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Self-induced Vibration of a Drop
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Self-induced vibration of drops of liquid nitrogen and oxygen placed on a plate with room temperature was
observed, and some theoretical studies of this phenomenon are made. The drop became flat owing to the gravity,
and its plane shape showed a certain kind of vibration, where its peripheral shape had a standing wave. Moreover,
as the drop size decreased through evapolation, the number of waves around the periphery decreased after sudden
transitions. Theoretical analysis is made to predict normal mode frequencies for wave numbers 2∼6, which agree
well with experimental values. A mechanism of self-induction is proposed, which is based on an assumption on
vapor flow around the drop.
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1. Introduction
Let a drop be placed on a horizontal super-heated plate.

If it is a water drop, the plate must be heated higher than
about 200◦C, while if it is a drop of liquid nitrogen (boiling
temperature is −196◦C) or oxygen (−173◦C) the plate with
room temperature is suitable. Then, the drop is deforms to
a circular disk owing to the gravity and the surface tension.
The vapor is continuously supplied from the lower surface
of the drop, which flows outwards through a thin layer
between the lower surface and the plate (the thickness of
this layer is guessed to be of O(0.1mm) or less). The
pressure in the layer owing to this vapor flow is high enough
to levitate the drop. A static state of the levitating drop
without vibration is possible theoretically, but actually its
shape begins to vibrate in the horizontal direction.

Theoretical studies of drop vibration with small ampli-
tude have been made mostly for that of a sphere and a liquid
column (Rayleigh, 1879, 1902), and the formula for the fre-
quency of vibration of a spherical drop is also given in the
textbook of Landau and Lifshitz (1987). The axisymmetric
and nonsymmetric vibrational modes of a spherical drop are
expressed by the use of the polar coordinate system (r, θ, φ)
and the spherical harmonic functions as follows:

r(θ, t) = R + a(t)Pl(cos θ),

for axisymmetric case,

r(θ, φ, t) = R + a(t)Ylm(θ, φ)

= R + a(t)Plm(cos θ) exp(imφ),

for nonsymmetric case, (1)

where Pl , Plm are the Legendre and the associated Legendre
funcions, respectively. The function a(t) is expressed as
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exp(−iωt), where

ω2 = γ

ρR3
· l(l − 1)(l + 2), (2)

R is the drop radius, γ and ρ are the surface tension coeffi-
cient and the density, respectively.

However, the present problem is the vibration of a drop
which is flattened by the gravity, whose mathematical ex-
pression is much more complicated than the spherical and
the cylindrical cases. In the following sections experimental
results by the present author and his colaborators are shown.
Then, some of theoretical results are introduced.

2. Observation of Vibrations of Flattened Drops
Figure 1 shows several frames from high-speed movies

of vibrations of drops of liquid nitrogen and oxygen, which
are reproduced from Adachi and Takaki (1984). In this ex-
periment the drop was placed on a slightly concave lens, so
that the drop did not flee away from the scope of the cam-
era. In each case in this figure several shots of vibration
during the half period are shown. There had been no other
report on this phenomenon, except that by Holter and Glass-
cock (1952), who observed similar vibrations of liquid. It
is noted here that the movies of this vibration were taken
by stuffs of Laboratory of T. Uemura at the Institute of In-
dustrial Science, The University of Tokyo, and these photos
were first shown in a Japanese magazine for general peo-
ple, “Suri Kagaku (Mathematical Sciences)”, by Arima and
Adachi (1967). The motivation of this study was a wish
of A. Arima (a nuclear physicist) to visualize vibration of
atomic nuleus, and K. Adachi (an experimental physicist)
proposed a method to use liquefied gas.

In this experiment the period of vibration T changed
within 30–50 ms, the average radius r0 was 2 or 3 mm and
the amplitude of vibration was nearly constant of O(1mm)
in any run of experiment. The mode of vibration is specified
by the number n of waves around the periphery. What is
remarkable in this vibration is the following fact. As a drop
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(e) Side view  

 of O2, n = 4 

(a) N2,  n = 5 

 r0 = 2.7mm 

 T/2 = 14ms 

(b) O2,  n = 4 

 r0 = 3.0mm 

 T/2 = 25ms 

(c) N2,  n = 3 

 r0 =2.1mm 

 T/2 = 20ms 

(d) O2,  n = 2 

 r0 = 2.0mm 

 T/2 = 33ms 

Fig. 1. Various vibration modes of superheated drops of liquid nitrogen and liquid oxygen placed on a plate with room temperature. Instantaneous
shapes during a half period of vibration are shown. The mean radii of drops r0 and the half period T/2 are shown at the left. The drop of liquid
nitrogen showed the modes with n = 5, 3 and 2 (the mode with n = 4 did not appear), while that of liquid oxygen showed all modes with 2 ≤ n ≤ 6.
(e) Side view of the flattened oxygen drop, whose thickness was O(2mm) (reproduced from Adachi and Takaki (1984)).

Fig. 2. Transition of vibration mode of liquid nitrogen with changes of
vibration period T and average drop radius r0 (reproduced from Adachi
and Takaki (1984)).

became smaller through evaporation, it stopped to vibrate
periodically and made transition to a new mode with smaller
value of n. For a few seconds during this transition the drop
showed complicated irregular motion, then it began a new
regular vibration. This process is shown graphically in Figs.
2 and 3.

Figure 2 shows a process of mode transition for a drop of
liquid oxygen along with the decrease of the mean radius r0

and the change of vibration period T . During the intervals
with constant values of n the drop vibrated regularly with
slow degrease of radius and vibration period. On the other
hand, during the tarnsitions to smaller values of n the drop
showed irregular motions with asymmetric shapes, an ex-

(a) (b)

Fig. 3. (a) Instantaneous drop shapes of liquid nitrogen during a transition
from mode n = 5 to 3, and (b) the change of spectrum of the peripheral
shape (from below to above) (reproduced from Takaki et al. (1989)).

ample of which is shown in Fig. 3(a). Takaki et al. (1989)
obtained the change of spectrum of peripheral shape of drop
expressed as a function r = f (θ), as shown in Fig. 3(b). In
the first stage (the bottom) the spectrum has two peaks at
n = 2 and 5; i.e. the drop was vibrating as a superposition
of two modes n = 5 and n = 2. Through an interaction
between these modes the drop acquired the n = 3 mode as
shown in the spectrum of the last stage (the top).

The mechanism of mode transition is not yet clarified
enough, and following problems are left unsolved. First,
why does the drop not continue to keep a particular mode,
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Fig. 4. Side view of the drop and definition of the modified boundary
R(θ, t) based on the real radius R∗(θ, t) in the plane view.

i.e. why does it make a transition? This problem has not
been treated until now, but a qualitative speculation might
be possible. Let us assume that the drop was keeping a
constant wavelength λ through a certain mechanism, and
a wave number n = 2πr0/λ was chosen, hence the wave
number n decreased as the radius R decreased.

Secondly, why the nitrogen drop with vibration mode
n = 5 skipped the mode n = 4 and made a transition to
mode n = 3, while the oxygen drop took every mode? In
macroscopic dynamics such as the drop vibration the differ-
ence of materials should affect the dynamics only through
material constants such as the density ρ and the surface ten-
sion coefficient γ . However, effects of these constants are
nearly the same for nitrogen and oxygen. One of the collab-
orators of the present author made an experiment to observe
the vibrations of liquid nitrogen placed in various tempera-
ture environments between −100◦C and 200◦C (Yoshiyasu
et al., 1996). He tried more than 50 runs and found that
for the ambient temperature higher than 150◦C the drop
showed various vibration modes randomly (not dependent
on the drop size) and that the drop sometimes made vibra-
tions with n = 4 mode. Until now, this problem is not
solved and remains as a mystery!

3. Theoretical Analysis of the Drop Vibration
A linear analysis of normal mode vibration is made by

Takaki and Adachi (1985) by simplifying the vertical cross
section of the drop. In the analysis the polar coordinate
(r, θ ) is used in the horizontal plane, and the following three
assumptions are introduced:

1. The radius of the drop in the plane view is much
larger than the drop thickness, so that the velocity u(r, θ) =
(ur , uθ ) inside the drop has nearly horizontal direction, and
the thickness distribution h(r, θ, t) is a slowly varying func-
tion of the coordinates.

2. The viscosity of the liquid is neglected and the velocity
of liquid is expressed by a flow potential function φ(r, θ, t),
so that ur = ∂φ/∂r , uθ = ∂φ/r∂θ .

3. An effective periphery of the drop in the plane view,
called modified boundary and denoted by r = R(θ, t),
is introduced, which is related to the real periphery r =
R∗(θ, t) by the following equation:

R∗(θ, t) = R(θ, t) + βh(R, θ, t),

where β = 1/2 − π/8 = 0.107. (3)

The term βh(R, θ, t) indicates the shift of the periphery, as

Fig. 5. Theoretical and experimental results of normalized vibration
frequencies of a flattened drop (denoted by 
 in the main text). The
dashed curve shows the present result (Eq. (11)), and two solid curves
are by Rayleigh (1879, 1902) (reproduced from the paper by Takaki and
Adachi (1985)).

shown in Fig. 4, so that the half circle at the periphery is
replaced by a rectangle with the same area.

At the modified boundary the following kinematical con-
dition should be satisfied:

∂φ

∂r
= ∂ R

∂t
, at r = R. (4)

i.e. the outward fluid velocity at the periphery must match
the motion of the boundary. On the other hand, the horizon-
tal force P owing to the surface tension at the periphery is
expressed as

P = hγ

(
1

R1
+ 1

R2

)
, (5)

where R1 = h(R(θ, t), θ, t)/2 and R2 is determined from
the real periphery r = R∗(θ, t). Here, the real radius is
expressed as a superposition of the mean value and pertur-
vation, i.e. R2 = R∗(θ, t) = R0(1 + β H) + R̃(θ, t) +
β Hh̃(R0, θ, t), and its inverse is expanded to the first order
as follows:

1

R2
= 1

R0(1 + β H)
− 1

R0(1 + β H)2

·
(

R̃ + β Hh̃ + ∂2

∂θ2
(R̃ + β Hh̃)

)
. (6)

In the following the length and the time are normalized
by the average radius of the modified boundary R0 and T0 =
(ρR3

0/γ )1/2, respectively, where the same notations r and t
are used for normalized variables. Then, the fluid motion
within the drop is governed by the continuity equation and
the Euler equation (the Navier-Stokes equation without the
viscosity term) for the thickness h(r, θ, t) and the velocity
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Fig. 6. Distribution of temperature within a water drop placed on a
hot plate with temperature 320◦C. The height was measured from the
surface of the hot plate (reproduced from Tokugawa and Takaki (1994)).

(a) (b)

Fig. 7. Behavior of the vapor around the drop. When the periphery of the
drop moves outwards (a), the vapor at the periphery was wiped away
and the surface is directly contact to the hot environment, while in the
opposite motion (b), it was covered by the vapor and insulated from the
environment.

vector u(r, θ, t) = (ur , uθ ), as follows:

∂h

∂t
+ 1

r

∂(rhur )

∂r
+ 1

r

∂(huθ )

∂θ
= 0, (7)

∂(ρhu)

∂t
+ ∂(urρhu)

∂r
+ 1

r

∂(uθρhu)

∂θ
= −gradP, (8)

where P = ρgh2/2 is a vertical integration of the pressure
owing to the gravity (the effect of surface tension on the
upper surface is neglected).

In order to obtain the frequency of normal mode vibration
with mode n, the flow potential, the thickness function and
the position of modified boundary are expressed as

(φ, h, R) = (0, h0, R0) +
(

R0

T0
φ̃(r), h0h̃(r), i R0 R̃

)
· exp(inθ + i
t), (9)

where h0 is an average thickness of the liquid. Solution of
the Eqs. (7) and (8) is obtained as follows:

φ̃ = AJn(wr), (10)

where Jn(wr) is the Bessel function, A is an arbitrary con-
stant, w2 = 
2/G H , H = h0/R0 and G = ρgR2

0/γ .
By substituting this solution into the boundary conditions
(4)∼(5) and expanding the Bessel function in terms of wr ,
we obtain an eigenvalue of 
2, as follows:


2 = n(n2 − 1)

/ {
(1 + 2β H) + n − 3

2G H

}
. (11)

Fig. 8. Predicted amplitudes R̃S of vibration for various surface temper-
atures in the period shown in Fig. 7(b) and the experimental values of
amplitude (reproduced from Tokugawa and Takaki (1994)).

This result is shown in Fig. 5 by dashed line along with
the measurement by Adachi and Takaki (1984) and the re-
sults of Rayleigh’s analyses (1879, 1902) for the vibration
frequencies of a spherical drop and a circular column. The
theoretical result by Rayleigh for a sphere is given as Eq.
(2), while that for a circular column is concerned to a nearly
two-dimensional motion perpendicular to the cylinder axis
and is given by

ω2 = γ

ρR3
0

· n(n2 − 1), (12)

where R0 is the cylinder radius.
The present result agrees with experiment better than

those by Rayleigh. This difference is considered to come
from the difference of drop shapes, i.e. Rayleigh’s analyses
are concerned to a sphere and a circular column while the
experiments were made for drops of circular disc. How-
ever, the Rayleigh’s result for the circular column agrees
better than that for the sphere. In general, theoretical results
might be strongly governed by the number of dimensions of
objects.

4. Mechanism of Excitation of Vibration
Until now the normal mode of vibration of a drop has

been discussed based on a relatively simple linear analy-
sis, and the mechanism of excitation of vibration was not
treated. In order to attack this problem, a behavior of the va-
por around a vibrating drop should be examined. An exper-
imental and theoretical studies of were made by Tokugawa
and Takaki (1994) with special interest in the behavior of
this vapor, as is introduced briefly below.

First, they measured the temperature distribution in a
water drop on a hot plate with temperature 320◦C by the
use of a thermocouple, the result of which is shown in Fig.
6. The drop did not begin to vibrate due to the presence
of the temperature probe. The temperature was nearly at
the boiling point on the lower surface, while that in the
other parts was within 90∼95◦C. It suggests that there was
a vapor layer covering the drop, although its thickness was
unknown.

According to this result it is assumed that this vapor plays
a role of insulator which separates the drop from the sur-
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rounding hot envirommrnt. Now, when a part of periph-
ery went outwards, the vapor at the periphery would have
been wiped away and the surface was directly contact to
the air and also received a thermal radiation from the hot
plate, as illustrated in Fig. 7(a), and the surface temperatue
would have been hot. When the periphery went inwards
(Fig. 7(b)), it was covered by the vapor and the liquid sur-
face was insulated, hence its temperature would have been
about 92◦C (see Fig. 6). Since the surface tension coef-
ficient is smaller for higher temperature, the periphery re-
ceives a varying surface tension during one period of vibra-
tion, so that the surface tension coefficient is assumed to
depend on the velocity at the periphery as follows:

γ =
{

γ0, for d R̃/dt ≥ 0, (a)
γ0(1 + q), for d R̃/dt < 0, (b)

(13)

where q is a positive constant depending on the surface tem-
perature. This effect is considered to be a major nonlinear
effect.

In addition, a viscous effect of the horizontal flow within
the vapor layer below the drop is considered here, which
acted as a damping effect balancing with the amplifying
effect of the nonlinearity. On the other hand, this viscous
stress is estimated from the balance of the gravity force
due to the drop and the pressure at every point in the layer,
where the horizontal gradient of this pressure gives the flow
in the vapor layer hence the viscous damping effect.

The mathematical expression of this analysis is much
complicated and not shown here. Result of the nonlinear
analysis is shown graphically in Fig. 8. Since the surface
temperature at the periphery in the period shown in Fig.
7(b) is unknown, its value is assumed within the interval
(95◦C, 99.75◦C), and the predicted amplitudes R̃S are com-
pared with the experimental ones. Although the latter is
rather scattered, the case with 99.25◦C for the surface tem-
perature fits best to the experiment, which correspond to
q = 0.0024. It is remarkable that this very small fraction
of surface tension variation is enough to produce a steady
vibration with large amplitude.

By the way, it is noted here that the self-excited vibration
of a drop is observed when it is placed on a plate oscillat-
ing vertically, and a theoretical analysis based on Mathieu

equation is made (Yoshiyasu et al., 1996). Its plane view is
quite similar to those shown in Fig. 1.

5. Concluding Remarks
The drop vibration introduced here is an example of the

dssipative structures in a broad sense, because the vibration
is maintained by the heat transfer from the hot plate to the
surrounding air. However, the mechanism of the mainte-
nance of this dynamical sturucture is much more compli-
cated than in the cases of simple heat conduction and crys-
tal growth. It is considered to come from the fact that the
temperature difference between the higher and the lower
sides is large, i.e. the difference has nearly the same oder
of magnitude as the lower temperature. In many of such
cases the system is considered to allow more than one dy-
namical states, and the governing mechanism plays a role
to choose one of them, just as the vibrating drop discussed
above choses one preferrable mode with a particular value
of n. However, it depends on the present author’s specula-
tion, and we have no general knowledge on the cases with
highly inequilibrium condition. In order to have the general
knowledge more number of phenomena with this kind of
condition must be investigated.
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