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1. I N T R O D U C T I O N  

A single spherical particle moving through a fluid experiences forces which affect its the motion. 
If the relative velocity between the fluid and the particle is constant, the force is usually called the 
drag. Such forces have been intensively studied by Zuber & Ishii (1978). When the motion is 
unsteady, or nonuniform it is natural to attempt to extend the concept of a drag force to include 
the various nondrag forces which arise. Typical nondrag forces include the so-called virtual mass 
force and the lateral lift force. 

The original calculation of the so-called virtual mass force is attributed to Lord Kelvin (Lamb 
1932). A sphere accelerating through a quiescent fluid experiences a resistance force proportional 
to its acceleration. For a rigid sphere accelerating through an inviscid fluid of constant density, 
the constant of proportionality is one-half the mass of the fluid displaced by the sphere. 

The force on a sphere moving relative to a rotating fluid has been previously calculated by 
Proudman (1916). This force is perpendicular to the rotation vector and the sphere velocity vector, 
and represents the classical lift force. In situations where the Coriolis force dominates, the fluid 
motion is dominated by a Taylor column (Greenspan 1968). 

If the problem of describing a dispersion of particles in a fluid is approached by deriving 
equations for the motion of two interpenetrating continua, it becomes necessary to specify the 
interaction force density as a function of the average flow fields. One of the principles employed 
in such an approach is that of objectivity (Drew & Lahey 1979), or material frame indifference, 
which implies that the interaction forces should be independent of the coordinate system used to 
describe them. This principle has been criticized recently (Ryskin & Rallison 1980; Micaelli 1983; 
Auton 1983); the most serious criticism being that the objective form of the virtual mass force did 
not reduce to that calculated for a single sphere (Voinov 1978). It is the purpose of this paper to 
resolve this controversy. 

In section 2, we derive the force on a single sphere accelerating relative to an inviscid fluid 
undergoing a pure strain and rotation far from the sphere. This inviscid force implicitly assumes 
that the viscous boundary layer on the sphere does not separate from the sphere. This precludes 
the formation of Taylor columns (Greenspan 1968). The net force on the sphere consists of three 
parts: the pressure gradient force, and a nondrag force which consists of the virtual mass force and 
the lift force. The nondrag force is shown to be objective and to agree with the invarient force 
previously postulated (Drew & Lahey 1979). 

2. F O R C E  O N  A S P H E R E  I N  L I N E A R  S H E A R  F L O W  

Consider a sphere moving through an inviscid fluid with velocity components v~.. The fluid far 
from the sphere is assumed to be undergoing a motion which consists of unsteady translation, a 
rotation at constant angular velocity and a constant strain. The velocity of the fluid far from the 
sphere is thus (Aris 1962) 
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v *  = Vo*, + x~ vc,,~ 

= + e 0 xj + [I] £tjk(--L)j X k , 

where x* is the spatial coordinate, v0* is the (undisturbed) fluid velocity at the origin, 
~(v¢~.j + ¢j.,) is the symmetric tensor representing the straining motion and co* is the angular e~ = i , v* 

~(v~,.k *" rotation vector, which satisfies %kO)* ~ * = --V~k.,). Since the fluid is incompressible, continuity 
implies 

e,* = O. [21 

Let us now consider a noninertial (unstarred) coordinate system which rotates with the fluid far 
from the sphere. Then the new coordinate system is related to the previous one by 

x,  = Q , , x * ,  [3] 

where Q,j is the orthonormal rotation tensor which satisfies 

a , j a k j  = 6,k = Q~,Qjk. [4] 

w e  further assume that Q,j is proper, so that det [Q,j] = 1. 
The velocity of  the fluid in the unstarred coordinate frame is 

v~, = x, = Q,jv* + Q , j x*  

o r  

If  we take 

and define 

and 

then 

Qv£jktO) k X! -I" OoX ? . vc, Q , T ~ +  * * * * = Q, je jkxk + [51 

e,~ = Q,k Qjte k* [7] 

Vo, = Q, j v~ ,  [8] 

and 

vc, = Vo, + euxj 

= Q,jr cj. [9] 

Without loss of  generality, we can assume that the rotation vector is orientated such that 

~,* = o~,5,3. [10] 

The velocity of  the sphere in the unstarred coordinate frame is given by 

Vd, = a , j v ~  + Q , j x * .  [11] 

In the rotating (unstarred) coordinate frame the equations of motion for the flow of interest here 
are (Truesdell & Toupin 1963) 

t,,,, = 0  [12] 

v,., - E~Vj(k + 2%,~ jVk  = - - P . , .  

Here (, = ~vk.~ is the vorticity and 

V P + ½V, V, I , 2 t ~ 2  X 2 ) ,  

P~ 

where p is the static pressure and pc is the density of the fluid. 

[13] 

[14] 

00  = - Q,k E,mj~o*, [61 
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It is well known that if the flow is inviscid and irrotational at some initial instant, then it will 
remain irrotational. This was first noted by Proudman (1916) for the situation where e,j = 0 and 
v0; was constant. Thus, we seek a solution with 

~, = E,jkVk.y = 0. [15] 

This implies the existence of  a velocity potential ~b, such that 

v, = ~b.,. [161 

Thus, the continuity equation [12] implies 

~,, = 0 [17] 

outside the sphere. The boundary condition on the surface of  the sphere is 

v ini = dp .i n, = V d,n ,, [18] 

where n~ is the unit normal at the surface of  the sphere; thus, 

( x l  - Xd,)  
n, = R ' [19] 

where R is the radius of  the sphere. Far from the sphere the velocity should approach the 
undisturbed fluid velocity, vc~, thus 

lim ~b.i = Vo, + e o x  r [20] 
( x , -  Xd,) ~ o0 

Using [15] in [13], taking the divergence of  the result and using [17], we have 

P,,=O [21] 

in the fluid exterior to the sphere. At the surface of  the sphere, we have 

- n , P . ,  = ndP., + 2ni6iflcO.)j~,k, [22] 

while far from the sphere P satisfies 

lim P., = -Vo,., - 2E,jk OJyck. [23] 
(x, - Xd,) ~ 

Thus, P can be written as 

where 

and 

and P" satisfies 

P = - V o , . t ( x , -  Xd, ) - -  2 ( x , -  Xd,)E¢OJ/Vok -- 2(X, -- Xd, )e ,yk%Ekl (X t -  Xdl ) + P ' ,  

E,~=e o ( i # j )  

[2,4] 

ei, 
E .  =~-  (no sum on i), [25] 

P~,, = o, [26] 

lim P~ = O, [27] 
(x~ - x,d)~ ov 

vow.t) + 2ni~,#%(~b k - v~) 

in the region exterior to the sphere, and 

on the surface of the sphere. 

[28] 
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The net force on the sphere is given by [14] as 

a S  ½pc  2 + x )n, d S  - Pc --;;tl.~ ~lpcffl)jVjnidS-- ~f ffPntdS. 
From [24], we have 

-po f f  en, dS = po(Vo. - 2,,,,,O, Oo,) f f  (x , -  xd,)n, dS - po f f  e '  n, dS 

o r  

-pc f f  Pn, dS =~R3p(vo,.t-2E,.~%vo,)-po f f  P'n, dS, 

where we have used the following geometric relationships (Voinov 1973): 

f f (xj - - dS = 0 Xdj)(Xk Xdk )l'lj 
and 

f f (xj -- Xdj)n i dS = ~ R  3 6,j. 

[29) 

[30] 

[31] 

[32] 

T h e  second integral on the r.h.s, of  [29] can be evaluated by noting the identity, xi = x~ + (x, - Xdi), 
and using [31] and [32]. The result is the force due to centripetal acceleration, 

F~ = - ~tR 3 pcEij,%Ek~OhX ~.  [33] 

The net force on the sphere then becomes 

-ffpn, dS=-pcffP'n, dS+Fo,+ R3pc(Vo,.,-2E.%Vo )+½ooffvjvjn, dS. [34] 

In order to evaluate the P '  integral, we introduce the vector-valued function ~',, defined by 

~,,~ = 0, [35] 

lim T, = 0, [36] 
(x~ - Xd~) ~ 

in the region outside the sphere, and satisfying 

nj ~,~ = n, [37] 

on the surface of  the sphere. Using [35], [34] and Green's identity, we have 

f f p ' n ,  d S = f f P ' n j ~ , . j d S = f y n y P ' j ~ , d S .  [38] 

Then [29] gives 

f f p'n, dS = - f - Vo,) ,,dS - f f ,-  va) [39] 

These integrals can be evaluated using well-known solutions (Lamb 1932) of  [17]-[19] and 
[35]-[37]: 

d? = --vai(x, - xa,) -~ [(xj -- Xdj)(Xj -- Xdj)1½ + (Vo, + xdjeO)(X, -- Xa,) 1 + 2 [(Xj -- Xdj)(Xj -- Xdj)]~ 

+I(x , -  Xo,)Eo(x j -- Xdj) I ÷ 3 [(X~ -- X~-~X. -- X~)I~ [40] 

and 
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1 R ~ 
l ~X i XcU) 

2 [(Xj - -  X d J ) ( X  j - -  Xdj)]~" 

Using v~ffi ~b.. and recognizing that ~bt = ~b tied,- Vd~bj. we have 

~I nj(c~.it -- Voj.t ) ~, dS = }~R~(vo;.t -- Vd,.t ) "~- ~,R3Vdj.eij 

and 
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[41] 

[42] 

J J n j ($ . t -  Vot) W, d S  = -}xR3cmC0k(V0t- Va) -- 2~dOkXdse,. [43] 

Similarly, the other integral in [29] becomes 

f~vjvjn, d S  = }~R 3 [3 (Vot + ) -- V~] [44] xdket~ e a • 

Thus, the net force on the sphere is 

- I Inip dS  = ~TtR3 p.[voi, t + (Voj + Xdke# )ej~ -- V~.t] -- ~ R 3  PeEiteJk(Vot + Xdfq--  Va) 

+4~R3pdVo,,~ + (v0j + x~,e~,)e,j- 2E,~,o~j(Vo~ + Xd, ek.)] + F,,. [45] 

It is convenient to note that 

~xR~p¢[vo~t, + (Voj + xa~e#)e¢ - ~¢oj(Vo~ + Xd, ei,)] + Fa = -~xRa ~Poj, [46] 

where P0 is the pressure in the undisturbed fluid. The names of  the other terms in [45] have suffered 
some confusion. Drew & Lahey (1979) have partitioned these two terms differently and defined 
a virtual mass force and lift force which were individually objective. In this study we shall call the 
first term on the l.h.s, of  [45] the virtual mass force, and the second term the lift force. If  we take 
the derivative of  [9] following the fluid, we have 

Dt = Ot + v , v ~  = Q~y D---'-~ + (~iy* 

or  us ing  [6], 

Thus, 

Dcvci _ D c v ~ _  , , 

Dt -- Q'~ Dt Q~Ej,~tro,,v a. [47] 

DcVoDt c~coJv~k = Qo(DO--~v~ j -- 2E]k'CO*V* )" [48] 

DdVdi O DdV~ 
Dt = ~ ' J - - ~  + 2Qov~ + Q,jx*, [491 

For Vd,, we have from [1 !], 

DdV. D~v~ 
Dt - 0 . ~ -  (Ljx? = Q'J--6-i- + 0. ,~.  [SO] 

O,j = - ~ E k . j * * ,  [5 i] 

so that 

Differentiating [6] yields 

so that 

_ _  tO tO tO tO {~i/v , -- O.~x? = -- (~¢(Vdj + Ej~tOJ, X, ) = -- Q~/Q,jv~. [52] 
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If  we write [11] as 

we see that 

so that 
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Vd, = Qiyv~ + Qtjx* = Qov~ + QuQ#x,, [53] 

% .  = Q,JQo, [54] 

~Vd' - /DdV~D-~ DdVd,Dt -- QOv~ Qiix;' dt 
- = = ~ , ~  - E, ktoO'~V~ : "  [55] 

Therefore, in the original starred coordinate system, the combined virtual mass and lift forces 
become 

, _ o , , _  FD:Z DdV~ . * _ v*)] 
i v  L Dt Dt (v~. , -  va.)(va j .  [561 

3. I N V A R I A N C E  OF TH E N O N D R A G  FORCES 

Under any reasonable motion (e.g. nonrelativistic motion) the material flowing is invariant. 
Cauchy (Truesdell & Toupin 1963) quantified this concept in the Principle of  Material Frame 
Indifference. This principle states that a function which expresses the interaction of  a material with 
itself (e.g. stress or heat flux) should not depend on quantities particular to any one observer. In 
other words, a constituted variable should depend only on objects. In the same manner that stress 
and heat flux express the interaction of  a material with itself, interfacial heat and momentum 
transfers express the interaction of  one material with another in multiphase flows. Interfacial 
transfer laws must also be constituted; that is, their dependence on the state variables must be 
determined. In addition, the dependence of  these transfer laws on the state variables must be 
independent of  the frame of  reference of  the observer. 

A fairly general constitutive equation for the nonbuoyant  part  of  the inteffacial force on a string 
has been given previously by Drew & Lahey (1979) as 

+ ~Lo(vd - vc)" ½[Vvc + (Vvc) T] + ~Ld(Vd -- V~)" ~[VVd + (Vvd) T] 

+ °tL~(Vd -- L)" ½[Vvc + (VVd) ~ ] + ~tLdc (Vd -- V~)"½[Vv d + (VL)T], [57] 

where the first term is the interactive drag, and the remainder represent nondrag forces due to 
temporal and convective accelerations. Equation [57] can be written as 

[( ) : "  )] bvc "Vvc \ t3t Md = CtBM(Vc -- vd) + CtCvmp~ - ~  + v~ -- + Vd'VV d 

- ctC~mpc (vc - vd)" Vv~ - ct C~m Pc (V~ -- Vd)" VVd 

-aC~mpc(l - 2)(v c - Vd)'VV d + otCvmpc(l -- ~.)(V c -- Vd)'VV c 

q- O[Lc(V d -- Vc)"½VV c + ~Lc(V d - vc)"½(VVc) T "i- OtLd (V d -- Vc)'½VV d "['- OtLd (V d -- ¥c)"½(VVd) T 

"i- ~tLcd (V c -- V c )" ½ VV c "]- O~Lcd (V d -- V c )" ½ (VV d )T -'I- OCLdc (V d -- V c )" ½ VV d "1"- Ottdc (V d -- ¥c )" ½ (VVc)T 

o r  ):v0 )] 
\0 ,  +Vd'VVd 

+ ( -  ~Cvmpc + ~Cvmpc(l - ;.) - ½:Lc - ½:Lcd)(Vc -- Vd)" VVo 
! ! 

+ ( - ~ ~Lc - ~ ~Ldc) (vc -- Vd )" (Vv~)~ 

-t- (--  0tCvmPc -- ~tCvmPc(1 - ;.) - ½~tLd --½gLdc)(Vc -- h)'VVd 

+ (-- ½ aL d -- ½0tL~) (v c - v d). (Vv d)T. [581 
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This expression will have the form of  [56], provided that 

- = C . p =  + =C.p=(1 - 2) - ½=L= -- ½=L,~ = =L, 

-21=/.,= - ½=L~ = =L, 

- -  - -  ~ = L  d - ~ = L ~  = 0 -=CraPe =C.p=( l  4)- -1  

and 
I I - ~ = L  d - -  [=L~ ffi 0. 

Eliminating Ld and L~ from these equations gives 
1 1 - 2=C.p¢  - 2=L¢ - 2=L~d = =L 

and 

-=Crape(2 - / l )  + ½=L=t - =L + ~=L~ = 0. 

Adding [60a] and [60b] yields, 

L = -p=C~m. 

This implies 

[59a] 

[59H 
[59c] 

[59d] 

[60a] 

[60b] 

[61] 

(1 - 2)=C.pc = ' = L c  + ½=C=~. [62] 

There are two degrees of  freedom in the problem. If we take L~d = L~ = 0, then [59d] implies Ld = 0. 
Thus, [59b] gives 

L~ = 2L = - 2 p c C , ~ .  [63] 

Finally, [60b], [61] and [63] show that 

(1 - 2)=c~=p° = - = p c C . ,  [64] 

hence, 2 = 2, which is the correct l imit for a single sphere (Drew et al. ]979). 
The objective form of the interfacial force is then 

Md = =a~(Vc - Vd) 

+ +, v,)- + V d "VV d )] -- =pc C. (V¢ Vd) " [37Vc -- (Vvc)T]. [ 6 5 ] -  

This agrees with [19] if C,~ = I/2. Moreover, we note that the virtual mass force can be written 
as 

/Dove DdVd~ 
M~d'~) = = C ' P ~ L  Dt  ,] [66] 

and the lift force can be written as 

M~d L) = - -  =CvmPc (v~ - v d )" [Vv~ - (Vvc)T], [67a] 

or equivalently as 

M~L) ffi = C m p ° ( v ~  - -  Vd) ' (V  X Vo). [67b] 

It should be stressed that while neither [66] or [67a, b] are objective, their combination in [65] 
is. For the same case of  interest (i.e. the low concentration limit in which 2 -- 2), Drew et al. (1979) 
have deduced an objective form of  the virtual mass force, 

D:g ] 
M[ " )  = - = C . p c  Lk Dt Dt ] + (re - Vd)" (VVd -- Vv~) , [68] 

and an objective "lift force", 

M(d L) - -  L (v d - vc)" [Vv¢ + (Vvc)T].  [69] 

M F  1 3 ' l - - H  
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It is easy to see that the sum of [68] and [69], with L = ~tC,~pc, gives the same result as in [65]. 
Thus, the previous results yield exactly the same objective interfacial force. 

4. CONCLUSION 

The force on a single sphere accelerating in an incompressible inviscid fluid, which is accelerating 
and undergoing constant rotation and strain far from the sphere, has been calculated. The force 
consists of a virtual mass force, which is one-half the mass of the fluid displaced times the difference 
in the Lagrangian phasic accelerations, plus a lift force, which is one-half of the mass of the fluid 
displaced times the fluid rotation tensor dotted with the relative velocity of the sphere with respect 
to the fluid. The total force is shown to be equal to an objective combination of accelerations, rate 
of deformation tensors and relative velocities. Thus, the net interfacial drag and nondrag forces 
are objective. 

The solution presented does not show the "classical" Taylor column (Greenspan 1968). The 
reason for this is that the viscous boundary layer has been implicitly assumed to remain attached 
to the sphere. If this boundary layer detached, it would lead to shear layers in the flow, resulting 
in regions where the inviscid equations could have discontinuities. Boundary-layer detachment is 
expected to occur for sufficiently large rates of rotation. Conjectures have been made that the 
virtual mass coefficient must depend on rotation rate because the extent of a Taylor column 
depends on the rotation rate, and the Taylor column also acts as an added mass. We note that 
the concept of a Taylor column is a quasi-steady one, and its effect on particle accelerations is 
unproven. 

Several researchers, starting with Lord Kelvin, have calculated the force on a sphere moving in 
an inviscid incompressible fluid. This force is not objective. When the force is calculated using a 
velocity potential (e.g. Voinov 1973), the fluid far from the sphere is necessarily irrotational. As 
a consequence, the force calculated in this manner cannot be used to conclude anything about the 
objectivity (or lack of it) of the interfacial forces. The so-called lateral lift force, which occurs 
because of the relative motion of a sphere through a rotating fluid (Proudman 1916), is 
proportional to the rotation tensor of the fluid, and therefore, is not objective either. However, 
the combination of the virtual mass force and lift force is objective. This is not surprising, since 
the force on a sphere, -S~padS, and the normal, n, are objective. Moreover, static pressure is a 
physical quantity, and does not depend on the coordinate system used to express it. 

In closing, we note that the principle of objectivity, which states that constitutive equations 
cannot depend in a substantial way on the coordinate systems used to express them, has been fully 
supported by an exact calculation of the force on a single sphere in an inviscid incompressible fluid. 
Although the derivation presented herein was done for a single sphere, there is no reason to doubt 
previous postulates (Drew & Lahey 1979) that for a multiphase mixture the phasic interaction laws 
must be objective. 
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