b" to 3b (steady, supersonic, or subsonic), the flow at 3b™ become a sonic

condition or not. 222 is the pressure ratio required to make flow from M;,. to M5, a

P3b

steady expansion form. Pressure ratio 222 is required for unsteady expansion flow from

pP3

M, to M5. At the interface, p; = p,, and pressure ratio Z—Z defines the shock strength
1

(Alpher & White, 1957). Rewrite Equation A 19 as Equation A 20.

2Y4
Y /a1
Ps _ Ya—1 24+ (Va—1)M3p2] /2 [ 2+(ya—1)M3
D1 - {[1 + 2 M3a] [2+(V4_1)M3a2] [2+()/4—1)M3b]} (A 20)

Equation A 20 shows the relationship among Ms, M5, and My, as well as 2% and 22,

P1 P1

However, additional relationships are necessary. Region 3b" is the minimum cross-
sectional area of the converging-diverging nozzle (Alpher & White, 1957). Whether M3
is subsonic or supersonic, the area the ratio between region 4 and region 1 is expressed as

Equation A 21.

1
(e )/2()’4—1)

Ay _ Msp z+<y4—1>M3a2]
A1 Msg [2+(V4_1)M3b2 (A21)

Another required relationship is connection between M, with M5, M5, and M;,. This

relationship show in Equation A 22.

_ (@ gu-v/2y _ o]
M3 [Uz aq g ! ! 2 ] (A 22)
where
Ya _ [LMSZ_l]_l A 23
aq - Ya+l Mg ( )
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g is an ‘equivalence’ factor. It is defined as Equation A 24.

2+(ya—1)M3p 2+(Ya—1)M3zq

1 a1y
24+ (Ya—1)Msg21 /2 [24+(ya—1)M o
g — {[ (Y4 ) 3 2] [ (V4— ) 3b]} (A 24)

Using equivalence factor g, rearrange the Equation A 20 as Equation A 25.

2y4/ —2]/4/
Ps _ D21 [1 4t M3] (a-1) _p21 [1 _ ”_Zﬁ_y‘*“g—(n—l)/Zn] va=D (A 25)
P1 P19 2 P19 a;a; 2

. . . A
Since the pressure ratio z—“ , the area ratio A—“ , and the shock wave Mach number M, are
1 1

given, it is possible to calculate the Mach numbers inside the converging-diverging

nozzle with Equation A 21 through A 25.

Subsonic Flow
In this case, the converging-diverging section is a subsonic nozzle with conditions

of M3 = M3, p3 = p3p and az = asy,. Rearrange the equation A 21, A 22, and A 24 and

calculate M5 and M5, with known properties of a;, a,, ;ﬁ and M, (Alpher & White,

1
1

1957).

Supersonic Flow

Since M5 > 1, a sufficient condition for supersonic flow through converging-diverging

nozzle is M5, = 1 (Alpher & White, 1957).
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Figure A 1 Schematic drawing of shock tube
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Figure A 2 Schematic drawing of the wave pattern in shock tube
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Figure A 4 Scheme of converging-diverging nozzle
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Figure A 5 Characteristics of converging-diverging nozzle(subsonic inlet)
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Figure A 12 Under-expanded
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Figure A 17 (a) Before and right after shock generated (b) After shock reflected at the
neck of the shock tube
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