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Particles falling in a rotating fluid
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Particles falling in a fluid rotating about a horizontal axis can go into quasistable orbits. An
analytical solution of the particle’s motion is derived. This model may be applicable to

suspension of diatoms and other particles in the ocean.

INTRODUCTION

Laboratory centrifuges as discussed in a previous paper!
are always oriented with a vertical axis of rotation. There
are many naturally occurring rotating systems with similar
orientations, such as tornadoes, maelstroms, dust devils, and
the Indianapolis 500. Nature also provides circumstances
where the axis of rotation is horizontal. These can occur in
clear air turbulence, flow over rippled sand beds, and tur-
bulent eddies in the ocean. In this paper I deal theoreticaily
with the interaction between particles and a fluid rotating
about a horizontal axis. This problem is particularly per-
tinent to the suspension of diatoms and other microscopic
plants on the ocean surface, to suspension of sediments and
to the suspensions and distribution of pollutants. In a pre-
vious paper? some experimental aspects of this problem
were observed and analyzed.

In the case of diatoms, it is necessary that they maintain
themselves near the ocean surface in order to receive sun-
light vital for photosynthesis. However, many of them are
denser than seawater and tend to sink to the bottom of a
bucket of water when scooped from the ocean. Yet these
organisms do exist and reproduce in abundance at some
locations, so there must be some mechanism that maintains
them near the surface. There are upwelling regions in the
ocean where the vertical currents are sufficiently strong in
the upward direction, not only to maintain diatoms near the
surface, but to bring nutrients vital to diatom growth from
the deeper realms where the nutrient maxima occur. As
diatoms are distributed over regions where upwelling is not
present, there must be other mechanisms. Indeed, this
analysis shows that particles denser than the surrounding
fluid can maintain themselves in a rotating fluid cell for
times much longer than would be inferred from their sinking
rate.

SIMPLIFIED ANALYSIS

In order to model a particle falling in a rotating cell, |
assumed that the fluid was rotating about a horizontal axis
as if it were a solid body. Thus the angular velocity is con-
stant at all points within the cell. As demonstrated, both
theoretically and experimentally, this condition approxi-
mates the velocity field near the center of an eddy.? The
linear velocity of the fluid within the cell must at some point
be greater than the terminal velocity of the sinking particle
or it will not be able to achieve a stable or quasistable
orbit.

The major forces on the particle are the forces of gravity
and of buoyancy and the drag force exerted by the rotating
fluid. In all of the cases considered, viscous drag, propor-
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tional to the first power of the velocity of the particles rel-
ative to the fluid, is a reasonable representation. For ex-
ample, the Reynolds number of diatoms in the ocean is
about 0.01.

For the simplified analysis based on the major forces, the
equations in Cartesian coordinates, as shown in Fig. 1,
are

x direction: —a(x+rsinfw)=0 (1)

y direction: —a(y —rcosdw)—(p—pr)Vg=0

or
—a(x + yw) =0,

where a = 6mna assuming Stokes law for viscous flow and
mery = (p — py)V is the effective mass under influence of
gravity with 5 as the fluid viscosity; a, p, and V as the par-
ticle’s radius, density, and volume, respectively and py as
the fluid density; w is the fluid’s angular velocity and g is
the acceleration of gravity. These equations are easily
solved:

x = K sinwt + meg/ aw,

y = K coswt,

where megg /o = vr, the terminal velocity of the particle.
The solution is a series of concentric circular orbits centered
at x = +v7/wand y = 0. The radius of the orbit K depends
upon the initial conditions for the particle. This solution also
applies for particles less dense than the fluid where x =
—vr/wand y = 0 would be the center of the orbit. The an-
gular velocity of the orbit is the same as that of the rotating
fluid. Thus, according to these solutions, the particles would
go into stable circular orbits around a center where their
terminal velocity is equal to the upward velocity of the ro-
tating fluid. At first impression, it is rather amazing that
particles denser than the fluid can go into stable orbits.

MORE COMPLETE SOLUTION

There are several perturbing forces and departures from
the situation as idealized in Eq. (1). In this section I include
some of these effects. Figure 2 shows all of the forces on a
rotating sphere, assuming that there are no lift forces. In
some circumstances there would be a small lift force di-
rected away from the fluid’s axis of rotation.# However,
Bagnold? found that there was negligible lift on a rotating
or a nonrotating sphere in laminar shear flow provided it
was not near a boundary. In order to preserve the simplicity
of the analysis, I have neglected lift force as it introduces
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Fig. 1. Major forces on a ball in a rotating fluid. Fj is the buoyancy force,
Fg is the gravitational force, and Fy, is the drag force. The dotted circle
is the ball’s orbit.

nonlinearities destroying the analytical solution. Neglecting
lift forces is probably a reasonable assumption for a large
two-dimensional vortex with no boundary effects on the
particle. In some cases, the magnitude of the lift force may
be comparable to that of other perturbing forces considered
here.? Of course, I have neglected other effects too, such as
the inertial forces of the fluid. An exact solution would re-
quire solving the Navier-Stokes equation with the proper
boundary conditions on the particle. However, the simpler
analysis presented here gives a good feeling for the inter-
action between the particle and the fluid.

The centrifugal “buoyancy” force is due to the pressure
gradient created in the fluid by the rotation. This force is
directed radially inward and is proportional to the distance
from the center of the cylinder.! For the case of a sphere this
force is

FCB = —prwZI' = __prwZ(x;+ yj)'

Including the inertial terms mx and my which will provide
for the centrifugal force experienced by the particle in its
own orbit, the equations of motion are

mi = —a(x + yw) — pVwx,
my = —a(y — xw) — prVw?y — V(o — pp)g.

Both of these new terms are of the order of 10~4 of the other
terms for small particles in viscous flow. The solution to
these equations are derived in the Appendix and take the
general form:

x = (Ke=4' + K’el(1=B)/Alo’) sinet + vr/fw,

y = (Ke=4! + K’el(1=8)/A1%) cosor,

where 4 = a/m and B = pV/m = pyfp.

Several things are apparent. First, the center of the orbit
is still located at x = vr/w; y = 0. The frequency of orbital
rotation is the same as that of the eddy. These conditions
also apply for the simple analysis. However, in the more
sophisticated analysis there are transient terms. The terms
including e~ decrease to zero in very short times and can
be neglected. This term corresponds to the time interval
required for the particle to reach terminal velocity which
is of the order of milliseconds for the range of values perti-
nent here. The other term is more interesting, having three
distinct domains.

For B = ps/p = 1, the orbit is stable, circular, and cen-
tered on the axis of rotation.
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Fig. 2. Perturbation forces on a ball in a rotating fluid. Fc is the centrif-
ugal force on the ball in its own orbit. Fcg is the centrifugal buoyancy
force. The other forces are defined in Fig. 1. Lengths of the arrows are not
necessarily to scale.

For B > 1, the orbit decays to its center point and is again
stable.

For B < 1, the orbit expands indefinitely.

In the case of some small diatoms® B =~ 0.99 and the orbit
should expand with a time constant of several hours. The
horizontal eddies probably do not last this long, thus the
particles probably move from one eddy to another.

This condition for B can be appreciated more intuitively
by considering the perturbing forces on a particle in orbit
and balancing them so that the orbit is stable. As seen in
Fig. 3, the two perturbing forces are the centrifugal force
which depends on the radius of the orbit and the centrifugal
buoyancy force which depends upon the distance from the
center of the cylinder. The condition of stability is that the
sum of the forces at point O is equal in magnitude and op-
positely directed to the sum of the forces at 0.

Vpw2d + pVw?a = Vprw? (d + 2a) — pVw?a

which gives pg/p = 1 for stability. This condition is identical
to the one derived from the equations of motion.

CONCLUSION

Based on these equations, a small particle in a less dense,
rotating fluid would eventually escape from the rotating cell,
or eddy, but with a long time constant. In experiments based
on a similar but more complicated analysis, we found that
it is possible for particles in a less dense, rotating fluid to go
into stable orbits. This behavior can be partly attributed to
the experimental setup which was a rotating cylinder filled
with viscous fluid (Karo syrup) supporting a falling nylon
ball. The effects due to the walls of the cylinder and to the
lift forces were responsible for the stable behavior of the
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Fig. 3. Perturbing forces on ball along the horizontal direction.
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ball. Although it may not be applicable to the ocean, that
particular configuration is important for many commercial
chemical processes. It is treated in detail in another paper,?
and may be adapted as a laboratory demonstration of the
theory developed in this paper.

The ocean does not have walls; thus studies of the be-
havior of particles in vertical eddies where the boundary
effects are negligible could give valuable insight not only
into the behavior of the particles, but also of the turbulence
itself.

APPENDIX: SOLUTION OF THE EQUATIONS
OF MOTION

mi = —a(x + yw) — pVw?x.
my = —a(p — xw) — pVwly — Vip = ps)g.

Substituting

4=2 p=t¥_o C=V(p-pg)g;
m m p m

and using D as the derivative with respect to time, we
have

D2x = —A(Dx + yw) — Bw?x,
DYy = —A(Dy — xw) — Bw?y — C.

These two second-order differential equations can be re-
duced to four first-order equations as follows:

Dx—u=0,

Dy —v=0,
Du+ Au+ Awy + Bw?x =0,
Dv+ Av — Awx + Bw?y = —C.

The homogeneous solutions to these equations can be ob-
tained by solving the characteristic equation represented
by the determinant

A 0o -l 0

0 A 0 U
Bw? Aw A+A 0 '
—Aw Bw? 0 AN+ A

Where the X’s are the exponents in solutions of the form
x = Z Kje"f’.
J

The solutions of the characteristic equation are
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_—A£[A2 -4 (B £ idw)]'/?
; .

These solutions can be modified to the more useful form

A

A=1h1-A%[(42 - 4Bw?)? + (44w)?]'/4

X exp [ﬂ: ilh tan~! (-——(Az iAwa2)> ] }

~ In all cases of interest where the particle is small and the

rotation of the eddy is relatively slow, Bw < A.
Separating the real and imaginary parts of the A’s we
get

1/2 2 - 2
>\=l[—A:i:<£>/ [<1+A 4Bw>1/2
2 2 r
2 2\ 1/2
+i<l—A 4Bw>/]J
r

where r2 = (42 — 4Bw?)? + (4Aw)2. Eliminating all of the
higher-order terms, these expressions reduce to

}\] =—A+ iw,
A =[(1=-B)/Ale? + iw.
The final solutions would be

x = e—AI(K]eiwt + Kze—iwt,)

+ e[l—B)/A]wZI(K3eiwt + K4e—iwl) + LT
w
p = e~ AU(Kselwt + Kge™iot)
+ olU1=B)/ Al (K7eiwl + Kge~iot),

where the nonhomogeneous solution has been added. The
constants may be evaluated from boundary conditions and
by substitution in the original equations. With appropriate
approximations the solutions reduce to

x = (Ke=4! + K'el(=B)/Al%) sinust + vr/w,

y = (Ke= 4" + K’el(1=8)/ 4l coswt .
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