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Abstract. When simply put on a solid, a liquid drop usually adopts the shape of a spherical
cap or a puddle depending on its volume and on the wetting conditions. However, when the
drop is subjected to a periodic field, a parametric excitation can induce a transition of shape
and can break the drop’s initial axial symmetry, providing that the pinning forces at the
contact-line are weak enough. Therefore, a standing wave takes place at the drop interface
and induces a periodic motion, which frequency equals half of the excitation frequency. In the
first part, we propose a review of the different situations where star drops can be generated
from various types of periodic excitations. In the second part, we show that similar star drops
can occur in a much less intuitive fashion when the drop is put on an air cushion, where
no periodic motion is imposed a priori. Preliminary experiments as well as theoretical clues
for a hydrodynamic interpretation, suggest that the periodic vibration is due to an inertial
instability in the air layer below the drop.

PACS. PACS-key discribing text of that key – PACS-key discribing text of that key

1 Introduction

In the seek for the dynamical properties of liquids
drops, which are more and more used for discrete
microfluidics applications, various studies have been
devoted to the determination of their eigenmodes
with respect to the response to external forces. In
the linear regime and for invicid spherical drops,
the resonance frequency has been theoretically pre-
dicted a long time ago by Rayleigh and Lamb [1]:

fn =

(

n(n − 1)(n + 2)σ

3πρV

)1/2

(1)

=
1

2π

(

n(n − 1)(n + 2)σ

ρR3

)1/2

(2)

in which fn denotes the resonance frequency of the
nth mode of oscillation, V is the drop volume, R
its radius, γ and ρ the liquid surface tension and
density.

In practice, however, the situation is much more
complex for a number of reasons: (1) the shape is
not spherical, for instance if the drop is put on a
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solid substrate (sessile drop); (2) the drop defor-
mations are large enough to depart from the range
of the linear theory; (3) the prescribed vibration
is anharmonic. A common way to access these dy-
namical properties is to put a sessile drop onto a
mechanical shaker, subjecting the liquid to an os-
cillatory inertial force [2–5]. This geometry allows
for the observation of a host of phenomena from
linear to strongly non-linear behavior, i.e. from sur-
face wave undulations to strong deformations up to
atomization [2]. However, an additional degree of
complexity is brought by the presence of the con-
tact line, which accounts for the liquid-solid inter-
actions at the microscopic scales. Most of the vis-
cous dissipation occurs in the vicinity of the contact
line, and the combination of roughness and chemi-
cal heterogeneity of any real surface leads to a pin-
ning force, quantified by a contact-angle hysteresis
[6]. The eigen-mode of a drop is strongly influenced
by this pinning force [3], but it is possible to remove
this complexity by using a low-friction hydrophobic
substrate [4]. In this case the drop’s eigen frequen-
cies follow a law similar to (2), with a corrective ge-
ometrical pre-factor [5,7] that depends on its shape
- from a flattened sphere to a puddle - and on the
contact-angle [8].
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A drop weakly pinned on its substrate can ex-
perience a shape transition from axisymmetric to
that of finite azimuthal wave-number, giving it the
shape of a star (see Fig. 3). This transition happens
in various situations where a periodic field (accel-
eration, magnetic field, ...) can induce a parametric
forcing in the drop. Since examinations of the flow
inside the drop show more or less regular vortex-
like structures [9], this type of instability can be
utilized on purpose to induce constant mixing or
particle re-suspension. Otherwise, star drops have
been observed when levitated on an air cushion, and
this situation has numerous applications as well,
depending on whether one desires to induce or to
avoid shape oscillations. For example in lens manu-
facture, drops of molten glass can be prevented from
contact with a solid substrate [10] by levitating the
glass above a porous mould. It is also employed as
a viscosimeter for harmful or high-temperature liq-
uids [11]. In the former case, the shape oscillations
have to be avoided, whereas in the latter case they
are desired.

When the drop is sustained by a gas stream go-
ing from underneath [12], the levitating flow is not
a priori time-dependent. However, the drop spon-
taneously exhibits time-periodic oscillations. This
suggests a mechanism that originates from an in-
stability in the flow. Such situation is encountered
also when the drop sits on a warm plate of tempera-
ture T much larger than the boiling temperature of
the liquid, hence experiencing a boiling crisis - so-
called ’Leidenfrost effect’ - with a thin vapour layer
insulating the liquid from the substrate and keeping
the drop in levitation [13–18]. While it has become
apparent that the star shapes come from a para-
metric forcing, originating from a periodic acceler-
ation field, the mechanism for periodic spontaneous
oscillations of the drop is not yet understood. Mech-
anisms invoking thermal effects are invalidated by
the observation of oscillations on a ambient temper-
ature air cushion [12,19], and an analysis only based
on viscous lubrication and capillarity is unable to
reproduce sustained oscillations [20]. The stability
of this air cushion versus vertical oscillations is also
involved in the non-coalescence of droplets on a vi-
brated bath [21,22].

In this paper, we review the current literature
of the formation of facetted star drops in various
experimental situations and we show experimen-
tal results of star formations from liquid puddle
shaken on a super-hydrophobic substrate (section
2). In the second part (section 3) we review situ-
ations on drops put in levitation onto air cushions
that develop similar star shapes, but without any
prescribed periodic excitations. We show the first
experimental evidence of such stars and our data
suggests that their formation indeed originates from
a hydrodynamic instability in the air flow.

Fig. 1. A liquid puddle on a non-wetting substrate vi-
brated in the vertical direction at a frequency fe. Due
to a time-periodic acceleration a(t), the puddle radius
R(t) and height h(t) are time-dependent.

2 Star drops generated by periodic

excitation: a catalogue

2.1 General features

Here we give a qualitative understanding of how a
drop can generate standing waves, associated to the
shape of a star, as a response to a time-periodic ex-
citation. We basically follow the analysis found in
the paper by Yoshiyasu et al. [5]. Let us consider the
simple case of a large drop (liquid density ρ and sur-
face tension σ) sitting on a non-wetting substrate
Fig. 1. If the drop volume is large enough, it spreads
like a puddle which radius R is much larger than
the height h. We wish to approach the situation of
a non-wetting substrate (contact angle θ equal to
180◦), although in practice θ is rarely larger than
160◦. The height h is equal to twice the capillary

length lc: h = 2lc =
√

4σ
ρg , and it ranges between 2

and 3 millimeters for most liquids.
Now, the substrate is periodically vibrated in

the vertical direction. Therefore, the drop is sub-
jected to a time-periodic acceleration field a(t). The
balance between gravity and surface tension, select-
ing the capillary length lc no longer holds. Con-
sequently, one has to build an effective capillary
length l∗c that is also time dependent, which im-
plies that the height of the puddle (h = 2l∗c) varies
periodically:

h =

√

4σ

ρ(g + a(t))
=

√

4σ

ρ(g + A0(2πfe)2 cos(2πfet))

(3)
Due to the volume conservation of the drop, V =
πR2h, the radius also fluctuates with a period of
1

fe
.

It can be argued that the eigen frequencies of a
liquid puddle on a non-wetting substrate do not dif-
fer much from those of a spherical drop described by
eq. (2). In particular, one requires that the wetting
conditions have to prevent any significant pinning
force at the contact-line. If a pinning force would
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exist, the contact-angle would show a hysteretic be-
havior, which would prevent any variation of the
radius R, or would lead to stop-and-go variations
for R [3]. By assuming that, in addition, the radius
R is significantly larger than the height h, Takaki
and Adashi [14] showed that the eigen frequency of
the nth mode - corresponding to a drop with n lobes
along the azimuthal direction - is equal to:

fn =
1

2π

(

n(n2 − 1)σ

ρR3

)1/2

(4)

It is clear from eq. (3) that the resonance frequency
fn for the free oscillations are modulated in time.
Therefore, this modulation leads to parametric forc-
ing, by analogy with the classical case of a verti-
cally shaken pendulum [23]. Yoshiyasu et al. show
with simple arguments that the equation for the
horizontal displacement of the drop periphery u(t)
is governed by an equation similar to the Mathieu
equation:

d2u

dt2
+ ω2

n(1 + ξ cos(2πfet))u = 0 (5)

with ωn = 2πfn is the pulsation associated to the
nth mode, and ξ = 3∆R

R . It was also verified ex-
perimentally that the frequency of the drop oscil-
lations fn is equal to half the prescribed frequency
fe, which is expected for parametric forcing. Conse-
quently, the drop exhibits a standing wave at its pe-
riphery, which wavelength λ has to match both the
perimeter 2πR and the number of lobes n: λ = 2πR

n ,

n being fixed by the prescribed frequency: fn = fe

2
.

It is worth emphasizing the importance of hav-
ing a weak pinning force between the drop and the
substrate. In the situation where a significant pin-
ning force exists, the substrate oscillations leads to
a very different dynamics, as the drop radius stays
constant. Instead, it is the contact-angle that fluc-
tuates, at the frequency fe [3], due to the verti-
cal oscillation of the drop’s center of mass. As the
drop radius does not vary over time, no paramet-
ric forcing is possible and the drop simply responds
harmonically. This also explains why when put on
an oscillatory substrate, a sessile drop responds at
the frequency of excitation whereas a non-adhesive
drop undergoes a parametric instability with a re-
sponse at half the frequency of excitation.

Finally, let us mention that the star shapes are
the direct consequence of the peculiar geometry of
a flat puddle, i.e. that R is much larger than h. The
star shapes are much less pronounced for spherical
drops, as shown e.g. in [24]. For drop of intermediate
volume, between sphere and puddle, the shapes are
hybrids, as the lobes and nodes take place in both
the azimuthal and the up-down directions.

2.2 Experiments on puddles on a vibrating
non-wetting substrate

2.2.1 A brief history of previous experiments

To put a puddle on a non-wetting and non-sticky
vibrating surface is probably the easiest way to ob-
serve star drops. Yoshiyasu et al. [5] carried out the
first qualitative experiments, using a teflon plate.
The authors pointed out that it is particularly im-
portant that the water drop formed a contact angle
θ larger than 120◦. However, Noblin et al. showed
that liquid stars - denoted there as ”triplons” to re-
fer to the azimuthal deformation of the triple (con-
tact) line - could be observed on a substrate with
contact-angle θ smaller than 90◦, providing that the
contact angle hysteresis was small enough (in prac-
tice, less than 15 degrees). The only difference is
the existence of a threshold in acceleration (or shak-
ing amplitude) below which the contact-line keeps
pinned [3,4]. They generalized eq. (5) in the case
of solid-like friction, and demonstrated that, above
the threshold of contact line depinning, the insta-
bility that turns an initial axisymmetric drop to a
faceted star drop is associated to an exponential
growth of the lobe amplitude versus time. There-
fore, this feature contains the signature of a linear
instability.

More recent experiments by Okada and Okada
[24] produced more quantitative data using a more
hydrophobic teflon plate. They especially focused
on the mode n=3, and produced an existence dia-
gram for this simple mode varying both amplitude
and excitation frequency. They also checked that

the response frequency scaled with V
1

2 for the same
n, with V is the drop volume. Finally, it is to be no-
ticed that star drops have recently been observed in
the geometry of a large drop sandwiched between
two hydrophobic plates shaken vertically [9].

2.2.2 Our experiments: the set-up

In order to give a more quantitative picture of the
formation of stars, we carry out systematic experi-
ments in a large range of frequency and with differ-
ent drop volumes. We choose V = 100, 200 500 and
1000 ml, for which water drops adopt the shape of
puddles. As a substrate, we fabricate a home-made
superhydrophobic surface by spreading a water-repellent
powder (Lycopodium) on a layer of adhesive wax.
Then, we blow on the powder layer to remove the
remaining grains. As a result, we obtain a nearly
regular monolayer of powder: the combination of
surface roughness and hydrophobic nature of the
powder layer ensures a highly water-repellent be-
havior. Although the superhydrophobic properties
deteriorate faster than those of the surfaces mode of
micro-pillar arrays or nano-structurations (see [25]
for a review), they have a reasonable life-time, suit-
able for the time of the experiments. The contact
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Fig. 2. Schematic experimental set-up utilized to gen-
erate star drops on a shaken hydrophobic curved sub-
strate. The bottom inset shows a hydrophobic particle
used to coat the substrate (the bar scales for 10 µm).

angle θ was measured to be equal to 140 ±2◦. When
one puts a large puddle on the surface, one observed
a thin layer of air trapped between the liquid and
the substrate which testifies for the strong repel-
lency (see Fig. 2). The hysteresis is very weak and
a drop sitting on such surface would roll over if the
slightest tilt was applied. Therefore, we operate in
a curved glass surface to keep the drop at the same
central location. The whole substrate is shaken ver-
tically using an electromagnetic shaker. The drop
dynamics was recorded using a high-speed camera
(Phantom V5). The set-up is schematically repro-
duced in Fig. 2.

2.2.3 Results

By varying the drop volume, the amplitude and fre-
quency of the shaking, we are able to generate star
drop with n from 2 up to 15 lobes. Some examples
of these stars are presented in Fig. 3. In order to
better understand the selection mechanism, we con-
struct phase diagrams for different drop volumes by
varying both the frequency fe of excitation and the
acceleration a through the amplitude of vibration:
a = A0(2πfe)

2. These diagrams are reproduced in
Figs. 4 and 5. The different colored symbols cor-
respond to the threshold for the appearance of a
star drop mode with n number of nodes in the az-
imuthal direction. At low acceleration, no instabil-
ity appears whereas at high acceleration the drop
can either take off the substrate (for smaller drops),
either split into several smaller droplets (for larger
drops). In between, stars such as those represented
in Fig. 3 are observed.

The first striking impression is the complexity
of the diagrams, especially for intermediate volumes
(V=200 and 500 ml). This complex behavior is due
to several factors: (1) The finite size of the drop
leads to a constraint on the azimuthal wave-number,
as the number of nodes has to be integer. The wave-
number is not necessarily compatible with the fre-

Fig. 3. Liquid drops (V=500 ml) adopting faceted
shapes (stars) after being put on a shaken hydrophobic
substrate. The snapshots show drops with 2 to 13 lobes,
the number of lobes increasing with the prescribed fre-
quency for the same drop volume. The last (bottom-
right) shot shows a ”chaotic” mode which results from
the erratic combination of several modes.

quency of excitation. (2) The drop can react prefer-
entially to certain frequencies of excitations, due to
the discrete values for the resonance peaks depend-
ing on the drop size. (3) The liquid viscosity is a
damping factor, which is more and more prevalent
as f is increased (see also [26]).

On the diagrams, the number of nodes inside
the corresponding domains are written, and we also
wrote the states denoted as ”Chaos” where the co-
existence between two or several modes leads to an
undefined (or fluctuating) number of nodes (see Fig.
3, Bottom-Right shot). The general structure of the
diagram is an ensemble of entangled and intercon-
nected tongues of stability for various number of
lobes n, which is reminiscent to what was obtained
in the case of a droplet on a vibrating bath of the
same liquid [22]. It is interesting to draw an anal-
ogy with the results for the (presumably) simpler
system of a liquid layer exhibiting standing waves
when shaken vertically: the so-called Faraday in-
stability is also induced by parametric forcing. The
linear stability theory of Faraday instability of a vis-
cous fluid layer has been carried out by Kumar and
Tuckerman [26], and a system of stability tongues
in the space of wave-number and acceleration was
predicted. In the case of a confined geometry, that
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Fig. 4. The phase diagram in frequency and acceleration of a liquid puddle drop shaken on a non-wetting substrate
Left - V=100 ml, Right - V=200 ml.

Fig. 5. The phase diagram in frequency and acceleration of a liquid puddle drop shaken on a non-wetting
substrate. Left - V=500 ml, Right - V=1000 ml.

is more similar to that of a drop, a system of sub-
tongues is theoretically predicted and measured [27,
28], due to the constraint imposed by an integer
number of waves at the surface. The superposition
of the different stability tongues in our diagrams
have similar features that require a more thorough
investigation.

We can extract several trends from the diagrams,
which are summarized here:

- The threshold for the appearance of the first
instability generally increases with the frequency,
although not always in a monotonic way.

- The selected wave-number increases with the
frequency. But there are generally several tongues
of stability for the same number of nodes, which are
disconnected. Between these tongues at constant n,
other tongues corresponding to other values of n
are selected.

- The chaotic regime generally appears for val-
ues of the acceleration higher than those required
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Fig. 6. Star drops generated in acoustic levitation,
where the prescribed acoustic field is modulated in time
at low frequency. Reprinted figure with permission from
[29].

to observed regular stars at constant n. However,
in some situations the chaos regime is between two
tongues of stability and it is possible to re-observe
a regular mode at higher accelerations: for instance
for fe around 40 Hz and n=3 at V =200 ml, or for
fe about 100 Hz and n=7 at V =500 ml.

- The area of stability generally increases for
larger n. For instance, the areas of stability of n=2
and n=3 are quite narrow, except for the smallest
drop of V =100 ml.

- The mode n=1 does not correspond to a para-
metric forcing, but it can sometimes be observed
between the ”No instability” area and the tongues
of stability of stars. Therefore, it is always stable at
accelerations lower than those for n ≤ 2.

2.3 Acoustic levitation

Recently, Chen, Xie and Wei [29] have set-up an
experiment of acoustic levitation where a drop is
put in an ultrasonic acoustic field (frequency f0=20
kHz). As the drop is trapped by acoustic radia-
tion pressure, this acoustic force acting on the liq-
uid/gas interface can counterbalance gravity and
hence the drop can be kept in levitation. The drop
is large compared to the capillary length lc, so that
it adopts the shape of a puddle, and not that of a
sphere. This set-up can be particularly adapted to
situations where contact between liquid and solid
has to be avoided, for instance undercooled or re-
active melts [29].

When the acoustic field is modulated in time,
at a modulation frequency fm much smaller than
f0 - typically from 20 to 150 Hz, the authors ob-
served star drops, which number of lobes n was
between 2 and 7 depending on the modulation fre-
quency, see Fig. 6. Therefore, a natural explanation
of the phenomenon can be the following: the mod-
ulation of the acoustic power induces a modulation

Fig. 7. Star drops of quicksilver generated in an oscil-
lating magnetic field. Reprinted figure with permission
from [30]

in the force that maintains the drop in levitation,
and hence the drop’s vertical position fluctuates at
the frequency fm. This situation is very similar to
that of a puddle on a vibrated substrate is set up.
However, the acoustic levitation offers an even more
symmetric situation: while a drop on a vibrated
substrate is flattened at its lower base by the prox-
imity of the substrate, a drop in acoustic levitation
is up/down symmetric.

2.4 Metal drops in oscillating magnetic field

Fautrelle, Etay and Daugan [30] have observed very
similar stars with a drop of quicksilver put in an
magnetic field that is modulated at low frequency
(about 1 to 10 Hz). These much smaller values for
the frequency are explained by that the radius of
the drop - denoted as ”liquid pool” by the authors
- is larger than that of other situations: R ranges
between 1.5 and 2 cm. Furthermore, the ratio γ

ρ

is much smaller here than for usual liquids due to
the high density, which leads to even smaller eigen
frequencies according to eq. (2). Figure 7 shows ex-
amples of such liquid metal stars. Similarly to the
previous situations, the number of lobes n increases
as one increases the frequency of the magnetic field
modulation. The authors also mentioned the exis-
tence of the axisymmetric mode (snapshot (a) in
Fig. 7), where n=1, in a significant range of param-
eters. This mode is very similar to that observed for
drops on an non-wetting vibrating substrate (sec-
tions 2.1 and 2.2), i.e. consisting of surface waves
propagating inwards from the drop periphery.

It is also noticeable that unstructured patterns
of waves were observed, with a host of various shapes
for the drop. In these drops, some of which can re-
semble chaotic drops shown in Fig. 3, the number
of lobes varies erratically over time and no well-
defined wavelength can be observed. In their ex-



P. Brunet and J.H. Snoeijer: Star drops 7

Fig. 8. Drop on a pulsating air flow, showing shape
oscillations that remain axisymmetric. Reprinted figure
with permission from [31].

treme shapes, these unstructured patterns can ex-
hibit voids (absence of liquid) which position fluc-
tuates in the middle of the drop, as well as ejections
of small droplets.

2.5 Drops levitating by a pulsating air flow

Starting again from the issue of setting up con-
tainerless measurements on liquids, Papoular and
Parayre [31] carried out experiments of oscillating
drops on a porous substrate whereby an air stream
flows. The air flow reaches the drop and acts as
a bearing, hence insulating it from the substrate.
The levitation is due to the lubrication flow in the
air layer below the drop, which balances gravity.
Therefore, this set-up allows to avoid contact be-
tween the liquid and the substrate, which ensures
a very small friction. A piezoelectric exciter set be-
low the cushion ensures the time-modulation of the
air flow, hence leading to periodic excitation of the
drop.

Figure 8 shows two examples of oscillating drops
(side views) obtained with this set-up. The authors
have focused their study on the determination of
corrections to be brought to the Rayleigh-Lamb
theory (eq. (2)), in the situations where the shape
of the drop at rest is different from spherical. There-
fore, the shape of their drops is elliptical, flattened
by gravity at the lower base, but it is not a pud-
dle. Consequently, the periodic excitation produces
parametric instability, but the subsequent drop shapes
are not star-like: the lobes and nodes develop along
the up-down direction (see Fig. 8).

3 Star drops levitating on non-pulsed air

cushion

So far, we presented formation of star or facetted
drops that were subjected to a prescribed periodic
forcing. But there are a few situations where star

Fig. 9. Schemes of the two situations of levitating star
drops on non-pulsed air cushions. Top - Leidenfrost
drop on a hot plate. Bottom - Drop levitating by an
ascending air stream.

drops are observed without periodic forcing. There-
fore, the vibrations come from an instability in the
flow required to keep the drop in a non-wetting sit-
uation. Indeed, if one ensures the presence of an air
cushion between the liquid and the substrate, a per-
fectly non-wetting situation is created. The contact
angle is rigorously equal to 180◦ and the friction
is almost null. The levitation is ensured by a lu-
brication pressure due to the radial air flow, which
balances gravity forces on the drop. This situation
is observed at least within two sorts of experiments:

- A drop of liquid on a substrate which temper-
ature is far beyond the liquid boiling temperature
Tb, generating a situation of ”boiling crisis” or Lei-
denfrost effect [33]. In this case, the vapor cushion
comes from the evaporation of the liquid of the drop
itself, that vaporizes fast enough to lift the drop
up the surface and insulate it from the hot plate,
making the drop evaporation much slower and less
explosive than in boiling [36].

- A drop of liquid on a (porous) substrate through
which an ascending air stream flows, generating a
radial flow below the drop.

These two situations are depicted in Fig. 9. The
average thickness of the air layer has been measured
to be of the order of 100 microns or less [36].

3.1 Leidenfrost star drops

The Leidenfrost effect is known since the 18th cen-
tury, discovered by the german scientist who gave
the name of the phenomenon [33]. However, the ob-
servation of vibrating Lendenfrost drops and the



8 P. Brunet and J.H. Snoeijer: Star drops

(a) (b)

(c) (d)

Fig. 10. Facetted drops of water sitting on a metallic
hot plate, producing a vapor cushion (Leidenfrost ef-
fect). (a) Axisymmetric drop with propagating surface
waves. (b) Facetted drop (four lobes) as the plate tem-
perature is increased further. (c) and (d) A drop with 3
lobes spinning along the azimuthal direction. A needle
is used to hold the drop in place.

subsequent stars were first reported in the early
fifties by Holter and Glasscock [15], with a ten-
tative theoretical explanation by Gouin and Casal
[34]. Many quantitative studies of the boiling cri-
sis have focused on the determination of the Lei-
denfrost critical temperature, i.e. the temperature
above which the lifetime of a drop dramatically in-
creases, as boiling disappears (see [35] for a review).
In many applications like quench-cooling, boiling
crisis has to be avoided as it strongly limits heat
transfer between the solid to be cooled and the sur-
rounding liquid. Recently, Biance et al. [36] inves-
tigated Leidenfrost drops in permanent regime, i.e.
by feeding drop with water at the same rate as evap-
oration, and focused on the vapor layer. They did
observe drop vibrations leading to stars, as well as
a ’chimney’ instability, distinct to that involved in
the star drops, and occurring as the drop exceeded a
certain size. The authors attributed these chimneys
to the growth and rise of a vapor bubble at the cen-
tre of the drop, due to Rayleigh-Taylor instability
[36].

Figure 10 shows a few examples of vibrating
Leidenfrost drops of water and isopropanol on a
hot plate (temperature T about 220◦C. There are
a number of experimental challenges that make it
difficult to obtain reproducible experimental data.
The main issue is to carefully control the rough-
ness of the substrate, which seems to have a large
influence on the stability of the vapor layer [35].
Furthermore, in order to prevent the drop to slide
off the plate, either the substrate has to be curved -
which can bring an additional geometric parameter

Fig. 11. Star drops of liquid nitrogen sitting on a
layer of glycerol, hence developing a Leidenfrost state.
Reprinted figure with permission from [18].

- either the drop has to be pinned by a thin nee-
dle on a flat plate (Fig. 10) the influence of which
is quite unquantifiable. Finally, operating at con-
stant local temperature for the plate is also an is-
sue. Therefore, the alternative solution of operating
in ambient conditions with liquid nitrogen has been
adopted by many experimentalists.

3.2 ”Cold” Leidenfrost stars

Most of the quantitative experiments of vibrating
Leidenfrost drops were conducted with liquid ni-
trogen on a substrate at ambient temperature. The
main reason for this is that the substrate can be
a liquid, which ensures more reproducible experi-
ments: not only the liquid constitutes a perfectly
smooth substrate at the molecular scale, but also
its surface deforms under the weight of the levitat-
ing drop, ensuring that the drop stays trapped at
a given location. In order to avoid flow inside the
liquid substrate [18], the liquid has to be very vis-
cous, yet thermally conductive enough. Figure 11
gives examples of such regular liquid nitrogen stars
on glycerin pools.

The first quantitative studies were carried out
by Adachi and Takaki [13,14], which revealed a very
rich dynamics including non-trivial transitions be-
tween the different spatial modes. They provided
a tentative mechanism for the mode selection, that
compared well with experiments. Later on, Strier
et al. [16] reconsidered the results in terms of am-
plitude equations. Recently, Snezhko et al. carried
out a new series of experiments and showed that
the internal flows inside the liquid substrate could
lead to different dynamical regimes. It was proposed
that the vibrations could originate from thermal ef-
fects: these interpretations were supported by a lin-
ear stability analysis [17] and by direct visualization
of thermal-convection like flow inside the drop [16].
This mechanism predicts a time-periodic variation
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of the radius of the drop, hence ensuring the condi-
tions for parametric forcing (see Section 2.1).

An alternative explanation for the oscillations
can invoke a purely hydrodynamic, non-thermal,
mechanism. This scenario is supported by the ob-
servation of stars in athermal experiments, where a
drop is simply put in levitation above an ascend-
ing air stream, which are reviewed and described
thereafter.

3.3 Oscillating star drops on a constant
ascending air stream

To our knowledge, the occurrence of oscillations of
drops levitating on a constant ascending air stream
has first been reported by Goldshtik, Khanin and
Ligai [19], who drew an analogy between the air flow
lubrication and the boiling crisis. Later on, Hervieu
et al. [12] carried out a numerical study of the prob-
lem, which exhibited realistic shapes and oscilla-
tions of the center of mass 1. They also checked ex-
perimentally the existence of such oscillations, with
a few results comparing well with numerics.

3.3.1 General features

To levitate a drop on a porous mould intervenes in
several practical situations like the manufacture of
lenses, for which it is crucial to avoid shape insta-
bility in the drop of liquid glass. As summarized in
Duchemin, Lister and Lange’s paper [10], instabili-
ties can occur due in the coupled system of air flow
and drop, leading to the oscillations of the drop
shape. Several kinds of instabilities have been re-
ported:

- the growth and rise of a bubble below the drop,
which ends up piercing on top of the drop. This is
reminiscent to the ”chimneys” observed by Biance
et al. [36] in Leidenfrost drops.

- the appearance of static ”brim waves” [10], i.e.
small deformations at the edge of the drop.

None of these two instabilities have been pro-
posed to possibly lead to star drops. We know that
liquid stars should appear as soon as the drop’s cen-
ter of mass oscillates vertically with a high enough
amplitude, and it is not possible to conclude whether
one of mechanism described in [10] can generate
the required oscillations. However, according to the
conclusions of Goldshtik et al., star drops should in
principle be possible to observe on an air cushion
as the flow produces the required vertical oscilla-
tions for the drop. This is what we checked exper-
imentally, an it turned out that indeed a drop of
liquid levitating on top of a air cushion did show
star shapes (see Fig. 12.

1 As the numerical scheme was axisymmetric, it was
unable to reproduce stars

Fig. 12. Star drops obtained on an air cushion formed
above a porous mould, here with 3 or 5 lobes.

These stars suggest that there is at least one
type of instabilities that leads to the periodic fluctu-
ations of the drop radius - also associated to the ver-
tical oscillations of the drop centre of mass, hence
producing the required parametric forcing. The re-
maining question is what the mechanism producing
the vertical oscillations of the drop. Taking into ac-
count the strong similarities between the ascending
air cushion and the Leidenfrost situations [19], it is
tempting to attribute the mechanism of the oscil-
lations to an instability in the radial air-flow below
the drop. Indeed, the size of the star drops in levi-
tation are about the same as those obtained in Lei-
denfrost situations: it means that the air flow-rate
below the drop, ensuring a strong enough levitation
force, is very similar in both situations. Therefore,
the same type of flow, potentially unstable under
certain conditions, should occur in both situations.

We recently conducted a theoretical study to
predict the maximal size of a drop on an air cushion
[20]. This study was based on solving the shape of
the drop/air interface using lubrication approxima-
tion, i.e. neglecting the inertia in the air flow. This
was justified by the very realistic shapes obtained,
as well as by the simplifications in the theoretical
and analytical treatment. Analytical predictions for
the shape based on asymptotic matching could be
obtained, and numerical computations were addi-
tionally run to capture the transient dynamics of
unstable drops. The main conclusions of the study
in relation to the oscillating drops, are summarized
here:

- A solution exists for drops up to a certain ex-
ternal radius which is in very good agreement with
experiments by Biance et al. [36]. Indeed they ob-
served the appearance of chimneys above a drop
radius equal to about 4 times the capillary length.

- The model predicts that a bubble grows and
rise at the center of the drop, forming a chimney, if
the radius is larger than the threshold radius. This
threshold is dependent on air flow-rate: a larger
flow-rate lowers the maximal radius that a stable
drop can adopt.

- The presence of a curved substrate enhances
stability of large drops.
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- The lubrication flow alone is unable to repro-
duce drop oscillations.

Therefore, if one wishes to explain the occur-
rence of periodic vertical vibrations of the drop lead-
ing to star shapes, one cannot account on a simple
balance between the lubrication pressure driven by
the radial air flow and the Laplace pressure induced
by the drop deformation at its lower base. Before
conjecturing some possible mechanisms, we present
new experimenal results of drops levitated by an air
cushion which show oscillations and star shapes.

3.3.2 First experiments

A schematic view of the experimental set-up is de-
scribed in Fig. 9. An air stream flows through a
porous substrate made of sintered glass, and keeps
in levitation a drop of water placed above. Due to
the very low friction, it is necessary to keep the drop
pinned by a thin needle (0.35 mm thin). This needle
is connected to a syringe which is used to control
the drop volume. The air flow is produced by a pres-
surized air supply, which can maintain pressures up
to 4 bars. The flow-rate Q is measured by a float
flow-meter (). The drop is observed from above by
a high-speed camera (Photron SA3).

The main difficulty of the experiment is to have
a robust hydrophobic chemical treatment of the
porous medium. Indeed to set up drop levitation
experiments is tricky because any contact between
the liquid drop and the porous substrate has to be
avoided. On that purpose, we chose perfluorodecyl-
trichlorosilane, which is a low surface-energy molecule,
as a chemical coating that ensures a molecular mono-
layer on the activated glass porous layer. In case of
liquid contact and intrusion in the porous medium,
the quality of the water-repellent character is dra-
matically reduced, even after extensive drying, mak-
ing the experiments even more difficult. Practically,
with the best care devoted to protect the coating,
we could carry out experiments during two days
without observing irreversible damage of the porous
material.

It was possible to obtain some results demon-
strating the appearance of liquid stars, very similar
to those observed in the Leidenfrost configuration.
Examples of such stars are illustrated in Fig. 13,
where modes n=3 and n=4 are presented.

By taking water drops of different volume V and
radius R, we measured the conditions for a drop to
be stable. It turns out that below a threshold in air
flow-rate Qc, a drop of given radius does not show
oscillations and adopts a smooth spherical or pud-
dle shape. We measured the threshold Qc which
is larger for smaller drops. In other terms, larger
drops are more susceptible to get destabilized. This
is consistent with the results of the study in [20].
The destabilization always starts with fast capillary
waves (of frequency about a few hundred Hertz)

Fig. 13. Vibrations and subsequent faceted shapes on
water drops sitting on an air cushion. Top - A mode
n=3. Bottom - A mode n=4.

Fig. 14. The limit of air flow-rate and drop diameter
that separates stable and unstable drops, showing that
smaller drops turn unstable at smaller air flow-rate.

at the surface of the drop. Then, the drop under-
goes more dramatic changes and turns to facetted
and stars shapes like those shown in Figs. 12 and
13. Figure 14 summarizes the various observed drop
shapes: while small drops gets unstable by taking
the shape of stars (n=3 for the smallest diame-
ters, n=4 or 5 for slightly larger drops), the largest
drops get destabilized by the occurrence of chim-
neys, which do not turn the drop’s shape into a
star but simply break the upper interface. The the-
oretical limit of stability for drops at low flow-rate
should be equal to about 4 times the capillary length
[20]. This limit is traced in red dotted line in Fig.
14, which is in good agreement with the extrapola-
tion of the experimental measurements to Q=0.

We checked experimentally that the measured
frequencies of the stars correspond to those pre-
dicted by the eq. (4):



P. Brunet and J.H. Snoeijer: Star drops 11

Fig. 15. Vibrations of a liquid marble, a drop coated
by hydrophobic powder, sitting on an air cushion. Top

- Axisymmetric waves propagating inwards (n=1). Bot-

tom - Examples of a faceted liquid marble (n=4).

- for the n=3 stars (Fig. 13-Top), the measured
frequency is 58.5 Hz, whereas the frequency pre-
dicted from eq. (4) is fth=52.9 Hz (the drop radius
is measured equal to 2.52 mm). It is to be noticed
that the eq. (2) for spherical drops give a better pre-
diction with fth=56 Hz, presumably because this
small drop is closer to a sphere than to a puddle
(see Fig. 13-Top).

- for the n=4 stars (Fig. 13-Bottom), the mea-
sured frequency is 31 Hz, which is in good agree-
ment with the frequency predicted from eq. (4) is
fth=30.3 Hz (the drop radius is measured equal to
4.95 mm).

This quite satisfactory agreements are encour-
aging for more systematic measurements of the se-
lected frequency for different flow-rate Q, which
should give the relationship between Q and the fre-
quency of the vertical oscillation of the drop, equal
to twice the measured frequency of the stars ac-
cording to the mechanism of parametric instability
presented in Section 2.1.

3.3.3 Levitation and faceting of liquid marbles

Due to the short lifetime of the current available
hydrophobic coating, we carried out experiments by
coating the drop itself with hydrophobic particles.
Using such coated drops efficiently prevents any liq-
uid/substrate contact, as the particles self-assemble
at the liquid surface and constitute a robust ”skin”.
These drops have been denoted as ”liquid marbles”
in the literature and have first been studied by Aus-
sillous and Quéré [37]. Later on, several authors
have attempted to measure their effective surface
tension through their dynamical properties [38,39].

Figure 15 shows two examples of dynamical modes
generated by vertical oscillations. The mode n=1

(on top of the figure) seems to be much more stable
than for usual levitating liquid drops, and could be
observed during several seconds. This mode con-
sists of surface waves propagating inwards, with-
out azimuthal corrugation. Despite the vertical os-
cillations and the time-periodic fluctuations of the
radius, the drop stays symmetrical as the ampli-
tude of the vertical vibrations are too weak to in-
duce parametric forcing. The unusual stability of
the mode n=1 could be explained by the additional
dissipation due to the presence of particles on the
drop interface. It is important to note that the eigen
frequency of this mode n=1 cannot be predicted by
eqs. (2) and (4).

Besides, we observed more usual modes with
n=3, 4 or 5 (bottom of Fig. 15). From our exper-
imental observations, it turns out that the mode
selection is not very regular: the number of lobes
fluctuates over time, as the occurrence of a selected
mode generally lasts no longer than a few periods.
This chaotic behavior could not be tamed, and it is
presumably due to the uneven shape of the interface
of the coated drop. Nevertheless, this is encourag-
ing for future experiments because it was possible
to obtain star drops with much larger puddles than
for simple water drops, and also to evidence that
the transition from a mode n=1 to modes with sev-
eral lobes occurs above a certain threshold in air
flow-rate.

3.4 The underlying mechanism of oscillations?

The fact that stars drops also appear when levi-
tated by an air cushion suggests that the thermal
effects present for Leidenfrost drops are not cru-
cial for the star formation. We therefore look for a
hydrodynamic mechanism that generates the oscil-
lations. In principle, one would need to solve the
stability of the air flow below the drop, coupled to
the flow inside the drop. It is not possible to con-
jecture a priori whether or not the inner flow of
the drop is involved in the instability process. The
theoretical study conducted in [20] showed that no
oscillations can appear from a purely visco-capillary
treatment of the air flow below the drop. Hence, one
may expect inertia to be important. Let us there-
fore consider the Reynolds number in the air layer,
which quantifies the relative importance of inertial
and viscous forces:

Re =
U × h

ν
(6)

where ν is the kinematic viscosity of air, U is the
mean radial velocity and h is the average thickness.
The radial flow is a direct consequence of the as-
cending air stream below the drop. Therefore, the
product U × h can be evaluated by mass conserva-
tion, considering that all the ascending air flowing
through the porous surface in the area below the
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Fig. 16. Critical Reynolds number vs diameter for the
destabilization of the drop.

drop is conserved in the flow leaving radially the
drop.

Q
d2

D

d2

P

= πdDU(R)h(R) (7)

where dP and dD are the diameters of the porous
substrate and of the drop, and R = 1

2
dD. Knowing

the global flow-rate Q, it is easy to calculate the
Reynolds number by taking U × h at the periph-
ery of the drop (r = R). From the critical flow-rate
measurements of Fig. 14, we can plot the critical
Reynolds number for the appearance of unstable
drops. Figure 16 show the results versus the di-
mensionless drop diameter dD

lc
: the critical Reynolds

number is not far from being constant at the tran-
sition, with values ranging from 8 to 12.

These results suggest that the instability ap-
pears when inertia in the air flow is significant enough.
Other dimensionless numbers like the Reynolds num-
ber in the liquid drop, or the Weber number (ratio
between inertia and capillarity) do not show such
trend at the transition.

4 Conclusions - Open points and

perspectives

In this short review, we presented various situations
where large drops can develop time-periodic stand-
ing waves in their azimuthal direction, giving them
the shape of a star. This instability occurs sub-
sequently to a parametric forcing that originates
from the time-periodic fluctuations of the drop ra-
dius, generally induced by an oscillating accelera-
tion field. We have shown that this situation could
be obtained in many experimental set-ups, some of
which have been imagined for practical purposes
like the handling of corrosive or supercooled fluids.

The creation of such stars induces inner flow which
is suitable for mixing.

We also presented preliminary experiments that
showed for the first time that star drops can be gen-
erated above non-pulsed air cushions. In this latter
case, an instability in the air layer occurs above a
threshold in Reynolds number of about 10, suggest-
ing that an inertial mechanism takes place in the
instability process. The vibration frequency is once
more compatible with Rayleigh-Lamb modes, so it
will be crucial to determine the vertical frequency of
oscillations to propose a detailed mechanism. Note
that these experiments show that thermal effects
(as present in the Leidenfrost drops) are not neces-
sary to generate the instability towards star drops.

A possible way to answer the remaining un-
solved questions about the instability process, would
be to carry out levitation experiments with highly
viscous liquids. Duchemin et al. [10] mention that
chimneys or brim waves are observed in a drop of
viscous molten glass, but there was no mention of
stars. Experiments of levitation were carried out
with a solid plastic disk of about the same size of
drops and density comparable to water, and no ver-
tical oscillations could be observed (see also [40].
One of the remaining question is then: are oscil-
lations and subsequent stars only due to the de-
formable character of the liquid drop2, or does the
mechanism also involve the inner flow of the drop,
where the liquid is sheared by the air stream ?
This last question points out that it could be pos-
sible to observe vertical oscillations due to the air
flow instability, without necessarily inducing stars
or facetted shapes (which generation is hindered by
a large viscosity). Indeed, a significant inner flow is
required to generate stars and the liquid viscosity
could well damp the parametric forcing. The large
range of stability of the axisymmetric n=1 mode
(i.e. vertical oscillations without stars) noticed for
the levitated liquid marbles, is a clue that goes in
this sense.
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