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A hydrodynamical model is developed to analyse vibration of a liquid drop
on a horizontal bed. The drop has a flattened shape by the gravity and the surface
tension. The fluid is assumed inviscid and to move nearly horizontally, so that
the shallow water theory is applied, and a set of governing equations for the

" vibration is derived. It is applied to a small-amplitude oscillation and a normal
mode solution is obtained, where the drop shows a standing wave along its
periphery. The predicted vibration frequency agrees with the experiment by the

present authors.

§1. Introduction

It is well known that liquids in the air, such
as a spherical drop or a circular column, show
vibrations under the actions of the surface
tension and the inertia. Dynamics of these
motions have long been a subject of interest, as
reviewed by Levich et al.V

Angular frequencies of normal modes of
these vibrations are first derived by Rayleigh

in the following forms:2'

(n—Dn(n+2)o

wi= 3 for a spherical drop,
rop
¢y
w?= (= Dn(n+ Do for a circular column,

¢ rop

@
where n is a mode number and stands for a
number of vertices appearing on the liquid
surface during vibration, r, is an average
radius of the drop or the column, and o, p are
the surface tension coefficient and the density
of the liquid, respectively.

Formula (2) agrees with the experiment by
Rayleigh where a liquid jet was ejected into the
air.> On the other hand, experiments to ob-
serve drop vibration were made by applying
external forces to cancel the gravity, such as a
buoyancy in an immiscible liquid with the
same density as the drop*™® or a drag force
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on a drop in a vertical wind tunnel.”’

Recently, the present authors used a method
completely different from above to observe a
drop vibration.®) A liquefied-gas drop was put
on a horizontal bed with the room tempera-
ture, where the drop began vibrating naturally
by an energy input from rapid evaporation
while suffering no friction from the bed owing
to a thin vapor layer under the drop. Average
shape of the drop was a circular disk and its
plane view showed a characteristic oscillation,
where the fluid on the periphery of the disk
moved nearly horizontally and a standing wave
appeared along the periphery. In this experi-
ment the vibrational frequency was measured,
which showed the r3/? dependence as in egs.
(1) and (2). On the other hand, the measured
dependence on » revealed a peculiar nature,
i.e. there was a clear distinction between even
and odd numbers of n. Another interesting
nature of this motion was an occurrence of
sudden transition to another mode with smaller
n as the drop volume was reduced through
evaporation. Moreover, by the help of a
simple analysis, it was concluded that a com-
bination of material constants (a/p)!/2, esti-
mated from experimental data is about 109,
smaller than that in the thermal equilibrium
at the boiling temperature.

"As is seen from these results, the vibration
of liquefied-gas drop contains a lot of interest-
ing theoretical problems worth investigating,
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such as how the vibration is sustained, how
the transition is provoked, whether the
material constants of evaporating liquid are
the same as those in the thermal equilibrium,
etc. It is also worth noting that this motion is
looked upon as a dynamical pattern formation
under the inequilibrium condition, one of the
most attractive topics of today. Moreover, the
problem of mechanism of the mode transition
mentioned above will afford a new field of
research in the fundamental theoretical physics.
Series of the present works is motivated by the
interest in the phenomenon and the necessity
to obtain physical understanding of these
problems.

Since the problem is basically a hydro-
dynamical one, it is appropriate to begin with
a simplified model for vibration of a flattened
drop without complicating factors, such as
interaction with outer gas or temperature
variation on the liquid surface. Nevertheless,
analysis is associated with several difficulties,
since the fluid in vibration makes a complicated
three-dimensional motion by the action of the
gravity and the surface tension. By this reason
also, the Rayleigh’s result for a sphere or a
circular column will give no true understand-
ing of the phenomenon.

It is the purpose of this paper to propose a
set of equations to analyse this complicated
motion of the flattened drop, and, as a check of
validity of the theory, to predict frequency of
small-amplitude vibration. This is the first step
for physical understanding of the phenomena,
and extension of the theory to include further
interesting factors, such as the finite amplitude,
the vibration-sustaining mechanism and the
mode transition, will be treated in future
papers.

In the following sections, a set of governing
equations are derived on several assumptions
(§2), the equations are linearized and its normal
mode solution is obtained (§3), and the result
is compared with the experiment by the present
authors (§4).

§2. Governing Equations

2.1 Assumptions

Even if we confine ourselves to a drop with-
out evaporation, regorous treatment is still
difficult, because the drop has a complex
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Fig. 1. Assumed geometry of a flattened drop (side
view) and definitions of variables. Hatched regions
show how the modified boundary is defined.

distribution of curvature on its surface. For a
drop at rest on a horizontal bed, an equilib-
rium shape is obtained theoretically by Kubo.®
The phenomenon in question is an oscillation
of the drop surface around this equilibrium
state. Analysis of such a motion, however, will
require a very complicated mathematics. Here,
for the sake of simplicity, several assumptions
are made on the geometry of the drop and the
dynamics of vibration as listed below.

(i) The drop is looked upon as a water layer
and the shallow water theory is applied to the
fluid motion. The layer is prevented from
spreading by the surface tension at the pe-
ripheral region (see Fig. 1). The peripheral
region has a semi-circle vertical cross section.
The drop at rest has a thickness'/,, and its
plane view is a circle with radius r,, where
Fo>hy,.

(ii) The vibration of the drop is a surface
wave on the shallow water, and the peripheral
region has a role to give boundary conditions
to the fluid motion through the surface tension.
The inertia effect of the peripheral region is
considered by introducing a hypothetical
boundary, say a modified boundary. The
modified boundary is defined as a vertical
wall at a position, where the area of the vertical
cross section remains unchanged after replac-
ing the true boundary by this modified bound-
ary (see Fig. 1). The shallow water layer is
assumed to extend to the modified boundary.
(iii) Lower surface of the shallow water re-
gion remains horizontal and suffers no friction
from the bed.

(iv) Flow in the drop is incompressible and
inviscid, hence the potential flow theory is
applied.

(v) Effect of evaporation is neglected, hence
all material parameters and the drop volume
are constant during vibration.
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Brief comments are given about these as-
sumptions. Assumptions (i), (ii) and (iii) do
not contradict with observation except the
introduction of the modified boundary. As for
(iv), an estimation of the Reynolds number is
necessary. In the experiment the oscillation
amplitude at the periphery was about 0.1 cm/s
and typical frequency was 30 Hz for a drop of
diameter 5 mm. The Reynolds number based
on these values has a magnitude of O(10?).
Therefore, the assumption (iv) is acceptable
even for a small drop considered here. The
constancy of the drop volume in (v) will be
valid for analysis of vibration frequency, be-
cause the volume changed little during one
period, while the constancies of material
parameters are for simplification of analysis.

2.2 Derivation of governing equations

A polar coordinate system (r, 0) is introduced
in the horizontal plane. The contour in the
plane view and the modified boundary are
expressed as r=R*@,t) and r=R(0,t), re-
spectively. The depth and the two-dimensional
fluid velocity in the shallow water layer are
denoted by A(r,0,t) and wu(r, 0, t)=(u,, uy)
respectively, where ¢ is the time. Relation
between R* and R then becomes, from the
definition of the modified boundary,

R¥(0, t)= R(0, t)+ Ph(R, 0, 1),

where the value of f is obtained from the
consideration of area mentioned in the assump-
tion (ii).

Basic equations for the shallow water region
are the continuity equation and the momentum
equation as follows:

1 0(rhu,) 1 0(huy)

oh
67+FT+F7)0—"0’ @

10
(phu) +3, (u,phu) +73% == (upphu)= —grad P,

®

where P is an integration of the fluid pressure
p in the vertical direction. This integrated
pressure P comes both from the gravity and the
surface tension at the upper surface, so that it
is expressed as

(Vol. 54,

h
1
P=j p dz=§pghz—ahAh, 6)
0

where z is the vertical coordinate and 4 is the
two-dimensional Laplacian 9%/0x?+ 0%/0y?.

Two boundary conditions are posed at r=R.
One is a pressure boundary condition. From
assumption (ii) the integrated pressure P at
the modified boundary balances with that due
to the surface tension at the peripheral region,
ie.

P= ha(lil 1:2>, @)

where R; and R, are radii of curvature at the
peripheral region. Because of the assumed
geometry, R, is the radius of the semicircle in
the vertical cross section, hence the half of the
layer depth at the boundary, while R, is a
radius of curvature of the contour in the plane
view of the drop (see Fig. 1).

The second is a kinematical boundary condi-
tion, i.e.

1 0R 0

=ty 60 61: at r=R. ®)
2.3 Static state

Before going on to analysis of vibration,
some estimations for a static drop are made.
Let a modified boundary in the static state be
at r=R, (=constant). Then, one has, from
conditions (3) and (7),

1
ol Ro+ﬁho> ®

This relation suggests introduction of the
following two non-dimensional parameters:

_ pgR3 _ho
6=~ H_RO. (10)

1 1
ngho hod(

The parameter G is the square of ratio of two
time scales T,=(pR3/0)'?> and (Ro/g9)'/?,
indicating importance of the gravity relative to
the surface tension in the shallow water region.
The second is a geometrical parameter. In
terms of these parameters eq. (9) is rewritten as

1., ., 1
EGH —2+m. (11

Assumption (i) means conditions H«1 and
G>»1. In the asymptotic case with G— oo and
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H-0, eq. (11) requires

_pghg
o

GH? -4 and GH=O0(H ')-oo0.

(12)

For drops of liquefied gases used in our experi-
ment,® this asymptotic case corresponds to a
depth A, =1.8 mm, which does not differ much
from the experimental value 1.5 mm. It should
be noted here that eq. (12) agrees completely
with the result by Kubo.?

h=R0H(1 +ﬁ(r’ 0’ t))5 R=RO(1 +R(05 t))a
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§3. Small Amplitude Vibration

3.1 Linearization of equations

The set of equation obtained in the preceding
section is applied to a normal mode vibration
with small amplitude.

The radial coordinate and the time are nor-
malized by R, and the time scale T, (=(pR3/
0)'/?), respectively, and same notations are
used for normalized quantities. Dynamical
variables are expressed as

Ry 00

R, 0
R Y= T 130° (13)

u,= FO 5’

where ¢ is a velocity potential. Quantities /1, R and ¢ are nondimensional small perturbations,
and all equations and conditions are linearized with respect to these quantities.
Substituting eq. (13) into eqs. (4) and (5), one has

oh . 0 - ~
5;+A¢=0, grad< y +GHh—HAh>=O. (14)
The second of these can be integrated once to give
%i;+GHﬁ——HAE=O, (15)

where the integration constant is fixed to zero without loss of generality.
The pressure boundary condition (9) contains two radii of curvature. They are expressed in terms

of perturbations as

1 1 2 o
R R 7=
1 1

R, Ry(1+pH) R,(1+pH)’

(R pri+ aa—;z(MﬂHﬁ)) ,

whose derivations are given in Appendix. Then, from eqgs. (6) and (7), we have

62

~ R+pHh+ 50—2(R+/3Hﬁ)
GHh—HAE=1+ﬁH— A1) , atr=l. (16)
The kinematical condition (8) is linearized to
¢ OR
Pt atr=1. 17

Equations (14)-(17) constitute equations and boundary conditions for small-amplitude vibration of

a flattened drop.

3.2 Normal mode solution

For a vibration with » vertices in the peripheral region, perturbations are written as
(@, i, By=(@(r), ih(r), iR) exp (inb+iQ1), (18)

where @, f, and R are seen to be real quantities from inspection of the governing equations. The
problem is to obtain the value of the normalized angular frequency Q. Frequency with dimension
is denoted by w for later use.



J. Phys. Soc. Jpn. Downloaded from journals.jps.jp by Fudan University on 03/08/17

2466 Ryuji TAkAKI and Ken ADACHI (Vol. 54,

By substituting above expressions into eqgs. (14)-(17) and eliminating / and R, we have the fol-
lowing equation and boundary condition for ¢:
(1-G~14)4,+w?d=0, (19)

4¢ (@ -1)(¢'~pHAP)

(1-G™'4)4,9= GH(1+BH)  GH(+pH)?

atr=1, (20)
where

ra P

and the prime denotes the derivative with respect to 7.

Equation (19) is a differential equation of the fourth order and its solution is quite complicated.
However, since we are considering the case H« 1, we can simplify above equations by neglecting
terms of O(H?). Then, terms with coefficient G (= O(H?)) are neglected, which means that we
neglect the surface tension in the shallow water region (the surface tension is still working as a

boundary condition at r=1). Equations (19) and (20) are then reduced to

(4,+w*)$=0,
(n*-1D¢'=

where eq. (21) is used in deriving eq. (22).

Solution of eq. (21) free from singularity at
the origin is the Bessel function of the first
kind, i.e.

b= AJ,(wr), (23)
where A is an arbitrary constant. By substitut-

ing this into the condition (22), we obtain the
final equation for the angular frequency

Jyw) GHw{(1+2pH)—(GH)~ +0(H2)}
Jw) n*—1

24

where the prime denotes the derivative.

Equation (24) has an infinite number of
roots, but we are interested in the smallest
root from the following reason. Larger roots
correspond to waves with smaller wave lengths
in the radial direction. However, in our experi-
ment,® the simple wave without node within
0<r<R predominated, thus supporting this
smallest root.

Approximate solution of eq. (24) is obtamed
by the use of the the asymptotic formula of
Bessel function,

Jn+ 1(W) n

J,(w) n
T W Tw) W 2(n+1)+0(w3) 25)

In the limit GH— oo (hence H—0 and w—0),
eq. (24) is reduced, by the formula (25), to

Q2 =nm*—1). (26)

@D

w2{(1+BH)*GH~(1+BH)— (n*—1)BH}P, atr=1, (22)

It is interesting to note that this result coinsides
with eq. (2) for a liquid column, whose reason
would be the following. Though the curvature
1/R, at the peripheral region produces a strong
surface tension effect, its timewise variation
during vibration is not so large, because the
fluid is moving nearly horizontally. On the
other hand, the variation of the second curva-
ture 1/R,, which is common with the column,
is effective for the dynamics of vibration.

For finite values of GH and H, correction to
eq. (26) can be obtained by taking the second
term of eq. (25), as follows:

Q?=n(n*-1) / {(1 +2BH)+ ZG:I} @7

where terms of O(H?) are neglected in the
denominator. Note that w=O(H'?), and
within the present approximation we should
take only up to the second term in the expan-
sion (25). This result is shown Fig. 2 by solid
lines for 2<n<8, where H is varied as an
independent parameter and GH is obtained
from eq. (11). Asymptotic values obtained
from eq. (26) are indicated in the same figure
by horizontal lines.

It is concluded from Fig. 2 that the effect of
finite H is to reduce the frequency from values
given by eq. (26) and that this effect is stronger
for larger n.

The theoretical curves could not be extended
to the region with H~1; they are shown in
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Fig. 2. Theoretical values of vibration frequency
normalized by (pR3/a)/2. Thick curves are from the
second approximation (see eq. (27)) in solving the
eigenvalue equation. Thin horizontal lines are from
Rayleigh’s formula (2). @, O, A: respectively,
experimental values for liquid N,, O,, Ar by the
present authors, where (o/p)/2=2.9, 3.2, 2.9 are
used in normalizing the data.

Fig. 2 to show qualitatively the effect of the
parameter H. They are necessary also from the
reason, as will be explained in §4, that experi-
mental values for very small H are not avail-
able.

§4. Comparison with Experiment and
Discussion

Experimental values of Q=w(pR3/0)!* by
Adachi & Takaki® are plotted in Fig. 2. The
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horizontal bars at data come from variation
of drop radius due to evaporation during the
frequency measurement, for example, the n=6
vibration of liquid O, appeared for 0.38<
H=0.52 while experimental value of Q re-
mained nearly constant. In normalizing ex-
perimental data, values of (a/p)'/? must be
specified. It is not certain whether standard
material constants at thermal equilibrium can
be applied. Here, in order that the experimental
values fit to the theoretical curves, (o/p)*/? is
assumed to be 2.9, 3.2 and 2.9 for the liquid
N,, O, and Ar, instead of standard values 3.4,
3.5 and 3.1, respectively. Then, the agreement
of the present theory with experiment is
satisfactory.

Normalized frequencies both  from
Rayleigh’s formulae and the present theory are
plotted against n, as shown in Fig. 3. Since the
Rayleigh’s theory does not contain the concept
of modified boundary, the radius r, in the
plane view is used in normalizing frequency.
Therefore, values of Q from the present theory
are multiplied by (ro/R,)*?=(1+ pH)32. Since

15
S
a
3
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c
v
3
€
[
°
N
@ 5
E ——— this work
2 Rayleigh
[+
e N2
o 02 experiment
s Ar
O L I L |
2 3 4 5 6
n
Fig. 3. Comparison of the experimental values with

the present result and the Rayleigh’s formulae.
The width in the present theoretical values comes
from their dependence on H (experimental values
of H are used). Average radius r, in the plane view
is used in normalizing the frequency.
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our theoretical results depend on H, experi-
mental values of H is used to obtain Q, hence
our results are presented with a small but finite
width. The same values of (a/p)'/? are assumed
as in Fig. 2.

As for n=2, the best agreement is attained
by Rayleigh’s formula for sphere. This fact is
well understood since this mode appeared in
relatively small drops which, owing to strong
effect of the surface tension, had an average
shape of sphere rather than a flattened disk.
Since the Rayleigh’s result is reliable for a
spherical drop, i.e. for n=2 vibration, this
agreement is considered to support the as-
sumptions on values of the surface tension
coefficients, i.e. they are smaller than the
standard ones by about 109%.

For n>»3, the Rayleigh’s result for a sphere
deviates from the experiment, and both the
present theory and the Rayleigh’s for column
agree to it. Since the experimental values are
rather scattered, it is difficult to decide which
of these is better. However, it is at least certain
that the present theory based on more realistic
assumptions on the drop geometry attains a
good agreement. If experimental data for larger
n are obtained, the situation will become
clearer, since the present result (eq. (27)) claims
that Qocn for n> 1 rather than #n*/? as in the
Rayleigh’s formula.

From the results of the present theory the
following conclusions are made. First, the
assumptions made in §2 for a flattened drop are
appropriate to analyse its dynamics, i.e. the
concept of the shallow water with the modified
boundary, etc. Therefore, the set of equations
derived on these assumptions (given in §2) is
expected to be powerful also for analysis of
nonlinear dynamics.

Secondly, the values of (a/p)!/? for liquefied
gases evaporating rapidly in the room tempera-
ture are considerably smaller than the standard
values, i.e. by about 109. This conclusion,
however, is still controversial, since the present
theory is based on several assumptions, for

(Vol. 54,

example, the gas flow near the drop surface is
neglected, and since the theoretical result,
valid for H« 1, is applied to the region H~0.5.
Nevertheless, the present results strongly sug-
gest us to have a new aspect for material con-
stants in highly inequilibrium state. Note
that the proposed values of (/p)!/? are near
to those derived in the previous paper® by a
much simpler theory. Generally speaking,
frequency measurement of a flattened drop
will be a good method to know the surface
tension coefficient at overheated condition.

On the other hand, some of interesting
phenomena observed in our experiment are
not solved by the present theory, i.e. how the
vibration begins, how the transition to another
mode occurs as the drop radius is reduced, or
why a distinction between even and odd modes
exists. These problems will be attacked by the
present authors by developing a nonlinear
theory and will be presented in the later issues
of this series of papers.
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Appendix

Two curvatures in eq. (7) are derived here
up to the first order of perturbation. The first
of them is straight forward, i.e.

1 2 2 1 1 ~

R Th RETTHE R W (4D
The second radius of curvature R, is already
obtained by Rayleigh, but his result does
not contain an explicit expression. Therefore,
its derivation is given here. Let a point on the
contour in a plane view of a drop be expressed
by r=R*@)i,, where i, is the radial unit
vector, and a length along the countour be
denoted by s. Then, the Frenet-Serret’s for-
mula leads to

dr dr do do
o T pwrs %7 ) .
t—ds 30 s (R*i,+ R l,,)ds, (A-2)
de 1
—=——n
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. do\2 d?e
=(R*”—R*)l,+2R*'io<a> +(R*'i,.+R*i9)m,

where ¢ and n are unit vectors tangent and normal to the contour, respectively, i, is the circumfer-
ential unit vector and the prime denotes the derivative. By the use of the formulae

a0 _
ds
d’0 i(@ dé _ R*R*+R*R*
ds? \dA\ds//ds  (R¥2?+R*?»?°
and by neglecting second order terms of R*" and R*”, one has

dt R*—R*  R*

TR L Tl

(A-3)

(R*/Z +R*2)— 1/2,

hence
1 dt 1 R¥
— == | = — o (A-4)
R, |ds| R* R
Substitutions of egs. (3) and (13) into eq. (A-4) lead immediately to
1 1 < R+Bh\ Ry (R"+BHR") . A.5)
R, Ry (1+pH) 1+pH R%(l-}-[fH)2 ’
115 (1982) 453.
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