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Dynamics of the vapor layer below a Leidenfrost drop
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In the Leidenfrost effect a small drop of fluid is levitated, above a sufficiently hot surface, on a persistent
vapor layer generated by evaporation from the drop. The vapor layer thermally insulates the drop from
the surface leading to extraordinarily long drop lifetimes. The top-view shape of the levitated drops can
exhibit persistent starlike vibrations. I extend recent work [Burton et al., Phys. Rev. Lett. 109, 074301
(2012)] to study the bottom surface of the drop using interference imaging. In this work I use a high-speed camera
and automated image analysis to image, locate, and classify the interference fringes. From the interference fringes
I reconstruct the shape and height profile of the rim where the drop is closest to the surface. I measure the drop-size
dependence of the planar vibrational mode frequencies, which agree well with previous work. I observe a distinct
breathing mode in the average radius of the drop, the frequency of which scales differently with drop size than
the other modes. This breathing mode can be tightly coupled to a vertical motion of the drop. I further observe a
qualitative difference in the structure and dynamics of the vertical profile of the rim between large and small drops.
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I. INTRODUCTION

A fluid drop placed on a heated surface will rapidly
evaporate. The drop lifetime will decrease with increasing sur-
face temperature until the temperature reaches the Leidenfrost
temperature, at which point the drop lifetime increases dra-
matically [1]. Above the Leidenfrost temperature a persistent
vapor layer forms between the drop and the surface; this
levitates and insulates the drop. To support the drop against
gravity, the pressure in the vapor layer must be above the
ambient pressure. This overpressure deforms the bottom
surface of the drop into an inverted bowl, shown schematically
in Fig. 1. The high-pressure region persists due to the resistance
to vapor flow through the narrow gap between the drop and the
surface, marked as the rim region in Fig. 1. The dynamics of the
shape and the vertical profile around this rim were measured
using high-speed interference imaging.

Leidenfrost drops are of considerable interest from applied
as well as fundamental points of view. In any application where
a working fluid is used to cool a surface, either by spraying or
by immersion [2], once the surface reaches the Leidenfrost
temperature the heat transfer, and hence the cooling, is
suppressed. This can have catastrophic consequences as the
liquid becomes less able to transfer heat away from the surface.
Levitation on a forced air layer can also be used as part of
casting process to prevent contact between the molten material
and the mold [3]. Because the dynamics of gap between the
surface and the drop is dominated by the dynamics of the vapor
layer, Leidenfrost drops provide an accessible system to study
such thin-film vapor dynamics.

The average shape and gap height of an axisymmetric
Leidenfrost drop are set by the combination of the surface
tension, γ , acceleration due to gravity, g, the fluid density, ρ,
and the pressure under the drop. There are two shape regimes
determined by when the drop radius is above or below the
capillary length, λc = √

γ /ρg. For drops with a characteristic
radius smaller than λc, surface tension dominates the shape and
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the drop is spherical, with only a small dent in the bottom. For
drops larger than λc, gravity dominates and the drop flattens
into a pancake of height 2λc and the radius is set by the drop
volume [4]. There is a maximum drop size, above which the
vapor layer rises through the center of the liquid turning the
drop into a torus. In both regimes, by balancing the evaporative
flux into the vapor layer with the flux out due to the pres-
sure difference, the average height of the drop above the surface
has been predicted in good agreement with experiment [4,5].

The static drop can be divided into an inner and outer region
separated by the rim, where the surface of the drop is parallel
to the hot surface. The shape of the outer region is that of a
non-wetting drop, where the shape can be predicted from the
Young-Laplace equation [6,7]. The shape inside the rim is set
by the pressure in the vapor layer and the surface tension. By
matching these two solutions the full shape of drops near the
maximum size can be predicted [7] in good agreement with
measurements [4,6].

Recent work has shown that the height profile around the
rim is not axisymmetric [6,8]. In this paper I extended this
work to study the dynamics of the rim shape and profile.
I have developed image-processing techniques to automate
the analysis of the high-speed interference images. These
techniques are used to measure the frequency of the shape
oscillations of the rim as a function of drop size. The results
are in good agreement with previous predictions and measure-
ments taken from the outer radius of the drop [9–15]. A
breathing mode oscillation in the average radius of the rim is
also observed. Its frequency scales differently with drop size
than the other modes. This breathing mode can be strongly
coupled to the drop’s vertical motion.

The height profile around the rim evolves more slowly than
the shape of the rim and than the expected period for capillary
waves of comparable size. Further, there is a qualitative change
in the structure and dynamics of the rim as a function of drop
size. Large drops have “active” profiles, with many parts of
the rim moving vertically, whereas small drops have more
quiescent profiles, with a dominant “frozen-in” low-spatial-
frequency fluctuation.
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FIG. 1. Schematic cross section of an axisymmetric Leidenfrost
drop. The drop is levitated on a high-pressure vapor pocket which
is fed by evaporation from the drop and drained through the narrow
gap between the drop and the surface at the rim. The pressure is
maintained due to the resistance to vapor flow through the gap. The
radius of the drop, as observed from above, is denoted as R and the
radius from the center of the drop to the rim, as observed from below,
is denoted as r . I observe interference between the top of the prism
and the bottom of the drop in the rim region where the drop surface
and prism surface are nearly parallel.

Section II describes the experimental apparatus and the
image-analysis methods. Section III reports the vibration-
mode frequencies and then presents the results on the breathing
mode of the rim and the structure and dynamics of the rim
profile.

II. METHODS

A. Experimental setup

I use high-speed interference imaging [16] to study the
fluctuations of the gap between the bottom of the Leidenfrost
drop and the surface. Following Ref. [6], I use a glass prism,
heated by an aluminum block with an embedded resistive
heater, as the hot surface, as shown in Fig. 2(a). The drop
is illuminated from below with a He-Ne laser (λl = 632 nm),

which is reflected up towards the drop off the hypotenuse of the
prism. The laser beam comes in at an angle of approximately
10◦–15◦ with respect to the normal of the front face of the
prism in the horizontal plane, Fig. 2(b), in order to avoid
interference between the top and front faces of the prism. The
reflections from the top face of prism and the bottom surface
of the drop interfere with each other and produce fringes
that can be directly related to variation in the thickness of
the vapor layer. Observation of heavily dyed drops verified
that the reflection from the bottom surface dominates the
interference pattern. These interference fringes are directed
onto a high-speed camera and imaged at a rate between 1000
and 10 000 frames per second for 3 to 30 s.

In addition to thermally insulating the drop, the vapor
layer essentially eliminates friction between the drop and
the surface. Thus any infinitesimal tilt in the prism results
in motion of the drop. I took data either by filming the drop
as it transited the field of view or by pinning the drop either
by letting it rest against a wall by gravity or by a piece of wire
from above. While these methods have different boundary
conditions, the drops are qualitatively the same in all cases.

There are two natural radii in a Leidenfrost drop: the radius
as viewed from the top, R, marked in Fig. 1, and the distance
from the center of the drop to the rim, r , also marked in Fig. 1.
Most previous work viewed the drop from above where R can
easily be measured, but in that configuration the rim on the
bottom surface is not visible. Using interference imaging r

can be measured. As discussed above, the outer profile of a
static Leidenfrost drop is the profile of a sessile drop with a
contact angle of 180◦. The numerical relationship between r

and R has been established from computed drop profiles [6,7].
This relationship is used to convert the measurements of r to
R in order to compare with previous experiments and theory.

Figure 2(c) shows a schematic of optical interference due
to a thin air gap of height h. The light reflected off the glass-
air interface, E1 ∝ A1e

ıψ , interferes with the light reflected
off of the air-water interface, E2 ∝ A2e

ı(ψ+π+(2π/λl )2h). The
additional phase in E2 is from the reflection at the air-water
interface (π ) and the phase accumulated from the additional
distance the light travels in traversing the air gap twice:
((2π/λl)2h). The observed intensity is thus I = |E1 + E2|2,

(a) (b) (c)

FIG. 2. (Color online) Schematic of experimental apparatus. Panel (a) shows a cut-away side view of the heater block. The incoming laser
is reflected off of the hypotenuse of the prism towards the bottom of the drop and the reflections return along the same beam path, out towards
the camera. Panel (b) shows a plan view of the experiment. The laser is at an angle to avoid interference between the front and top faces of the
prism. Panel (c) shows a schematic of light interference in a narrow air gap.
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which reduces to

I = A2
1 + A2

2 − 2A1A2 cos

(
π

4h

λl

)
. (1)

In the case A1 ≈ A2 the expression further reduces to

I = 2A2
1

[
1 − cos

(
π

4h

λl

)]
. (2)

The interference oscillates from light to dark when h varies
by λl/4. To normalize the interference images, each pixel is
divided by the average for that pixel across all of the frames
of a given movie.

A typical normalized interference image is shown in
Fig. 3(a). The largest, clearest fringes in the image correspond
to the rim region marked in Fig. 1, where the bottom of the
drop is most nearly parallel to the top of the prism. As the
surface becomes steeper, both inside and outside of the rim,
the fringes become more tightly spaced. This results in Moiré
patterns due to interference between the fringe pattern and the
pixels of the camera when their spatial frequencies become
comparable. Because the drop surface must be continuous,
Eq. (1) implies that contiguous regions of equal intensity are
surfaces of constant h. Further, adjacent pairs of light and dark
fringes, where the intensity has moved from a local maximum
to a local minimum, have a height difference of |λl/4|.

In general, interference only gives the absolute value of
the height difference between adjacent fringes, not the sign
of the difference. However, in this case, the curvature in the
radial direction is always upward, as shown in Fig. 1. Thus the
peak features, where the Gaussian curvature is positive, are
where the rim is closest to the surface and the saddle features,
where the Gaussian curvature is negative, are where the rim is
farthest from the surface. Further, because the surface of the
drop is continuous, all of the steps between a saddle and a peak
are in the same direction. Thus, by starting on any fringe and
counting fringes around the rim one can build up the profile
of the rim, as was done by hand in Ref. [6]. Here a method is
presented to automate this process.

An example profile extracted by my software is shown in
Fig. 3(b). θ is the angle around the rim as measured from the x

axis and the direction of the winding is marked on Fig. 3(a) with
the arrow. As one goes around the rim one can follow the pro-
file, including the two-fringe high local maximum at θ ≈ π/4.
Using this technique one can, in principle, resolve variations
in the height of the gap under the the rim to λl/4 = 158 nm.

B. Image analysis

This paper extends the work of Burton et al. [6] by
automating the image analysis to identify the interference
fringes and reconstruct the rim shape and profile from high-
speed interference-image movies. This allows a measurement
of the rim size, shape, location, and height profile as a function
of time. The following sections will describe how to locate and
classify fringes (II B 1) in each frame of a movie. The fringe
locations are first used to reconstruct the rim shape at a given
time and then used to reconstruct the height profile (II B 2) as
a function of time. The code used for this analysis is built on
top of numpy, scipy, and matplotlib [17,18] and is available
under the GPL [19].
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FIG. 3. (a) A typical normalized interference image. The region
of interest is around the rim, where the drop is closest to and almost
parallel to the surface. The patterns inside and outside of the main
rim are Moiré patterns and should be ignored. The peak features on
the rim are the regions where the rim is closest to the surface and the
saddles are the regions where the rim is farthest from the surface. The
height difference between adjacent dark and light fringes is |λl/4|.
By counting fringes, one can determine the height profile around the
rim. (b) The height profile extracted for this frame. The arrow in (a)
indicates the location of θ = 0 and the direction of winding. The box
indicates the region shown in Fig. 4.

1. Fringe location

To locate the fringes, the algorithm needs to be provided
with a seed-curve which approximately traces the rim in the
image. For the first frame this is supplied by hand, but for
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0.5 mm

(b)(a)

FIG. 4. Detail of the area of the rim marked with a box in Fig. 3. (a) Image shows the initial seed-curve as a thick white line along the rim.
Two scaled curves are shown as thinner white lines. (b) Image shows the traces of the located fringes as white lines on the dark fringes and
black lines on the light fringes. The solid white curve along the rim is the rim shape as determined from the fringes.

all subsequent frames the result from the previous frame is
used. This allows the code to process long time series with
no supervision. The seed-curve is represented with a periodic
one-parameter spline, with parameter ξ . The seed-curve, κ0(ξ ),
is used to generate a family of scaled-curves parameterized
by s with κs(ξ ) = κ0(ξ ) + sn̂(ξ ), where n̂(ξ ) is the outward
pointing unit-normal to κ0 at ξ . This process is analogous
to generating a ruled surface. The seed-curve, κ0 (thicker
white line), and a pair of scaled-curves, κ2 and κ−2 (thinner
white lines), are shown in Fig. 4(a). The region of the rim
shown is marked with a box in Fig. 3(a). The interference
image is then sampled along each curve, κs , in the family and
the local maximum and minimum of the intensity along the
slice are identified as a function of ξ . The locations of the
maximum and minimum are connected between curves using
a variation on the Crocker-Grier algorithm [20] commonly
used in single particle-tracking.1 The resulting tracks trace
the chevron shaped fringes, which are the features of interest.
Examples of the identified fringes are shown in Fig. 4(b) with
black curves on the light fringes and vice versa. The fringes
are then classified by color and by which direction around the
rim they “point.” The rim is located by generating a spline
using the “tips” of the fringes. The generated spline is shown
in Fig. 4(b) as the thick white line. This spline is used as the
seed-curve for the next frame and the process repeats. Using
the spline representation of the rim shape one can convert the
coordinates of a point on the rim among the paramaterized
coordinates, (ξ,s), Cartesian image coordinates, (x,y), and
polar coordinates, (r,θ ), where r is the distance from the rim
to the center of the drop and θ is the angle the line from the
center to the rim makes with respect to the x axis.

2. Height reconstruction

To reconstruct the height profile of the rim through time, it
is best to incorporate information from many frames. This

1For a pure-python implementation of Crocker-Grier see
https://github.com/soft-matter/trackpy.

is done by generating a kymograph, which is a generic
two-dimensional space-time plot. A typical example is shown
in Fig. 5(a). In this case, each column is a slice through an
interference image along the rim identified from the fringes.
The vertical axis is the angle around the rim, θ , and the
horizontal axis is time, τ . Moving vertically in the kymograph
moves around the rim of the drop at a fixed time and moving
horizontally in the kymograph stays at a fixed θ on the rim
but moves between frames. As with the interference image
shown in Fig. 3, contiguous regions of the same intensity are
at the same height above the surface and adjacent regions
of the alternate color have a height difference of |λl/4|.
Standard image processing tools can segment the kymograph
into light and dark regions and the relative height difference
between adjacent regions is determined using the information
from the fringes. Starting from an arbitrary region, which is
assigned �h ≡ 0, a �h value is assigned iteratively to each
region. This reconstructs the height profile, �h(θ,τ ), relative
to a fixed reference height as a function of angle around
the rim, θ , and time, τ . A kymograph of �h(θ,τ ) is shown
in Fig. 5(b) for the data shown in Fig. 5(a). Although this
method cannot measure the absolute height from the surface
to the drop, I am able to track how every point on the rim
moves toward or away from the surface as a function of
time.

III. RESULTS

A. Rim shape vibrations

The existence of large amplitude vibrations in the horizontal
shape of Leidenfrost drops was first reported in the 1950s [9]
and has been thoroughly studied in a variety of systems since
then [10–13,21,22]. Examples of these vibrations on the rim
are shown in Figs. 6(a) and 6(b) for modes n = 2 and n = 3,
respectively. In both, the solid lines show the shape of the
rim at the extrema of oscillation and the dashed line is the
average rim radius, r . For drops with R > λc the vibrational
spectrum can be approximated by the vibrational modes of a
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FIG. 5. (a) Kymograph of the raw data. Each column of this image
is generated by sampling the interference images along the rim, as
identified by the fringes. Contiguous regions are surfaces of constant
height. The fringe data determine relative heights between adjacent
regions. (b) Kymograph of �h(θ,τ ) for the data in (a). Some features
can easily be matched between the panels, such as the large basin at
(3/2π,2.4). The rim radius of the drop varies between 2.17 and 2.18
mm in this time window.
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FIG. 6. (a) Shape of the rim at the extrema for a drop showing
a n = 2 oscillation. (b) Shape of the rim at the extrema for a drop
showing a n = 3 oscillation. In both figures the dashed line is a circle
with the average rim radius.

cylinder of fluid, which were predicted by Lord Rayleigh [23]
to be

fn = 1

2π

√
γ n(n2 − 1)

ρR3
, (3)

where n is the number of wavelengths around the drop
circumference. For small drops, the vibrational spectrum is
given by a slightly different formula for waves on a sphere
[23],

fn = 1

2π

√
γ n(n − 1)(n + 2)

ρR3
. (4)

The shape of the rim as a function of angle and time is
given by r(θ,τ ), the evolution of which is visualized using a
kymograph, as shown in Fig. 7. Similarly to Fig. 5, the axes
are θ and τ ; however, in this case, the intensity represents
the distance from the center to the rim. Along the vertical
direction the radius has two local maxima and two local
minima, indicating that this is a n = 2 vibration, as in Fig. 6(a).
The checkerboard pattern, with the local maximum turning
into the local minimum as a function of τ , is characteristic of
a standing wave. An alternate way to understand the pattern in
Fig. 7 is to note the two sets of diagonal lines, one up to the
right and one down to the right. These indicate the drop has
two counterpropagating traveling waves, which is exactly the
mathematical description of a standing wave.

To quantify the rim shape dynamics, one can take the
Fourier transform of r(θ,τ ),

r̂(n,f ) =
∫∫

dθdτ r(θ,τ )eıθneı2πf τ , (5)
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FIG. 7. Plot of r(θ,τ ) for a drop showing a strong n = 2
oscillation. The vertical axis is θ , the angle around the rim, the
horizontal axis τ is time and the color indicates the radius r(θ,τ ). The
standing n = 2 oscillations is clearly visible as the square pattern of
light and dark regions. The rim radius of the drop varies between 1.95
and 2.05 mm in this time window.
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where n is the spatial mode number and f is the frequency. It
is important to note that the spatial transform is between n and
θ , not between the wave number k and distance along the rim.
The rim is periodic, thus for a given circumference, c, only
discrete wave numbers, kn = 2πn/c, are allowed. However,
the circumference of the rim varies in time so it is difficult to
consider the Fourier transform at fixed k. The strong peak in
the n = 2 spectrum is the oscillation clearly visible in Fig. 7.
In addition to the peak in n = 2 oscillation there are also
small but distinct peaks in n = 3 and n = 4 and a large peak in
n = 0. There is no n = 1 spectrum because n = 1 corresponds
to a shift in the location of the center of the rim which is not
captured using this description of the rim shape.

I performed this analysis on a range of drop sizes and
identified the largest peak in r̂(n,f ), fn, for each Fourier modes
n = {2,3,4,5}. These frequencies are plotted in Fig. 8 versus
R, the Fourier mode is indicated by the marker shape and
color. The frequencies predicted by Eq. (3) are plotted as the
dashed lines for n = {2,3,4,5}, from the bottom to top, with no
fitting parameters. There is excellent agreement between these
measurements and those predicted and previously measured.
The data shown span a range of surface temperatures and over
two orders of magnitude in oscillation amplitude. The largest
amplitude vibrations are on the order of mm, the same scale
as the rim radius, whereas the smallest detectable vibrations
are on the order of a few microns. At small amplitudes the
vibrations are linear and well described by pure sine waves.
The modes are uncoupled and fall on the line predicted by
Eq. (3). At large amplitudes, when the drop is a Leidenfrost
star, the vibrations become nonlinear. In this case, the rim
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FIG. 8. (Color online) The vibrational modes versus drop radius.
The frequencies scale with drop radius and mode number as expected.
The points are the location of the maximum in r̂(n,f ) for n = 2
(squares), n = 3 (diamonds), n = 4 (up triangles), and n = 5 (down
triangles) as a function of R. The black dashed lines are the zero-
parameter predictions from Eq. (3) for n = {2,3,4,5} from the bottom
to the top. The vertical dashed line indicates R = λc.
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FIG. 9. (Color online) Fourier spectrum of the rim shape for
Fourier modes n = {0,2,3,4} for the drop shown in Fig. 7. The curves
have been shifted vertically for clarity. There are strong peaks in n = 0
and n = 2 and smaller, but clear, peaks in modes n = 3 and n = 4.

shape is no longer described by pure sine waves but includes
coupling between the modes, as demonstrated by the n = 4
symbols that fall on to the n = 2 and n = 3 lines in Fig. 8. In
drops with large amplitude oscillations it is also common to
see multiple peaks in the spectrum of the modes, as in Fig. 9.

The vertical line in Fig. 8 shows where R = λc. This is
where the drop changes shape regime between a dented sphere
and a cylinder. Although I observed drops with R < λc, none
of those have detectable rim shape oscillations in mode n = 2
or higher.

B. Breathing mode

In addition to the predicted vibrational modes, a breathing
mode is also observed in the average rim radius, shown as the
n = 0 mode in Fig. 9. However, such a mode is not predicted
by Eqs. (3) and (4). This breathing mode is a robust feature
of Leidenfrost drops; I observe it at all drop sizes studied.
The largest peak in r̂(0,f ), fb, is plotted versus R in Fig. 10.
As noted above, large amplitude vibrations can couple modes
together. This is the case for the points that fall on the n = 3
line. Excluding those points, I can fit a power law,

fb ∝ R−0.68±0.01, (6)

shown as the solid line in Fig. 10. The scaling differs
substantially from the R−3/2 scaling in Eq. (3) and Eq. (4)
and does not appear to depend on whether R is above or below
λc. The mechanism which generates the breathing mode is not
understood.

In some drops there is a clear coupling between the
average rim radius, r0(τ ), and the mean height, �h(τ ) =

1
2π

∫
dθ �h(τ,θ ), around the rim. In Fig. 11(a) I show a 0.5-s

trace of r0(τ ) (on the left axis and the thin blue line) and �h(τ )
(on the right axis and the thick green line) which appear to
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FIG. 10. The frequency of the breathing mode, fb as a function R.
The dashed lines are the predictions from Eq. (3) for n = {2,3,4,5}.
In drops with large-amplitude vibrations the breathing mode can
become coupled with higher modes as shown by the points falling on
the n = 3 line. The solid line is a power-law fit with fb ∝ R−0.68±0.01.
The vertical dashed line is at R = λc. Unlike the shape vibrations, the
breathing mode is observed and has the same scaling and prefactor at
all drop sizes studied.

be phase locked to each other. Figures 11(b) show the Fourier
transforms of both curves; both have a sharp peak at 21 Hz. The
spectrum for the height is shifted vertically by 0.1 for clarity.
This high-frequency oscillation is on top of lower-frequency
oscillations. To quantify the phase locking between the curves
I compute the Fourier coefficient over windows of five periods
at fb,

Aχ =
∫ τ0+5/2πfb

τ0

dτ eıτ2πfbχ (τ ) = |A|eφχ (τ0), (7)

where χ is either r0 or �h. In Fig. 11(c) I plot φr0 − φ�h,
which shows that r0(τ ) consistently leads �h(τ ) by π/2 over
a 3-s time scale, the full length of the movie.

To understand the relative phase between r0(τ ) and �h(τ ), I
consider a simple one-dimensional model. The model assumes
that the vertical motion of the drop is in the overdamped
regime, due to the resistance to motion being dominated by
the vapor escaping under the rim where Re � 1, and that the
pressure in the vapor region is approximately constant over
the course of a cycle. The only forces acting on the drop are
pressure pushing upward and gravity pulling down. With these
assumptions,

Fnet = πr2
0 p − mg ∝ d�h

dt
, (8)

where p is the pressure in the vapor layer and m is the mass
of the drop. The proportionality constant will depend on the
details of the vapor flow under the rim, including the gap height

1.2 1.3 1.4 1.5 1. .7

τ [s]

1.5

1.6

1.7

1.8

1.9

2.0

r 0
[m

m
] (a)r0 Δh

0 10 20 30 4 0

f [Hz]

0.0

0.1

0.2

0.3

po
w

er
[a

rb
]

(b)

0.0 0.5 1.0 1.5 2.0 2.

6 1

0 5

5 3.0

τ [s]

0

π
2

π

3π
2

2π

φ
r
0
−

φ
Δ

h
[r

ad
]

(c)

3

4

5

6

7

Δ
h

[µ
m

]

FIG. 11. (Color online) Coupling of the drop radius and veritcal
height of the drop. (a) A 0.5s time trace of the rim circumference, c,
is shown in blue on the left axes with a thin line and �h is shown in
red on the right axes with a thick line. (b) The power spectrum of the
curves in (a) are shown with the same colors. The spectrum for the
height is shifted vertically by 0.1 for clarity. (c) The phase difference
between the curves in (a) are shown as a function of time. The signals
are phase-locked with a difference of π/2 for the full length of the
movie.

and vapor viscosity. Assuming

r0 = r0 + α sin(2πf t + φr0 ) (9)

and

�h = β sin(2πf t + φ�h), (10)

where α and β are the amplitudes of the respective variations;
r0 = √

mg/pπ , such that when α = 0, Fnet = β = 0. Plug-
ging Eqs. (9) and (10) into Eq. (8) and simplifying to leading
order in α gives

r0α

f π
sin(2πf t + φr0 ) ∝ β sin

(
2πf t + φ�h + π

2

)
, (11)

which implies that

φr0 − φ�h = π

2
(12)

as observed. Although this simple model matches the experi-
mental results, it does not take into account any effects related
to flow within the drop, nor account for any time dependence
of the pressure, the volume of the vapor layer, or the flux into
and out of the vapor layer. Simulations [13] have shown that
the drop can undergo an axisymmetric oscillation coupled to
vertical motion but have not observed a phase shift.
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C. Qualitative changes to rim profile

In addition to tracking the rim’s average height, I also
studied its profile as a function of time. Qualitatively, large
drops have “active” height profiles with multiple local minima
and maxima around the rim that evolve in time. In contrast,
small drops tend to have a dominant local maximum-minimum
pair which does not significantly fluctuate in location or
amplitude. Given how well capillary waves describe the
in-plane vibrations of the rim shape it is natural to compare
the height fluctuations of the rim to capillary-wave motion as
well. However, the typical time scale for the rim height profile
to evolve, even in large drops, is less than 5 Hz, whereas the
frequency of a capillary-wave with a wavelength on the scale of
the rim circumference, 8–15 mm, is greater than 60 Hz. The
apparent speed of features moving around the rim can vary
from over 20 mm/s for small, short-lived features to slower
than 1 mm/s for large, long-lived features. Unlike the rim
shape dynamics, discussed in Sec. III A, the rim height profile
does not show clear standing- or traveling-wave patterns.

By taking long movies (over 30 s in duration) I was able
to capture the transition from the large active regime to the
small quiescent regime in a single drop. Figure 12(a) shows
the full evolution of the height profile as a function of time.
In Fig. 12 the high point of rim above the surface is always
on the side of the drop facing the wall it is pinned against.
Unlike the kymographs shown in Fig. 5 and 7 where θ is the
vertical axis, the panels in Fig. 12 use distance along the rim
for the vertical axis. Thus, as the circumference of the rim
varies in time the width of the kymograph “ribbon” varies.
The large-scale secular decrease in the width in Fig. 12(a) is
due to drop shrinking from evaporation.

To better see the short-time structure and dynamics of the
height profile details of the first and last 1.0-s intervals of
Fig. 12(a) are shown in Figs. 12(b) and 12(c), respectively.
The active dynamics of the large drop can be clearly seen in
the texture of Fig. 12(b), which is qualitatively similar to that
of Fig. 5(b). Unlike Fig. 7, there are no checkerboard patterns
or diagonal strips, indicating that, unlike the rim shape, the
rim height profile is not dominated by standing or traveling
waves. The small ripples along the top and bottom edges of
the kymograph in Fig. 12(b) are the due to the breathing mode
discussed above. In contrast, the height profile in Fig. 12(c)
has a single pair of local maximum-minimum which do not
significantly fluctuate over the course of a second.

To quantify the change in the structure as a function drop
size, I compute the Fourier components as follows:

ĥj (τ ) =
∫ 2π

0
dθ �h(θ,τ )eıjθ , (13)

where j is an integer. As above, the components are computed
between j and θ , instead of length and wave number because
the allowed wavelengths vary in time. In Fig. 13 the average
of |ĥj | over 0.5-s windows is plotted against the rim radius,
r , for the first four Fourier modes, j = {1,2.3,4}. The j = 1
mode is a tilt in the bottom surface of the drop, relative to
the hot surface. Because tilting the surface does not create any
additional curvature around the rim, the energy cost to at a fixed
amplitude is independent of the rim size. This is in agreement
with Fig. 13(a), which shows that |ĥ1| is independent of r .
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FIG. 12. Visualization of evolution of the height height profile.
The vertical axis is distance along the rim, the horizontal axis is time.
(a) Shows 30 s of data where the secular decrease in the circumference
due to evaporation is clearly visible. (b) and (c) show the details of
first and last 1.0-s intervals, respectively. Comparing (b) and (c), it is
clear that there is a qualitative change in the structure and dynamics
of the height profile as a function of drop size.

In contrast, j � 2 require additional curvature because they
introduce bending on the rim in the azimuthal direction. As
the drop evaporates the wavelength at a fixed j decreases, thus
increasing the amount of curvature, and hence energy, required
for a given amplitude. This is in agreement with Figs. 13(b),
13(c), and 13(d), which show |ĥ2|, |ĥ3|, and |ĥ4| decaying with
decreasing drop size. Further study is required to determine
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FIG. 13. Average power in the first four Fourier modes in the rim
height profile over 0.5-s windows for a range of drop sizes. The power
in j = 1 is independent of drop size, where as the higher modes are
suppressed as r decreases.

if the vertical deformations have a natural frequency or are
chaotic.

I never observed a drop that was stable while flat and parallel
to the prism. There was always some degree of tilt or height
profile fluctuation around the rim. A possible explanation for
this observation is that the drop is able to lower its center of
mass by introducing an asymmetry in the rim height profile.
The flux through a very narrow gap goes as the cube of the gap
height, Qout ∝ h3; thus if two sections of the rim are raised and
lowered by the same small amount, to not change the center of
mass of the drop, there will be a net increase in the flux out from
the high-pressure region. To maintain the balance between flux
into and out of the vapor region the drop will reduce the height
of its center of mass, which will both increase the evaporative
flux in and decrease the flux out and lower the potential energy
of the whole system. Thus the axisymmetric case is unstable
to small perturbations in the rim height profile and the drop
will always be have some height variation around the rim. This
instability is presumably cut off by the details of the vapor flow
and surface tension which prevent any part of the drop from
getting too close to the surface and prevent large curvatures
from developing along the rim. Without a systematic variation

of the substrate temperature, it is not possible to determine if
there is a threshold for an instability that depends on flow rate.

IV. CONCLUSIONS

This paper has extended the high-speed laser-interference
technique to study the bottom surface of a Leidenfrost drop.
By automating the image analysis to locate, classify, and
interpret the interference fringes it has been possible to extract
the location, shape, and height profile of the rim in each
frame of a high-speed movie. From this, the frequencies of
oscillation for the shape of the rim were obtained. Moreover,
this capability has allowed the observation of a number of
previously unreported dynamics, such as a breathing mode in
the size of the rim which is coupled to, and π/2 out of phase
with, the vertical motion of the drop. The mechanism by which
the breathing mode is generated and the origin of the frequency
scaling is not understood and warrants further study.

The rim, where the drop is closest to the surface, is never a
uniform height above the substrate but is unstable against small
perturbations so there will always be a variation in the gap
height around the rim. The absolute magnitude of the height
fluctuation does not appear to depend on drop size. This points
to an underlying instability driven by the increased ability of
gas to escape the pocket when the rim is nonuniform. Whereas
the in-plane shape deformations are associated with capillary
waves, the variations in the gap height are not. The time scale
on which the gap heights fluctuate is an order of magnitude
slower than capillary waves of comparable wavelength and
there is no evidence of persistent standing or traveling waves
around the rim. The dynamics of the gap height are controlled
by a combination of the dynamics of the thin-film vapor flow of
the escaping gas and the dynamics associated with the overall
drop shape. Large drops are “active” with multiple pairs of
local extrema that evolve in both location and size as a function
of time; small drops have a single dominant pair of extrema
that are relatively fixed in position and size. The onset of
the quiescent small-drop regime is surprisingly sudden. This
clearly shows that the Leidenfrost vapor layer has complex
and rich dynamics that warrants further investigation.
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