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Nonlinear dynamics of viscous droplets 
By E. BECKERT, W. J. HILLER A N D  T. A. KOWALEWSKIf 

Max-Planck-Institut fiir Stromungsforschung, Bunsenstrasse 10, D-37073 Gottingen, Germany 

(Received 9 July 1992 and in revised form 21 May 1993) 

Nonlinear viscous droplet oscillations are analysed by solving the Navier-Stokes 
equation for an incompressible Auid. The method is based on mode expansions with 
modified solutions of the corresponding linear problem. A system of ordinary 
differential equations, including all nonlinear and viscous terms, is obtained by an 
extended application of the variational principle of Gauss to the underlying 
hydrodynamic equations. Results presented are in a very good agreement with 
experimental data up to oscillation amplitudes of 80% of the unperturbed droplet 
radius. Large-amplitude oscillations are also in a good agreement with the predictions 
of Lundgren & Mansour (boundary integral method) and Basaran (Galerkin-finite 
element method). The results show that viscosity has a large effect on mode coupling 
phenomena and that, in contradiction to the linear approach, the resonant mode 
interactions remain for asymptotically diminishing amplitudes of the fundamental 
mode. 

1. Introduction 
The study of droplet dynamics can be traced back to the early work of Lord 

Rayleigh (1879). Lamb (1932, pp. 473-475, 639-641) extended the inviscid linear 
analysis, including weak dissipative effects, and later Chandrasekhar (1961, pp. 
466477) solved the full viscous problem by mode analysis. Subsequently, Prosperetti 
(1977, 1980u, b) noted that the linear theory left open some questions about the initial 
value problem. For example, the amplitudes of Chandrasekhar’s eigenfunctions are 
unknown for the oscillations of a deformed droplet starting from rest. The analysis of 
initial vorticity generation, first performed by Prosperetti, is repeated here (in 
Appendix A), using a new formulation for the velocity field, leading to an analytic 
solution for the problem. 

Although during the last decades nonlinear droplet dynamics has become the object 
of several theoretical and experimental investigations, it remains one of the classical 
problems in hydrodynamics for which a complete theoretical solution is lacking. 
However, theoretical models describing particular aspects of nonlinear droplet 
dynamics have become very important in several applications, for example in 
measuring fluid properties like surface tension and viscosity (Hiller & Kowalewski 
1989; Becker, Hiller & Kowalewski 1991) or in nuclear physics (Brosa & Becker 1988; 
Brosa et uZ. 1989). In particular, the possibility of non-intrusive measurements of 
dynamic surface tension by the oscillating droplet method is of great interest for the 
determination of physico-chemical properties of liquid mixtures (Defay & Petre 197 1 ; 
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Stiickrad, Hiller & Kowalewski 1993). Our experimental investigations of droplet 
oscillations have shown that linear theory as well as nonlinear inviscid theory have a 
very limited range of applicability in the interpretation of experimental results. Hence. 
our present interest is concentrated on the development of a nonlinear model including 
viscous effect which allows an easy analysis of experimental data enabling a calculation 
of the dynamic surface tension of the investigated liquids. 

The existing theoretical models describing nonlinear droplet dynamics either neglect 
viscosity (Tsamopoulos & Brown 1983; Natarajan & Brown 1987) or, whilst taking 
viscosity into account, use a strictly numerical approach (Lundgren & Mansour 1988; 
Basaran 1992). The limitations of existing techniques have been widely discussed by 
Patzek et al. (1991). It seems that two methods, namely the boundary integral method 
applied by Lundgren & Mansour (1988) and Galerkin-finite element method by 
Basaran (1 992) offer a reasonable approach to nonlinear and viscous droplet dynamics. 
However these methods, aside from their numerical complexity, have limited practical 
applicability. The boundary integral methods, as was shown by Patzek et al. (1991), 
cannot model droplet oscillations when the effects of viscosity are in the range that is 
physically of interest. The finite element methods are limited at low viscosities (higher 
Reynolds numbers require fine discretizations and long computational time). 

The new approach presented here offers the possibility of analysing nonlinear 
droplet dynamics for a wide range of nondimensional viscosity. Furthermore, it allows 
monitoring of the systematic errors of the algorithm by means of physically justified 
integrals. 

The present model of droplet oscillations (94) uses the mode expansion method with 
appropriate modes of the linear problem and takes into account all nonlinearities as 
well as viscosity. This method is akin to the work of Boberg & Brosa (1988) who 
analysed the transition to turbulence in a tube flow with the help of a corresponding 
mode expansion. The existence of stationary boundary conditions in Boberg & Brosa’s 
problem allowed them to use Galerkin’s method to deduce their system of ordinary 
differential equations. In the case of a free boundary problem the modes do not satisfy 
the boundary conditions a priori. Therefore, a direct application of semi-analytical 
methods becomes difficult. Hence, the problem of deriving an appropriate system of 
ordinary differential equations is solved by the use of the standard variational principle 
of Gauss. This, one of the most general principles of classical mechanics, seems to be 
well suited to the analysis of nonlinear droplet oscillations, since it offers the 
straightforward possibility of treating the boundary conditions as additional 
constraints on the Navier-Stokes (or the vorticity) equations. For special cases, if high- 
wavenumber modes of the droplet oscillation are strongly excited, the method 
proposed in the present paper may become less appropriate compared with the 
aforementioned pure numerical solvers of Lundgren & Mansour or Basaran. However, 
this limitation of our approach has no effect on its application to physical experiments 
with a free oscillating droplet, where amplitudes of the oscillation modes are strongly 
related to their linear damping constants. On the other hand our method is close to the 
physics of nonlinear droplet oscillations, describing its dynamics in terms of the natural 
degrees of freedom. This has been established both by the comparison of the computed 
droplet oscillations with experimental data given in Becker et al. (1991) and repeating 
some droplet trajectories generated by Lundgren & Mansour (1988) and Basaran 
(1992). 
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FIGURE 1. A droplet cross-section described by the surface parametrization (2.1). The unit vcctors of 
the coordinate system as well as normal and tangential unit vectors of the surface are displayed. The 
origin of the coordinate system is denoted by 0, and the centre of mass of the droplet by s. 

2. Formulation of the problem 
We consider an incompressible droplet of equilibrium radius T,,, density p ,  uniform 

surface tension CT and kinematic viscosity v ,  which is freely oscillating in a medium of 
negligible density and viscosity. 

In the mathematical description, limited to axisymmetric droplet dynamics, spherical 
coordinates ( I ,  8) are used where r is the distance from the system origin and 8 is the 
meridian angle measured from the axis of symmetry, z. As in our previous analysis 
(Becker et al. 1991), we assume that the radial distance R(8, t )  from the origin of the 
coordinate system to the droplet surface can be expanded in a series of Legendre 
polynomials P,(cos 0) : 

' 0  

R(8,t) = ru{a0(a2, . . ., a,) + c a,(t) p,(cos @)I. (2.1) 

Figure 1 illustrates the geometry. Assuming constant liquid density, R(8, t )  always 
encloses the same volume: 

(2.2) 

This condition leads to a cubic equation defining the dimensionless mean droplet 
radius a, as a function of the surface parameters a2 . . . aT0. It turns out that a, is always 
less than or equal to one. The droplet shape is uniquely described by the parameters 
a, . . . ale. They can be interpreted as dimensionless amplitudes of standing waves, with 
1 periods, on strings encircling the cross-section of the droplet. These waves oscillate 
independently of each other only in the linear case. 

The unit vectors normal (n) and tangential ( t )  to the droplet surface are given by the 
following formulae : 

(2.3) 

2=2 

1 

fnr; = 2x I-, XR (8, t )  d cos 6'. 

Re, - a, Re, a, Re, + Re, n =  t =  
[R'+(C:0R)2]t' [R2 + (ao R)'];' 

where e, and eH are unit vectors in the radial and the polar directions, respectively. 
In our experimental analysis (Becker et nl. 1991) the surface parametrization (2.1) 

yields the amplitudes a2 ... a,", the equivolumetric radius r,, and the position of the 
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coordinate system. These parameters are fitted to the observed droplet shape. 
However, the origin 0 of the coordinate system does not need to coincide with the 
centre of mass s which may move along the symmetry axis z. The displacement s of the 
centre of mass depends on the surface deformation and in the chosen coordinate 
system it is given by 

(2.4) 
10 

s(u2 . . . a 10 ) = gro 11, cos 6 (,,(a, . . . a,) + C a, ~ ( C O S  6) 
1=2 

The parameterization (2.1) does not include the term with index I = 1 because in our 
experimental analysis this term does not represent an additional degree of freedom for 
the description of the surface. The amplitude a, which in the linear theory describes a 
pure translational motion cannot be separated out in the experimental analysis. 
Obviously it is possible to let a, be different from zero and to require the centre of mass 
to coincide with the origin of coordinates. This gives a second relation in addition to 
(2.2), which allows the elimination of a, as a function of u2 . . . az0. Both descriptions 
become equivalent if s/r ,  (or a,) is small. In practice the value of Is/r,I remains below 
0.01 in our experimental and computational analysis. 

In the non-inertial coordinate system the Navier-Stokes equation for incompressible 
fluids has the following form : 

a, u +  (0 .0)  v-ie, = - V p / p -  vV x V x v, (2.5) 

where v denotes the velocity field, e, the unit vector in the z-direction and p the 
pressure. The acceleration of the coordinate system with respect to the centre of mass 
is equal to - j .  In the case of constant density p the governing equation (2.5) is 
equivalent to the vorticity equation ( V E )  : 

a,w = v x (u x w ) - v v  x v x w, w = v x 0. (2.6) 
Surface motion and flow velocity are coupled by the kinematic boundary condition 
(KBC) : 

v-(Re,-c?,Re,)= Rc?,R, r = R .  (2.7) 
The driving force of droplet oscillations, namely the surface tension, acts per- 
pendicularly to the free surface. Therefore, on the surface of the tangential stress of the 
flow vanishes, and the normal stress balances the driving force. The tangential stress 
condition (TSC) and dynamic boundary condition (DBC) become 

( T n ) . t  = 0, 
(Tn).n = 2aH, 

r = R, 

r = R. 

T is the Newtonian stress tensor and H the mean curvature of the droplet surface. The 
left-hand side of (2.8) contains only friction terms which are known from u. The 
pressure p contained in the left-hand side of the dynamic boundary condition (2.9) is 
given by line integration of the Navier-Stokes equation (2.5). 

Computational results are non-dimensionalized using ro and T, = (pr,3/3rr)i as scale 
factors for length and time. 

3. Linear oscillations of a viscous droplet 
A simple analytical method of finding partial solutions of linearized Navier-Stokes 

problems was given by Brosa (1986, 1988). These partial solutions applied below to 
describe linear oscillations of a viscous droplet were found to be also useful for 
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Nonlinear dynamics of viscous droplets 195 

investigations of the corresponding nonlinear problem (4 4). In Appendix A results 
obtained previously by Prosperetti (1977, 1980a) are recapitulated to illustrate the 
advantages of Brosa’s modes ansatz. 

The partial solutions of the linearized Navier-Stokes equation in the case of 
rotational symmetry and free boundary conditions are given in the following form 
(Appendix B) : 

, - - e - ~ t  [b, n v x v x { v j j [ ( h / ”p r ]  PJCOS S)} + cp V { ( r / r J L  q c o s  O)}], (3.1) 
and p ,  = pit e-At ce(r/rJ ~ ( C O S  0). (3.2) 

al(t) = a: e-Af. (3.3) 
Owing to linearity, a, will have the same time dependence as D ,  and p l :  

Inserting (3.1)-(3.3) into the linearized forms of the boundary conditions (2.7k(2.9) 
and making use of the orthogonality of the Legendre polynomials one obtains a 
homogeneous system of equations for the amplitudes bp, cp and a;. The condition of 
non-trivial solutions for this system yields after several algebraic transformations 

det(x) = 41(1-1)(l+2)-2x2+2, -(.xj,(x)) 
x dx 

(3.5) 
a4 := -L?2(ri/v)2 (3.6) 

LIZ:= (cF/pr;)l(Z- 1)(1+2). (3.7) 

a 4 1  d 
+[-4Z(Z+2)(Z2- 1)+4Px2-x4+a4-2(1+ 1)a4/~’]j,(.x) = 0, (3.4) 

[ 
x := (+)t rn,  

The characteristic equation (3.4) is equivalent to that given by Chandrasekhar (1961, 
chapter X, equation (280)). 52 is the eigenfrequency in the case of an ideal fluid. The 
existence of periodic solutions depends on the value of \a21 which plays the role of an 
1-dependent Reynolds number. In the asymptotic case of small viscosity (lz21 + co) and 
oscillatory motion (x is complex) an analytical solution of (3.4), namely Lamb’s 
irrotational approximation 

follows. In general the complex roots of det (x) must be found numerically. Figure 2 
shows the results for 1 = 2. For large values of 1a21 two conjugate roots are obtained. 
When la21 increases from la:,zt( to infinity, they form two branches in the complex plane 
of x. These branches represent weakly damped oscillations. In the limit laal + co the 
damping vanishes, i.e. the relation IRe (x)/Im (x)l becomes unity. With decreasing la21 
damping increases until both branches combine at x = xCTit (Id1 = Izfritl), and an 
oscillatory motion is no longer possible. Further decrease of Ia21 leads to two real roots, 
describing aperiodic decay of droplet deformations. In the first case x tends to zero 
with 1a21 whereas in the second x tends to x,,. In addition to this pair of solutions, which 
depends strongly upon la21, there exists an infinite spectrum of nearly constant real 
roots. These represent internal vortices of the droplet flow and give rise to strongly 
dissipative modes. In figure 2 black squares mark the first three solutions. It is 
surprising that these roots and therefore the corresponding velocity fields vary only 
weakly as la21 changes from zero to infinity. The zero-maps for the higher wavenumbers 
( I  > 2) look similar to that in figure 2. 

In contrast to the inviscid analysis the characteristic equation (3.4) has non-trivial 
solutions for Z = 1. This infinite set of real roots - not mentioned by other authors - 
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FIGURE 2. Map of roots of the characteristic equation (3.4) for polar wavenumber 1 = 2. 
The arrows indicate the direction of increasing /a2/. 

I I I X m t  XO X11 X21 X31 X u  -%I1 
~ ~ ~ 1 3.87 7.44 10.7 13.9 17.1 
- - - 

X3f 

2 3.69 1.89 2.67 5.32 
3 8.82 2.85 4.0 6.63 
4 15.4 3.71 5.16 7.89 
5 23.6 4.51 6.25 9.11 
6 33.2 5.29 7.29 10.3 
7 44.4 6.06 8.32 11.5 
8 57.1 6.81 9.33 12.6 

- 
X4 i X 5 i  X6l  x?l 

8.86 12.2 15.4 18.6 
10.2 13.6 16.8 20.0 
11.5 14.9 18.2 21.4 
12.8 16.2 19.6 22.8 
14.1 17.5 20.9 24.2 
15.3 18.8 22.2 25.5 
16.5 20.1 23.5 26.9 

TABLE 1. Ia~J, xCrit, .'co and the roots of the first five strongly dissipative modes for given polar 
wavenumbers 1 = 1 ... 8. Owing to the weak dependence on /a2/ (for I k 2) the roots of the strongly 
dissipative modes are only approximate values. 

is independent of 121 and gives rise to strongly dissipative modes, describing internal 
velocity fields which leave the droplet surface at rest. In fact there are no a,- 
deformations. 

Summarizing, we obtain the discrete spectrum of eigenvalues 

{h,,( i= 1,2 ,...; l =  1,2 ,... >, (3.9) 
characterized by radial and polar wavenumbers i and 1. Each pair of complex solutions 
is defined as A,, and A,l where the imaginary part of A,, is supposed to be positive. The 
additional damping constants of the strongly dissipative modes are enumerated with 
radial wavenumbers i 3 3. In the case of )a2) < I C L , ~ , . ~ ~ ~  or I = 1 only real eigenvalues 
occur; they are numbered with monotonically increasing numbers i 2 1. The roots {x iJ  
of (3.4) are labelled in the same way (see figure 2). Table 1 displays the most important 
values for polar numbers 1 = 1 . . . 8. 
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Nonlinear dynamics of viscous droplets 197 

The amplitudes byl, c!! and a:l of the mode system can be found from the 
homogeneous equation system formed by the linerized boundary conditions. As one of 
the amplitudes is arbitrary we can choose b:l in a way that normalizes the partial 
solutions of the vorticity : 

wiL(r, 0) e+ = b:, V x V x V x 

(3.10) 

(3.11) 

In (3.10) eq = e, x e, denotes the unit vector in the azimuthal direction. Defining 

bJr, 0) = b:l V x V x 

P,(cosO)sinO , (3.12) 1 
cl(r, 0) = Vyi,(r, 0) = V 

+l rl-l 

= e,1,P,(cos0)-eoTP,(cos0)sin0, (3.13) 
r0 yo 

whereji denotes the derivative of&, we can expand any linear droplet oscillation of the 
Ith surface mode in the following way: 

Each mode 

(3.14) 

(3.15) 

contributes to surface deformation (afl), vortex flow (bi,) and potential flow (c:~ cJ.  

4. Mode expansion and dynamics of nonlinear droplet oscillations 
In this section we introduce a new approach to the nonlinear free boundary problem 

(2.1)-(2.9) which allows us to find a semi-analytical solution by mode expansion and 
application of the variational principle of Gauss to the hydrodynamic equations. It is 
based on the following premises : 

(i) The boundary conditions are used either to eliminate dependent variables or 
become additional constraints on the vorticity equation. 

(ii) The partial solutions provided by mode analysis must certainly be modified. 
(iii) The linear and low viscous limits must result. 
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FIGURE 3. (a) Real and (b) imaginary part of the velocity field b,, (definition (3.12)) inside an 
undeformed droplet. The dimensionless viscosity of Y = 0.01 123r:/T, (la2] = 145.4 in the case of 
1 = 2) corresponds to droplets observed in our experiments. 

FIGURE 4. AS figure 3 but within a weakly deformed droplet, and the lengthscale of the flow 
vectors is halved. 

The surface parameterization is given by (2.1). The mode expansions of the velocity 
field and vorticity contain several modifications : 

10 i o  10 

4 y >  0,f) = c c B,z(t) b&-, 8; a, . . . a,) + c c,(O CI(Y,  a (4.1) 
z=1 i=l 1=1 

First the fixed coupling c, = c Bi, cyl of the potential and vortex modes is removed. In 
the linear analysis this coupling arises because the tangential stress of each velocity 
mode b,, + c:l c, vanishes at the undeformed droplet surface. Obviously this cannot hold 
in the case of nonlinear deformations. 

Furthermore biz and wil become dependent on the surface parameters. This 
modification generates reasonable vortex modes for arbitrary droplet shapes. The 
former modes (3.10) are not appropriate as the spherical Bessel functions j ,  with 
complex argument grow exponentially. Therefore the vorticity of the weakly damped 
modes is concentrated in a sheet below the droplet surface (see figure 3), and its 
thickness vanishes with the damping. This is a mathematical equivalent of Lamb's 
irrotational approximation where potential flow inside the droplet and finite vorticity 
at the surface are assumed. For the same reason the boundary layers of the modes 
(3.15) change significantly even if the deformations of the droplet are small (see 
figure 4). 

It is expected that the boundary layers should adjust their structures to the actual 
droplet shape. Indeed, this is accomplished by modifying the argument of the spherical 
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Bessel functions in (3.12), substituting for ro the time- and angle-dependent droplet 
radius 

yielding 

Y Y 

Figure 5 shows that the new vortex modes (4.5) behave as expected, i.e. their boundary 
layers agree with the droplet surface. Unfortunately the simple modification (4.4) not 
only results in rather complicated formulae for the derivatives of biz but it also 
produces singularities at the origin 0. In particular, singularities of wiz, V x V x bi, and 
V x V x {wil ep}  occur for I = 1, I = 1,2 and I = 1,2,3, respectively. This is a result of 
the angle-dependent scaling of the radius r which produces distortions everywhere, 
especially close to the origin. We could avoid singularities at the expense of more 
complicated modifications and thus even more complicated formulae for the 
derivatives. Therefore we keep the scaling (4.4)' trying rather to eliminate the influence 
of singularities on the overall solution. This is possible because the effects of vorticity 
are only relevant close to the surface. Hence, without losing accuracy we may split the 
droplet interior into two domains: a little sphere of radius E surrounding the origin 
where we set the rotational part of the flow equal to zero, and the rest where (4.5) is 
valid. The thickness of the 'vortex' layer depends on the viscosity; therefore B should 
remain small compared to ro in order to assure validity of the solution for highly 
viscous liquids. The irrotational approximation of Lamb and the nonlinear droplet 
model of Lundgren & Mansour (1988) are limiting cases of this boundary-layer 
approximation. 

The potential modes cz (defined in (3.13)) were used previously to describe the 
inviscid flow in the nonlinear case (Becker et al. 1991). They are taken without any 
modification. 

With the mode expansion (2.1) and (4.1 j defined so far the mean square errors of the 
governing equations (2.6)-(2.9) are defined in the following way: 

+ e , - ( J ~ V x V x w - v x ( ( u x w ) ) ] ~ ,  (4.7) 

(4.81 

(4.9) 

[ u s  (Re, - z0 Re,) - R 3, R]* d cos 0, 

x;sc = - 1 [(Tn).tI2dcos0, 
P V  -1 

x iBC = 1 l 1  [-(Tn).n-~H]'dcos0. 
-1 P P 

(4.10) 

The problem is solved by minimizing the least-square error xFe of the vorticity 
equation with the constraints given by minimizing (4.8)-(4.10). 
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FIGURE 5.  (a) Real and (b) imaginary part of b,, (definition (4.5)) within a weakly deformed 
droplet, obtained with the viscosity and lengthscale of figure 3. 

It turns out to be appropriate to choose the surface parameters a, and the amplitude 
Biz of the vorticity as independent variables. Hence, the amplitudes c, of the potential 
flow as well as the time derivative bz and &, must be found by variation. 

The potential flow is determined by the tangential stress condition: 

xgsc = /dcosB[ 3 3 B,,{2(n.V)bi ,+n x V x b, , } - t  
1=1 i=l 

(4.1 1) 
The amplitude c, cannot: be evaluated from (4.11) because the tangential stress of the 
homogeneous flow cl=l vanishes. We proceed, eliminating c, and the surface velocities 
u, from the kinematic boundary condition : 

1 10 +x c1{2(n.V)c,) . t  +min 

=$. 2xgsc/ac1 = 0, I = 2 . . . I,. 
1=2 

\1=2 z=1 i = 1  

axiBC.ac1 = 0, axiBC/aul = 0, i = 2 ... I,. (4.12) 
The results of (4.11) and (4.12) can formally be written as 

I ,  i, 
c1 = 2 2 C;,(a,...a,o>Bi,, I =  1 ... I, ,  (4.13) 

a, = C Z: Ki,(a, ... a,) Eim, (4.14) 

m-1 i-1 

10 $0 

I = 2 .. . I,, 
m=1 z=1 

4, i" 
(4.15) -S=-C-u, = -  xS,,(a, ... a,o>Bi,. 

So far all expansion parameters for velocities and the first differential equations, 
namely (4.14) are known. 

The accelerations, i.e. differential equations of the form B,, = . . . must be derived 
from the dynamic boundary condition (2.9) and the vorticity equation (2.6) in one step. 
These equations are fundamentally of differing importance to the problem. Whereas 
the vorticity equation plays its role only for viscous flow, the driving force for 
oscillations - the surface tension - dominates droplet dynamics in general, independent 

as 

1=2 aa, m = l  i = l  
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Nonlinear dynamics of viscous droplets 20 1 

of the presence of viscous effects. Therefore it is most important to satisfy the dynamic 
boundary condition with the smallest possible error. Hence we must determine the 
unknown time derivatives Bi, by minimizing the mean error x tBc  without any regard 
to the value of xtE. The remaining flexibility of the modes must be used to satisfy the 
vorticity equation. 

Accordingly we rewrite the dynamic boundary condition (2.9), substituting the 
pressure by line integration of the Navier-Stokes equation (2.5) : 

H ;  (4.16) 2F 1 (a, u - + ( v -  V) o + Y V x V x u).dr + t, + v(2(n. V) u) .n  = - 
P 

2, is a time-dependent constant of integration and equal to -2r/pr, in the linear limit. 
By inserting expansion (4.1) into (4.16), the mean-square error (4.10) is transformed to 

= dcos OF;nc. (4.17) 

In (4.17) the lower integration limit r = 0 has been replaced by t in order to separate 
the singularities of the rotational modes (4.5). l$,BC is the local error of the dynamic 
boundary condition. 

If viscous effects were absent, the flow would be described by the velocity potential 
C c , ~ ,  alone. In accordance with the boundary-layer argument, the bulk Row can be 
considered as nearly irrotational in the case of damped oscillations also. Hence, x iBr  
become small if we choose formally the time derivatives i., as variational parameters. 
From (4.17) we see that this variation is equivalent to the projection of FDBC onto the 
potentials 91,. Thus we obtain the following set of l, + 1 independent equations from the 
dynamic boundary condition : 

(4.18) 

Of course, these additional constraints are calculated after inserting (4.13) into FDBC : 

2g 
P 

( Y V X V X U - U X W ) . ~ ~ - Y { ~ ( ~ * V ) V } - ~ - - H .  (4.19) 

Now the outstanding differential equations result simply from the variation xbE + rnin 
with the constraints (4.18): 

h, = 0,  l = 0 ... 1,; 
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The vorticity equation and dynamic boundary equation are weighted automatically 
because the set of equations (4.20) determines not only BtI and C, but also the Lagrange 
multipliers K,. In the linear limit they become equal to zero. The constraint (4.18), 
appearing as the first ( I ,  -t 1) equations of (4.20), ensure the correct solution for the low 
viscous limit. 

Owing to the complex roots x , ~  of the characteristic equation (3.13) the parameters 
determined by the minimization procedure are generally complex numbers. To find real 
modes and real amplitudes every expansion containing the weakly damped modes or 
their derivatives must be rearranged to separate their real and imaginary parts. For 
simplicity our notation describes full complex functions. 

The prime errors (4.7k(4.10) are normalized by referring them to the mean-square 
values of the corresponding functions that are approximated by the mode expansions : 

/j:l r r ' d r  dcos 0 C C B,,(C?, w, , )+ep . (vV x V x w - V  x ( v  x w)) , 
X L e 1  = X L  r1 %Y1 7 

(4.21) 

1=17=1 

These relations are used to measure the systematic errors of the governing equations 

The final differential equations (4.14) and (4.20) are solved numerically applying the 

(i) extrapolation in rational functions and polynomial extrapolation to evaluate 

(ii) Gauss elimination to solve systems of algebraic equations; 
(iii) a modified Runge-Kutta algorithin (Fehlberg 1970) to integrate ordinary 

differential equations; and 
(iv) approximation of the spherical Bessel functions by Legendre polynomials to 

reduce computational time (Amos 1986). 
Finally let us consider the linear limit of the model. We have chosen the surface 

coefficients a, and the vorticity amplitudes B,, a degrees of freedom. Therefore one 
might expect inconsistency with the linear theory in which only the Bi, are independent 
parameters and the a, are always given by 

(2.6)-(2.9). 

following standard methods : 

integrals and derivatives (Stoer 1972); 

Bila!,-a, = 0, 1 = 2 ... 1, 
i= l  

(4.25) 

(see (3.14)). This problem would be avoided if the fixed relations (4.25) and their time 
derivatives were considered as additional constraints. However, a greater flexibility of 
the mode expansions seems preferable to us. The example shown in figure 6 confirms 
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FIGURE 6.  Computation in the linear limit. Truncation numbers and initial conditions are i, = 5 ,  
I, = 2, a,(O) = 0.02 and BJO) = 0. Thc radius of the irrotational region E = 0. lr,, and the dimensionless 
viscosity v = 0.001 23r i /T , .  The solid curves show the results of the nonlinear model. The dashed 
curves follow from linear theory (see (3.14)). They start at t = 0.36T, and t = 1.17T, indicated by solid 
vertical lines. Their initial conditions are the actual values BJt)  of the nonlinear numerical solution. 

that the present model behaves correctly in the linear limit. The computation (solid 
lines) begins at initial conditions not allowed by (4.25). Comparisons with the linear 
solutions (dashed lines) following from (3.14) show initially some deviations. However, 
as can be seen, these deviations disappear with time, i.e. the nonlinear model 
approaches the linear solutions. 

5. Results 
5.1. Initial conditions 

Our experimental method of generating and evaluating oscillating droplets has already 
been described in recently published papers (Hiller & Kowalewski 1989; Becker et al. 
1991). Strongly deformed axisymmetric droplets of about 0.5 mm in diameter are 
produced by the controlled breakup of a liquid jet, and the time evolution of a droplet 
cross-section is observed using a stroboscopic illumination technique. Further analysis 
consists of fitting the function (2.1) with a truncation number 1, = 5 to the recorded 
droplet shapes. This yields the surface parameters a2 . . . a5 and the equivolumetric 
radius Y, as functions of time. Usually the droplet radius decreases weakly with time 
owing to evaporation. In the present model we neglect this small effect and assume for 
Y,, its mean experimental value. 

In the following we compare two typical experimental results already given in Becker 
ct al. (1991, figures 5 and 6) with the theoretical predictions. Figure 7 shows an example 
with large initial amplitudes. 
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Time (ms) Time (ms) 
FIGURE 7. Experimental result for an ethanol droplet oscillating in air. The surface parameters 
(dotted lines) a, . . . a5 are shown as functions of time. Each dot corresponds to each time the droplet 
cross-section was recorded and analysed. The mean equivolumetric radius of this measurement was 
r,, = 207 km. t,, t ,  and t ,  mark points in time where computations with the model were started. 

The flow field inside the droplet cannot be determined experimentally. Observations 
of droplets yield solely the surface parameters a, and eventually their time derivatives 
ci, (which can be evaluated by interpolating a,(tj). Therefore, it is difficult to formulate 
exact adequate initial conditions for the model. However, the a, and ci, contain more 
information than one might expect. With the help of two additional assumptions it is 
possible to compute reasonable initial amplitudes Bi, from the available experimental 
data. These assumptions, justified by comparison of numerical and experimental data, 
are: (i) the strongly dissipative modes can be neglected, and (ii) the amplitudes obey the 
relations (4.25). These postulates correspond to the irrotational case where the velocity 
field is determined by the surface motion only. Accordingly the tangential stress 
conditions, (4.11 j yields 

4, 2 

C ,  = C C C:, (a, ... a,) Bim, I = 2 ... I,, (5.1) 
m=2 6=1 

and the kinematic boundary condition (4.12) can be rewritten in the form 

xgBC = [d cos 0 [ (cl c, + 
1=2 i=l m=2 

The couplings (4.25) now become additional constraints on (5.2) because variation of 
x'fisc with respect to c1 and Bil gives only I,, independent equations. Analogously to 
(4.20) we obtain the following system of algebraic equations : 

1, 2 

Kl = U, - C u:, B,, = 0, I = 2 . . . I,, 
,=% {=I 

All our nonlinear computations presented in the following sections were started using 
(5.3) to calculate initial conditions for the new model from the initial values of the 
surface parameters a, and their velocities ci,. 
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FIGURE 8. Computational results (solid lines) starting at t ,  (cf. figure 7). Tn addition the experimental 
data (dotted lines) and the predictions of linear theory (dashed lines) are included. The initial 
conditions and model parameters are a, = 0, a, = 0.086, a, = 0.065, a5 = -0.03, Li, = 0.9/T,, 
aa = -0.31/T,, a, = -0.31/T,,, d, = 0.18/T,, v = 0.01123r%/T,, i, = 3, 1, = 6 and t = 0 . 1 ~ ~ .  

5.2. Comparison with experiments 
In figure 7 t,, t.L and t ,  mark three zero crossings of a,(t), separated in each case by two 
oscillation periods. The experimental data at these points are used as initial conditions 
to start the calculation for the next interval. Hence, simulation of the whole 
experimental run is done in three steps, covering three regions of droplet oscillations : 
strong nonlinear (max laz(t)l z 0.6), nonlinear (max la,(t)l z 0.4), and quasi-linear 
(max la,(t)l z 0.2). 

Calculations were performed using the physical data of the liquid used in the 
experiment, i.e. p = 803 kg/m3, B = 22.9 x in2/s, respect- 
ively. The free parameters of the nonlinear model are chosen to be i, = 3, I, = 6 and 
E = 0. I r,. Although the large-amplitude oscillations were sometimes analysed 
experimentally with 1, = 10, amplitudes found for I > 5 are too small to be evaluated 
with reliable accuracy. The initial values of a6 and u6 have been set to zero as they are 
also not significant for the overall accuracy of the numerical analysis. 

Figure 8 shows results of the first computation starting at t,. They are compared with 
the experimental data and results of the linear model 

N/m, I ,  = 1.49 x 

al(0 = exp { - Re ( A l l )  Q(A1, cos {Im (All)  t> + A,, sin {Im (A,,) t}) ,  (5.4) 

where the constants A,,  and A, ,  correspond to the initial values of a,  and CE,. 
The strongest nonlinearities are visible shortly after the droplet is generated at the 

tip of the jet. The maximum droplet deformation, i.e. the maximum value of Ic all, is 
approximately 0.8. One can see that, unlike the case of the linear theory, the present 
model describes the experimental data very well. The following effects of nonlinearities 
can be readily seen, when comparing with the linear model: 

(a) The oscillation period of the fundamental surface mode a, increases. The surface 
displacements are asymmetrical : the maxima (prolate deformation) are larger and 
flatter, whereas minima are sharper and have a smaller value. These effects are also 
typical for inviscid nonlinear models (Tsamopoulos & Brown 1983). 

(b) The observed nonlinearity of the first higher-order mode a3 is even stronger; it 
oscillates faster for negative displacements of a, and clearly slower for positive ones. 
The combined action of a, and a3 shows that the average deformation of the droplet 
changes faster when the droplet has an oblate shape and slower when it is elongated. 
These periodic frequency modulations can be understood in terms of effective masses. 
In inviscid theory the kinetic energy of the droplet can be written as +ZMITnulhm. 
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FIGURE 9. Computational results (solid lines) starting at t ,  (cf. figure 7). In addition the experimental 
data (dotted lines) and the predictions of linear thcory (dashed lines) are included. The 
initial conditions are a2 = 0, a, = 0.026, a, = 0.009, a6 = 0.001, a, = 0.65/T,, a, = O.O69/T,, 
jl, = -O.O58/T , ,  a, = O.OZZ/T,. The model parameters u, i,, I,,, F: are those of figure 8. 

U4 0.03 

-0.4 4 . 0 3  

0 2 4 6 8 10 0 2 4 6 8 10 
Time (To) Time (To) 

FIGURE 10. Computational results of the nonlinear viscous model (solid lines) taken from figure 9 
compared with a corresponding inviscid calculation (dashed lines). The solution of the inviscid model 
(Becker et al. 199 1) has been evaluated with the maximum polar wavenumber l = 6 in the surface 
parametrization and velocity potential expansion. 

Each diagonal element of the mass tensor M,, gives the inertia of a single surface wave 
and the non-diagonal elements describe the nonlinear couplings. Linearization leads to 
a diagonal matrix and effective masses M,, cc S,,/l(21+ 1). In the nonlinear case the 
matrix elements depend on the instantaneous droplet shape and it can be shown that 
a shape elongation yields growth of its diagonal elements. 

(c) The third higher oscillation mode u4 shows a strong coupling with u2. Except for 
the small ripple at t 2 3T,, the maxima of u4 coincide quite well with the extremes of 
u2. According to the linear analysis (compare (3.7)), one might rather expect the 
frequency ratio 1 : 3 instead of the observed ratio 1 :2 and an arbitrary phase shift 
between both amplitudes. This indicates that predictions of the linear theory cannot be 
related to the real behaviour of u4. This holds also for amplitude us although the mode 
coupling is not so straightforward. 

The predictions of the nonlinear model for the second interval t ,  - t ,  are shown in 
figure 9. Comparing it with the previous interval (figure S), one can see that the 
quantitative coincidence with the expcrimental data is clearly improved although the 
nonlinear characteristics remain. The short-time behaviour of the oscillation 
amplitudes can also be relatively well described by the former inviscid nonlinear model 
(figure lo). 

The results of the third computational run which starts at t ,  are displayed in figure 
11 together with both previous computations. They are compared with the measured 

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0022112094003290
Downloaded from https:/www.cambridge.org/core. org 1, on 17 Mar 2017 at 05:36:19, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0022112094003290
https:/www.cambridge.org/core


Nonlinear dynamics of viscous droplets 207 

a5 

0 5 10 15 20 25 0 5 10 15 20 25 
Time (To) Time (To) 

FIGURE 11. Three successive computations (solid lines) starting at t,, t ,  and t, (cf. figure 7), compared 
with the experiment (dotted lines). The discontinuity of the theoretical curves at t = 1, and t -= t, is 
due to the restarting of calculations. The initial conditions for t ,  are up = 0, us = 0.0003, a4 = 0.0051, 
a5 = 0.001, d, = 0.384/T,, u, = 0.029/T,, b4 = -0.0034/T,, cis = -O.O031/T,. The model parameters 
v, i,, I,, E are those of figure 8. 
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FIGURE 12. Relative mean errors of the tangential stress conditions ( x ; ~ ~ + ) ,  kinematic boundary 
condition (x&,+J, dynamic boundary condition ( x & ~ ~ ~ )  and vorticity equation (xF,-,,,> (see 
definitions (4.21)-(4.24)) corresponding to the oscillation shown in figure 1 1. 

oscillation amplitudes. It can be seen that the long-time behaviour of a, and a3 shows 
oscillations typical of the damped harmonic oscillator. Asymptotically both a, and a3 
approach the predictions of the linear theory. Surprisingly, even in this last-analysed 
interval the amplitude a, remains always positive, indicating the presence of the 
nonlinear mode coupling with a,. The surface wave a6 is not displayed as its small 
amplitudes are not of interest. 

Figure 12 shows the corresponding systematic errors (4.21)-(4.24) for the three 
calculation runs. If strong nonlinearities are present, the tangential stress condition and 
vorticity equation cannot be solved appropriately. The maximum relative mean errors 
of these equations are of the order of 100%. Nevertheless, kinematic and dynamic 
boundary conditions, which determine the droplet dynamics, are always solved with 
negligible errors and the results are in accordance with the experiment. This validates 
our approximation of treating the boundary conditions as additional constraints on 
the equation of motion. The kinematic and especially the dynamic boundary 
conditions are essential for the irrotational inviscid droplet dynamics. They remain 
dominant in the viscous case also. The tangential stress condition and the vorticity 
equation seem to play a secondary role, mainly affecting the amplitudes by damping. 

One example of modelling another experimental run, characterized by moderate 
excitation amplitudes, is shown in figure 13 (compare also figure 4 in Becker et al. 
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FIGURE 13. Experimental (dotted lines) and theoretical (solid lines) results of an cthanol droplet 
oscillating at a moderate excitation amplitude. The initial conditions are: a2 = 0, a, = 0.061, 
a4 = 0.042, a5 = -0.002, a, = 0.625/T,,  a, = -0.065/T,, a, = 0.085/T,, as = -0.103/T,,. The 
mean equivolumetric radius of the droplet = 0.1733 mm results in a dimensionless viscosity 
of I’ = 0.01227ri/T,. The other parameters are i, = 3, I ,  = 6 and e = 0 . 1 ~ ~ .  At t = t,,, the observed 
droplet merges with a satellite. 
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0.005 

a5 -0.005 

-0.015 

-0.025 
-0.025 -0.015 -0.005 0.005 0.015 

a2a3 

FIGURE 14. Phase-space relations of mode couplings: (a) between a4 and a:; (b) between aj and 
nB a3. The dots represent numerical results obtained with the present model, taken from the data set of 
figure 11 for t > ST , .  The slopes of the fitted straight lines are (G) 0.47 and (b) 0.99. 

1991). At t = t,,, x O S T ,  the observed droplet merges with a satellite droplet. It is 
interesting that this relatively violent disturbance has an appreciable influence only on 
the higher surface waves a, and as.  However, as time passes, the severe deviations from 
the model predictions for these two amplitudes diminish. Finally the experimental and 
theoretical data coincide again, at least qualitatively. This leads to the assumption that 
a4 and a, are regenerated by nonlinear interactions with a2 and a3 and that their long- 
time behaviour is independent of initial disturbances. 

5.3. Mode couplings 
The mode interaction for a4 and a, with initial conditions taken from the experiments 
can be simply analysed in the phase space. These phase-space investigations have been 
done using a multi-parameter editor Relation (Wilkening 1992). In particular, 
reasonable results seem to be offered by the relations a4 = a,(.:) and a, = a5(a2a3) 
shown in figure 14. According to these representations the couplings of a4 and a, can 
be approximately described by 

a4 z C, a: and ub x C, a, as. ( 5 . 5 )  
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FIGURE 15. Calculated oscillations with weak viscous effects-compare with figures 7 and 8 of 
Lundgren & Mansour (1989). The dimensionless viscosity of 7 = 4.0825 x 10-%;/T, corresponds to 
their Reynolds number of 2000. The time is scaled with (3/2)3 T,. The other model parameters are 
given in the text. 

Computations performed for several initial conditions (taken from experiments with 
ethanol and water droplets) indicate that these nonlinear couplings are in most cases 
the same and are approximately given by C, z 0.45 and C, z 0.9. The phenomena can 
be understood in terms of driving forces proportional to a: and a, a3 which are present 
in the differential equations for a4 and a5. The structures of these nonlinearity terms 
also follow from parity. 

Asymptotically the higher modes are always forced oscillators, i.e. despite 
diminishing oscillation amplitudes the higher modes do not reach their linear solution 
(cf. figure 11). This is because the damping increases with the wavenumber 1 (cf. (3.8)), 
and within a short time the higher modes become dependent solely on the energy 
transferred from the fundamental mode. Such a mode locking mechanism, selected by 
the linear damping constants, has already been described in Haken (1990, pp. 
21 1-217). 

5.4. Additional computations and accuracy 
As was shown in the previous sections, it is typical in experimental observations that 
the lower modes ( I  = 2,3) contain most of the energy and that they are more or less the 
only degrees of freedom of surface motion. The higher modes, of lower energy, are in 
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FIGURE 16. Transition from underdamped to critically damped conditions - compare with figure 12 
of Basaran (1992). Variation of the droplet’s prolate aspect ratio a/b  = R(0, t)/R(+n, t) .  The time 
is scaled with t /3T , .  Calculations for three dimensionless viscosities (Reynolds numbers) : 
v = 5.7735 x 10-3r:/q (Re = 100) (solid line), v = 5.7735 x lO-’r;/7; (Re = 10) (dashed line), 
v = 5.7735 x lW1r;/T, (Re = 1) (dotted line). The initial conditions are given in the text. The other 
model parameters are i, = 4, I, = 6 and B = O.lro. 

fact generated by strong nonlinear coupling with a2 and ug. Such energy distributions, 
clearly noticeable in the damping constants of Lamb’s approximation (3.8), seem to be 
typical of natural droplet oscillations. Of course, one might propose any artificial initial 
condition. 

One interesting example with very low viscosity has been given by Lundgren & 
Mansour (1989, figures 7 and 8). Their Reynolds number of 2000 corresponds to a 
dimensionless viscosity of v = 4.0825 x 10-4r:/T,. We have repeated their calculation 
with i, = 3,  lo = 8 and e = O.lro using their initial conditions, i.e. 

a4(0) = 0.3, u4(0) = 0 

and zero for the other surface modes. The computed trajectories (figure 15) coincide 
quite well with those of Lundgren & Mansour, except for a slight discrepancy in the 
extreme values of the amplitudes. The nonlinear characteristics are the same in both 
calculations : second-order coupling of ua and u6 and third-order coupling of as with the 
energy carrier u4. 

Another comparison is shown in figure 16. We have repeated calculations of Basaran 
(1992, figure 12) for a droplet starting to oscillate with only the second mode excited, 
i.e. a,(O) = 0.4, u2(0) = 0 and zero for the other surface modes. The computations have 
been performed for three difference viscosities (Basaran’s Reynolds numbers 100, 10 
and l), demonstrating transition from damped oscillations to an aperiodic decay. 

It is worth mentioning that all of Basaran’s nonlinear calculations showed aperiodic 
decay beyond a critical Reynolds number which closely corresponds to the critical 
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value given by the linear theory. This justifies our approach of describing nonlinear 
droplet oscillations in terms of the linear modes. 

The accuracy of our numerical solutions depends on the truncation numbers io, I,  
and the assumed thickness of the vortex layer ( y o - & ) .  It is rather difficult to find 
parameters justifying these values apriori. To find the optimal truncation numbers and 
the optimal radius c several control calculations have been performed to analyse the 
influence of these parameters on the solution and its minimization errors (Becker 
1991). It was found that for the cases analysed optimal values of in and 1, are 3 and 6, 
respectively. Larger truncation numbers involve long computation times without 
significant improvement of the resulting accuracy. The radius F of the zero-vorticity 
domain could be varied from 0.05 ,  to 0 . 3 ~ ~  without noticeable deviations of the 
generated solutions. 

6. Concluding remarks 
A new droplet model for nonlinear viscous oscillations has been developed. The 

method is based on mode expansions with modified solutions of the linear problem and 
the application of the variational principle of Gauss. Computational results are in 
accordance with experimental data and numerical calculations of other authors up to 
relative droplet deformations of 80 % of the equilibrium radius. Typical nonlinear 
characteristics like frequency modulation and mode coupling are found to be dominant 
even in the case of small deformations. Consequently, considerable discrepancies 
between the predictions of linear theory and the nonlinear dynamics are observed. 

The present droplet model cannot describe such strong effects as droplet rupture. 
Also some fine details of the internal flow may become difficult to accurately model. 
However, our main interest, namely experimentally observable droplet deformations, 
are properly described over a wide range of the excitation amplitudes. The method also 
allow a wide variation of the dimensionless viscosity (oscillation Reynolds number), 
describing both aperiodic decay of droplet deformations and oscillations with nearly 
vanishing damping. This flexibility cannot be obtained easily by the available pure 
numerical methods. 

The evaluation of surface and volume integrals at every time step involves relatively 
long computation times, limiting the applicability in solving practical problems. 
However, it has been found that with the help of the present model it is possible to 
construct simple differential equations which approximate the nonlinear behaviour of 
the surface parameters al(t) and reduce the computational time by two orders of 
magnitude. Manipulating the coefficients of these equations, i.e. surface tension and 
viscosity, it is feasible to obtain within a short time an adequate description of the 
selected experimental data. Such a model can be easily applied to measure dynamic 
surface tension and viscosity by the oscillating droplet method. 
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Appendix A 
Looking at the linear solution given in 33, we can see the following problem. How 

can the amplitudes of the vorticity field Bi, (3.15) be calculated if only the surface 
amplitude a, and the velocity field vL are given a priori? This question is not a trivial 
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one. Consider a droplet at rest which starts to oscillate due to an initial surface 
deformation. To solve this special problem we must know a non-trivial set of 
amplitudes Bi, that, combined with the velocities b,, + c% c l ,  assure a zero velocity field 
inside the droplet. Obviously these amplitudes remain unknown without further 
analysis. The reason is that any initial value problem is solved by mode analysis only 
if the system of equations is self-adjoint, i.e. if all its eigenvalues are real. 

Let us apply Brosa's (1986, 1988) separation ansatz (€3 3) in the following form: 

u,(r, 0, t)  = v x v x (rB(r ,  t )  q c o s  H ) )  + C l ( t )  V((v/r,)l q c o s  H ) ] .  (A 1) 

The corresponding representation of the vorticity yields 

1 V x q ( r ,  8, t )  = - - st B(r,  t )  Pi(cos 0) sin Be4. 
v 

Thus an irrotational initial condition is given by 

a,(t = 0), bt(t = 0),  B(r, I = 0) = 0. 

Applying (A 1) to the linearized boundary conditions we obtain 

(A 4) 
21(P - I )  v I 

4 r0 

(a, B(ro, t )  - - B(r,, t)) + ii,(t) + 28b,(t) +Q2a,(t) = 0, 

where the kinematic boundary condition has been used to eliminate c, and i,. Because 
time and radius dependence have not been separated, the function B(r, t )  has to satisfy 
the diffusion equation 

2 f(1+ 1) a: B(r, t ) + ? a ,  B(r, t)------ 
r2 

which follow from the vorticity equation. 
The dynamic boundary condition (A 4) ensures that for short times and irrotational 

initial conditions every droplet oscillation obeys Lamb's approximation (3.8). This 
holds independently of the value of v. As the droplet starts to oscillate, vorticity is 
generated at the surface owing to the tangential stress condition (A 5). For low fluid 
viscosity the vorticity cannot diffuse inside the droplet (the left side of (A 6) 
diminishes), and Lamb's approximation holds during the full oscillation time. This 
means that an irrotational initial condition is approximated by the weakly damped 
modes in the asymptotic limit of large Reynolds number 121. For larger viscosities the 
initial condition consists of both weakly damped and strongly dissipative modes. The 
latter disappear quickly in time. Hence, as already shown by Prosperetti (1977), the 
long-time behaviour of the droplet will differ from the initial one. 

The analytical solution of the initial value problem (A 3)-(A 6) can be found using 
the standard Laplace transform method with the following conventions for a time 
function f and its Laplace transform 3 

f (A)  = r / i i )e* 'd t ,  Re(A) < 0, 
0 
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Nonlinear dynamics of viscous droplets 213 
Re (,$-is 

27Ci Re (A)+; rz 
f ( t )  = 5 J' f (h )  e-ht dh, Re ( A )  < 0, 

= - C Res {f(h) ecnt> + - , f(h) e-nt dh. 
2:J3 

The sum in the inversion formula (A 8 b) includes all residues of !(A) e-ht with non- 
negative real parts of A. The integral of (A 8 b) represents the counterclockwise 
integration along the infinite semicircle with positive real parts. 

Laplace transform of the system (A 4)-(A 6) with respect to the initial conditions 
(A 3 )  yields after several algebraic transformations : 

(A 9) 

(A 10) 
2(1- I )  r: jL(xr/r")  {Ci,(O) + a,(O) Q 2 / A }  

i?(r,h) = 
lv det (x) 

As expected the singularities of ii, and Ecoincide with the solutions of the characteristic 
equation (3.4). A formula equivalent to (A 9) has already been given by Prosperetti 
(1977) who used a numerical method to obtain the inverse transform. To invert (A 9) 
and (A 10) analytically we make use of (A 8b) and obtain 

B(r, t )  = a,(O) 

where ,ji and det' denote the derivatives ofj,(x) and det (x). 

[bi, + cz  cI 1 I = i . . . m} are linearly dependent for I 2 2, 
The result (A 12) gives rise to the following interpretation: the velocity modes 

i.e. there is one non-trivial 
combination of the amplitudes, namely 

1 1 
bio, xiL det' (xJ ' Bj, K-  

resulting in zero velocity. Moreover /A 12) yields 

(A 13) 

two non-trivial amplitude , -  

combinations for the vorticity modes (wit I i = 1 . . . m} which generate zero vortility for 
r < r,,, namely (A 13) and 

However, if we consider only a finite number of velocity or vorticity modes, it turns out 
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that they are linearly independent. For polar wavenumber I = 1 the independence 
holds in general. This flexibility of the mode system confirms the completeness of 
Brosa's separation formulae. 

Appendix B 
In the case of constant fluid density and in the absence of bulk forces, partial 

solutions of the Stokes equation can be obtained as follows (Brosa 1986). The 
linearized Navier-Stokes equation 

(B 1) 
1 

P 
at u(r, t )  = --Vp(r, t ) - vV  x V x u(r, t )  

and the equation of continuity 
V.u(r , t )  = 0 

are solved using the following representations : 

u(r, t )  = V x { VP(r, I ) )  + V x V x { Vb(r, t ) )  + V(c(r, t ) ) ,  

p(r, f) = -0 2t c(r, 0, 
(B 3) 

(B 4) 

vV2P= a,p, vV2b = a,b (B 5)  

and the Laplace equation v2c = 0, (B 6) 

V =  % + v r ,  (B 7) 

where the scalars p, b and c must satisfy the diffusion equations 

respectively. The supporting vector field V is given by 

where and I: are arbitrary constants. 
For the problem of droplet oscillations it is convenient to choose 

V = r .  (B 8) 

The partial solutions of (B 5 )  and (B 6) in spherical coordinates ( r ,  8, q5) are given by 
(Moon & Spencer 1961): 

P or b cc e - " j , [ ( ~ @ r l  ~ ( 0 ,  $1, 
c cc e-At(r/ro)' qm(8, 4). 

(B 9) 
(B 10) 

j ,  denotes the spherical Bessel functions (Abramowitz & Stegun, chap. 9) and qm the 
spherical harmonics. In the case of rotational symmetry (rn = 0)  the spherical 
harmonics can be substituted by the Legendre polynomials P,(cos 0). 

The velocity fields corresponding to (B 9) and (B 10) have the following forms: 

where e,, e, and eo, are the unit vectors in the radial, polar and azimuthal directions. 
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Nonlinear dynamics of viscous droplets 215 
The tangential stresses of the velocity modes (B 1 1)-(B I3), evaluated on a sphere 

with radius yo, are given by 

for V x (rp) 

for ~ x ~ x ( r b )  

for V c  

for V x (rp) 

2% ($1 
- a,(a, p - /I/ r )  for V x (rp) 

(za,(a, + b/r) + h/v b) for v x v x (rb) (B 15) 

for Vc 

T denotes the Newtonian stress tensor of the corresponding velocity field. According 
to (B 14) and (B 15) the tangential stresses of V x V  x(rh)  and V c  depend on the 
angles of 6' and $ in the same way, namely proportional to 2, qm in the &direction and 
proportional to (a$/sin6') qm in the $-direction. In the case of V x (rp) these 
dependencies are exchanged with respect to the (0, $)-components. Hence, this velocity 
mode produces tangential forces on the surface that cannot be balanced by the other 
modes. The first term V x (rp) of the representation formula (B 3)  therefore vanishes 
if free boundary conditions of a liquid sphere are considered. 
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