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T h e  Free  M ot i on  of a S p h e r e  in a Rota t ing  Fluid  

By H.-G,  Moll  

Summary: The free motion ot a sphere in a fluid with solid body rotation is considered. The equa- 
tions of motion of the sphere are formulated and a theoretical model for the surface force is introduced. 
From theory it follows tha t  after commencement  of the motion the horizontal part  of the trajectory of the 
sphere is a logarithmic spiral. This result is verified by experiment. I t  was also found experimentally that  
the drag of the sphere is considerably higher than that  of a sphere moving in a non-rotating fluid. The flow 
around the sphere is asymmetrical thus producing a dynamic lift during the motion. This points to the ex- 
istence of a Taylor-column moving with the sphere. The results make it possible to compute not only the forces 
acting on the surface but also the trajectory of the sphere. 

Ubersicht: Es wird die freie Bewegung einer Kugel in einem starr rotierenden Fluid behandelt. Die Bewe- 
gungsgleichungen far die Kugel werden aufgestellt, ein Ansatz far die auf die Kugel wirkende Oberfl~chenkraft 
wird eingefflhrt. Aus der Theorie ergibt sich, dab nach eineln Anlaufvorgang der horizontale Anteil der Kugel- 
bahnkurve einer logarithmischen Spirale entspricht. Das wird experimentell best~tigt. AuBerdem ergeben die 
Experimente, dab der Widerstand der Kugel betri~chtlich h6her ist als er yon Kugelbewegungen in nicht- 
rotierenden Fluiden her bekannt ist und dab die Kugel unsymmetrisch umstr6mt wird und so einen dyna- 
mischen Auftrieb erf~hrt. Dieses deutet  darauf hin, dab Taylor-Si~ulen die Kugelbewegung beeinfiussen. Die 
gemessenen Ergebnisse erm6glichen es, sowohl die Oberfl/tchenkrfifte als such die horizontale Bahnkurve der 
KugeI zu berechnen. 

1. Introduct ion 

Commercial centrifuges, used to clean sewage etc., show rather  poor results with respect to 
efficiency and flow rate. To analyse this deficiency an idea of Wille was adapted who considered 
the formation of Taylor-columns as a possible reason. Taylor-columns appear during the 
motion of a body through a fluid in solid body rotation. To the knowledge of the author this 
problem has not been studied yet. 

The difficulties in solving this problem analytically are well demonstrated by  various 
papers dealing with the straight s teady motion of a sphere in a rotating fluid, a problem which 
is considerably easier to handle than the one at hand. From the two papers by  Stewartson [1 l, 
~2~ it appears that  even this less complicated problem can not be solved completely. In his 
second paper Stewartson found for instance that  the flow around the Taylor-column is identical 
with the potential  flow around a cylinder. This result, however, contradicts experimental 
observations. 

Because of the apparently extreme difficulties connected with an analytical a t tempt  to solve 
the problem, it was considered a more promising way to undertake an experimental investiga- 
tion. In the following sections 2. and 3. equations are developed for later evaluations of the 
experiments. 

2. The Equat ions  of Mot ion of the Sphere  

In a coordinate-system rotating with the constant angular velocity (~, the external forces 
acting on the sphere are composed of the buoyancy force A i, the weight G i, the surface force S i 
due to the reaction of the motion of the sphere, and the surface force Z i due to the centrifugal 
field which is independent of the motion of the sphere. 

From Newton's law one obtains the following three relations, provided that  the x-axis and 
the axis of rotation of the system are identical, and that  the weight and the buoyancy force are 
acting in x-direction only: 

M g ( 1 - - e ~ L )  - S ~ = M ~ ,  (1) 
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Z~ -- S r = M (~; -- r ~ -- 2 co r ~ -- r co~) , (2) 

Z ,  -- S,  = M (r ~ + 2 ~; ~ + 2 co ~'), (3) 

where ) is the axial velocity, r the radial velocity and r ~ the azimuthal velocity of the sphere. 
M is the mass of the sphere; g is the gravitational acceleration and ~ the density. The index / 
stands for fluid. In the following we shall only consider the horizontal motion. The boundary 
conditions for equations (2) and (3) are 

t = o :  r = r 0 ,  9 = o ,  r = ~ = o ( 4 )  

where r 0 is the initial radial location of the sphere. 
The integration of the pressure which is the consequence of the rotation of the fluid yields : 

4 a3 and Z~ o (5) Z r =  - - - - ~  ~fco~r = 
3 

where a is the radius of the sphere. 
The remaining unknowns in the equations (2) and (3) are now only S~ and S,. The only 

theoretical way to obtain their values is to solve the Navier-Stokes-equations for a rotating 
system under the conditions at hand. This, however, seems to be difficult and it appeared to 
be a bet ter  way to construct a model for S, and S,  and to determine the unknowns in the model 
by  experiment : 

S r = c , z ~ ,  (6) - S ~ = C , ~ , r ~ .  (7) 

For the steady motion of the sphere in a non-rotating fluid Abraham [3] was able to find a law 
for the drag which is an extension of the well known Stokes' law [4]. Using C, = 6 ~ a PIv 
from Stokes he got for the range Re  < 25oo : 

l = m = (1 + o , 1 5 6  R e ~  2 . (8) 

Here Re  is the Reynolds number, defined as 

R ~  - , ( 9 )  

with v the kinematic viscosity and c the velocity of the sphere. 
Since a general analytical solution is not possible we shall introduce a restriction : The coef- 

ficients l and m are considered to be constant ; they denote the dissimilarity between the motion 
of a sphere calculated by  Stokes and the motion considered here. In addition the horizontal 
and the vertical motion of the sphere are then completely separated. 

Equations (2), (3) and (4) contain six adjustable quantities: a, v, co, ~, ~1' to" This yields 
three parameters determining the motion: 

P1 -- asv~o -- Ekman number --= E k ,  P~ - -  e! ~ ' 

With 

C1 _ 9  @1 Ek  and C~ ~--- 1 (  0t - -  1) 
2 0 2 \ 0  

" ~ 8 -  I"0 

the equations (2), (3) and (4) take the nondimensional form: 

- r ~ + C1 z ~ - 2 r (~ - C~) = o ,  (10) 

r ~  + 2 ~  + q r ~ r ~  + 2~  = o ,  (11) 

t = o :  r - -  1,  ~ = 0 ,  ~ ; = ~ = 0 .  (12) 

The dependent variables were normalized by  r 0 and co. This is the reason why Pa does not 
occur explicitly in C 1, C~ nor in the three equations. 

The system of equations (10)--(12) can easily be solved by  numerical computation, for 
example with tile Runge-Kutta-procedure.  
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An analytical solution is possible for the commencement of the motion. But this phase is 
not very  interesting, since it only concerns a very  small part  of the motion to be considered. 

The nondimensional surface force due to the reaction of the motion of the sphere has the 
components : ~, : S , . / M  r o 0) 2 = C 1 l ; and ~ : S ~ / M  r o o) ~" = C 1 ~ r ~ .  

3. The Quasistationary Phase 

Considering the motion of a sphere in a non-rotating fluid, one can obtain the quantities 
describing the steady phase by  making the acceleration term zero. For the motion of a sphere 
in a rotating fluid this cannot be done, since the force responsible for the motion is no longer 
constant. To make this force a "cons tan t"  equation (lO) has to be devided by  r. Introducing 
the abbreviation 

p 
= T (13) 

(lO) and (11) yield: 

P + k~- %~ + qIF-- 2 (%-- CJ = o, 

% + 2k% + C~% + 2P= o. 

(14) 

(15) 

I t  is assumed that  now the procedure described for the non-rotating fluid can be applied 
for a rotating fluid as welt : The motion of the sphere after its commencement in a rotating fluid 

is determined by  _F = ~ = o. This means that  /~A = constant and ~A = constant (A for 
"asymptot ic") ,  which justifies the term "quasistat ionary".  

With (13) we obtain for this phase: 

rA = fA o eFA ~, (16) 90A = 9hA ~ -}- 9~A o. (17) 

I t  must be mentioned, that  the point rn o/gA o is only a virtual origin of the motion, i.e. the point 
where the motion would have started, if no commencement of motion would be present. 

Using the derived equations it is now easy to predict the motion of the sphere with or 
without consideration of the drag resistance : The horizontal part  of the free motion of a sphere 
in a rotat ing fluid can be divided into a phase of commencement of motion and a quasistatio- 
nary phase, in which the t ra jectory of the sphere is described by  a logarithmic spiral. By reduc- 
ing tile drag resistance this spirM approaches a circle. At the same time tile region of commen- 
cement of motion will be elongated. If the drag resistance is zero, the quasistationary phase, 
which then would be a circular motion, will not be reached, since the commencement of motion 
cannot be damped. 

4. Experimental Determination of Fa, qb A, ra0 and q%0 

The apparatus which is shown in Fig. 1 consists of a rotating stand, a mirror, a rotoscope 
and a Bolex-filmcamera. This is completed by  a mechanical revolution counter, a frequency 
counter, a clock and a Robot-photocamera.  

The rotation stand consists of a cylindrical plexiglass-container which rotates around its 
axis of symmetry  with a constant angular velocity. In this container a plexiglass-tnbe is mount-  
ed and filled with up to 15 spheres. The spheres are elevated upward by  a pressure-system 
until they are leaving the tube. 

The motion of the sphere having left the above mentioned tube is registered continuously 
by the filmcamera. At the same time tile readings of tile instruments are registered by the 
photocamera. This camera is triggering a light bulb which is mounted on the top of the mirror, 
so that  the instant when an instrument reading is taken can he seen from the film. The roto- 
scope is connected with the driving unit of the rotation stand by  a flexible shaft. I t  consists 
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mainly of a dove prism which suppresses the rotat ion of the image of the plexiglass-container. 
The design of the rotoscope was st imulated by  Hide and Ibbetson [51, who used this term. 

1 
Fig. 1. The apparatus. 

1 Rotation stand, 2 Mirror, 3 Rotoscope, 4 Bolex-filmcamera, 5 Revolution counter, 6 Frequency counter, 
7 Clock, 8 Robot-photocamera 
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Fig. 2. Example for the evaluation of the experiments 
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The experiments were carried out with the following parameter  variations: 

o/~o! = 1.o23 to 1.436 
E k  = o.oo 4 to 0.009 

ro/a ---- 15.75 to 39.37. 

From the locations of tile sphere in the individual frame of the film the temporal  variat ion of 
its radial and azimuthal  coordinates were evaluated. Fig. 2 shows an example of the evaluation. 
In addition the dependence of In r is shown. I t  must  be mentioned tha t  the points in Fig. 2 are 
levelling off where the sphere reaches the edge of the container. For every experiment diagrams 
like those in Fig. 2 were drawn. F rom these the four unknowns of (16) and (17) can be obtained: 

From In rA o one obtains r A o ; 9A o is taken directly from Fig. 2. The value of/5 A is the ascent of 
the in r-cm've, ~b is the ascent of the 9-curve. 
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Fig. 2 shows a linear time dependence of the measured values of In r and 9 which is in agree- 

ment with the theoretical prediction. Thus/Ta = d (In ra)/dt and ~a = d~a/dt are t ruly con- 
stant and the existence of the quasistationary phase is confirmed. 

I t  is usually accepted tha t  the drag coefficients t and rn are equal, i.e. x = l/m = 1. This 
implies symmetrical flow around the sphere. If this assumption is not valid, a simple model for 
x which in general depends on all three parameters would be x = constant. Then the equations 

of motion yield the following relation between/~a and ~a : 

2~ = ~ / ( ~ - -  + ~ ~-;~ ~ a  - ~_?c~);)~a . (18) 

The lines x = constant in the/Ta -- ~~ depend only on the ratio of O/~t" Since 0 was 
kept constant for all experiments, Q/~t was varied by  using different fluids: Methanol 
(~o/ef =1.4356), water (e/~oi = 1.14o4) and saltwater (o/Q! = 1.o225). 
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Fig. 3. E q u a t i o n  (18) for x = 0. 4 a n d  x = 1.o 

In Fig. 3 the lines x = 1 for these different fluids are drawn. The points obtained from the 
experiments do not, however, coinside with these lines. They  are well represented by  lines for 
which x = 0. 4. This fact indicates that  the flow around the sphere is not symmetrical. An 
explanation for this remarkable fact is given later. 

By plotting/~A and ~A against Ek no correlation could be found. The d iagrams/ ;a  and ~a 
over ~o/a are plotted in Figs. 4 and 5. Here ~0 a seems to be a linear function of ro/a : 

= ~- + 2V(elet) �9 (19) 

The straight lines which can be drawn accordingly intersect with the ~a-axis at those points, 

which correspond to the values from (18) for i~ A = o. 

The values of N and M in (19) are now evalQated. One finds from (18) : 

N = - 1 + l / ~  + 2 6 (20) 

whereas M can be approximated by  

I~r Bd. 42, H. 3 (1973) 
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Fig. 5. ~~ as a function of ~]9! and ro/C~ 

Since a relation between/~a and  ~A is given by  (18) and x = 0.4 is ascertained, no equation for 
. t  .~ : , . +  . , 

F A --: l ike (19) --.is necessary. The curves in Fig. 4 are computed from (18) with x = o.4 and 
(19), (20) and (21). 

For evaluating (16) and (17) it is still necessary to determine the coordinates of the virtual 
origins. These coorc!inates are independent of Ek analogous to what has been ascertained for 

~:'A and ~0 A. :They are both linear in ro/a. 

If we take the model 

. . . .  ~a o[ ~ = R(~/~I) r~ + T(o~/Qt) (22) 

�9 we can approximate this initial coordinate by  
�9 : . . "  

1 ) +  + - 

and 

T = 34.3390 (~  1) ~ 27.3915 (0~ 1) 1"7376 . (24) 
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With  
r A o - -  1 ----- V q ) A o l  c] -}- V ,  

we get the  approximat ions  

oo 1 § o o,4  

__ o6%6__ O '1655  ~ _  1 V = - -  0 . 2262  ~ /  1 

The initial points  in the r a o - -  9A o-P lane are given in Fig. 6. 

(25) 

(26) 

(27) 

Fig. 6. The  coordina tes  o5 the  v i r tua l  origins 

5. Determinat ion  of the Drag and the Lift 

I t  was ment ioned  above t h a t  the flow around  the sphere is no t  symmetr ical .  This means 
t h a t  in the hor izonta l  plane a drag componen t  as well as a lift componen t  is present�9 Using 

x = 0. 4 and with tan  c~ = frA/~O A which is cons tan t  for every  run of the sphere we obta in  for 
the  drag (see Fig. 7): 

D = (1 + 1.5 cos ~c*) C 1 l c (28) 
and for the lift 

L = 1 .5s inc~cosc~C l I c .  

rA ~A 

~rA= C1 l i 'A ~ ~  

L ~  rA 
~koA: C1 rnrA ~A : 2,5 C 1 I r A ~o A 

Fig. 7. Schemat ic  i l lus t ra t ing the  forces D and L 

(29) 

In  these equat ions c is the veloci ty  of the sphere as defined in equat ion  (9), bu t  now in a non- 

dimensional  form and only  the hor izontal  componen t  : c ---- V~-A + ~0~ ra. The value of l which 
appears  in these relat ions is 

l ~- ~~ --  F~t + 2 ~o A - -  2 C 2 
cl ~a (30) 
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6. Comparison of the Drag of a Sphere in a Non-rotat ing and a Rotating Fluid 

In  a non-rotat ing fluid the drag-force during the s teady phase is --  according to the law of 
Abraham - -  : 

Here the velocity of the sphere c is non-dimensionless. According to (28) the drag-force in a ro- 
tat ing fluid is 

W R = D M r 0 c , )  2 =  C l l M r  0 o  ~(1 + 1, 5 cos 2~)c  (32) 

where c is dimensionless and equal to/~A rA/sin c~. This leads to the ratio of the drag-forces : 

W R C l l l b  A 1 + 1, 5cos  ~c*r 0o) ~ 2 1 + 1,5 cos 2c~ 
= r A : C 1 1 0 E k _  ~ (~ + o,~56/~eo,~)~ " (33) 
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Fig. 8. The ra t io  of the drag-force W R in a ro ta t ing  fluid to t ha t  in a non-ro ta t ing  fluid W N 

The results of (33) - -  using the values of the experiments - -  are shown in Fig. 8. In this 
diagram the beginning and tile end of every quasis tat ionary phase is marked  by  the accelera- 
tion number  A c which is multiplied by  looo. This characteristic number  is defined as 

2 Fa (34) 
A c = Ek Re " 

According to equation (33) the ratio W R / W  N is not linear with Re .  For simplification, however, 
l inearity is shown in Fig. 8. F rom this picture two substantial  results can be taken:  (1) The 
dragforce according to the free motion of a sphere in a rotat ing fluid is up to more than 
lo-t imes greater  than tha t  of tile motion of a sphere in a non-ratat ing fluid. (2) Tile acceleration 
number  is not a suitable parameter .  

7. Discuss ion of Results 

Tile two main results obtained so far are the increased drag of the sphere and the asymme-  
tric flow around tile sphere. 
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The evaluation of the experiments yielded a drag-force which, in a certain range, was par-  
tially more than  lo-t imes greater  than in the comparable motion of a sphere in a non-rotat ing 
fluid. This m a y  be caused by  the rotat ion of the fluid or b y  the acceleration of the sphere which 
is also absent in the Abraham-case.  

We shall first consider the influence of the acceleration. Buzzard and Neddermann [6] 
reported of experiments  with nylonspheres in air. For acceleration numbers 5.1 �9 lo -4 ~ A c 

52 �9 lo -4 they found no perceptible deviation from the law of the s teady motion of a sphere 
up to Re = 15oo. No experiments  were carried out for higher Reynolds numbers.  In addition 
to these experiments  only the results of Lunnon [7] are known which are comparable to the 
results of the present work, i.e. for R e ~ 2 5 o o .  In the region o . 1 . 1 o  - 4 ~ A c ~ 2 . 1 o  -4 
Lunnon obtained no substantial  difference between his results and those known from steadily 
falling spheres in fluids at rest. Only at Re m 15ooo Lunnon found that  the drag coefficient 
had approximate ly  doubled. 

Contrary to the experiments  of Buzzard and Neddermann and of Lunnon the acceleration 
acting on the sphere is not constant  in the rotat ing fluid. This is, however, expected to be of 
negligible influence on the drag coefficient. One m a y  therefore assume tha t  the increase of the 
drag is caused only by  the rotat ion of the fluid, i.e. the vortex structure of the rotat ing fluid. 

" "~ ~A 

. . . . . .  . - ~ r  

Fig. 9. The flow around a cylinder in a rotating fluid (Hide and Ibbetson [5]) 

From Fig. 9 (Hide and Ibbetson) it can be gathered tha t  Taylor-columns may  be tile cause 
for the existence of the dynamical  lift force in the horizontal plane. This picture shows the 
streaklines about  lo centimeters above a slowly and steadly moving cylinder. The rotat ion of 
fhe sys tem is counterclockwise. A flow perpendicular to the direction of motion through the 
region right above the cylinder is clearly seen. This implies a force acting on the cylinder in 
this direction, i.e. a lifting force. The two force components are drawn in Fig. 9 b. 

If  the regions above and below the sphere had a flow pat tern  like tha t  at the cylinder, the 
lift force found in the experiments could be explained. 

In concluding, it appears possible to interpret  the main results of this work as the effect 
of the vor tex s t ructure  of the rotat ing fluid, i.e. the existence of Taylor-columns. 

8. An Example 

Four different methods were applied to compute the t ra jectory of the sphere: 

Stokes: Equat ions 0o) ,  (11) and (12) are solved with 1 = m ~ 1. 
Abraham: Equations (lO), (11) and (12) are solved with l and m according to equation (8). 
Reuter: This method is common in chemical engineering. Reuter  [8~ assumes tha t  the corio- 

lis acceleration can be neclegted, tha t  Stokes'  law is valid (1 = 1) and tha t  ~ = ~ = 9 = o. 
When solving equation (lo) with equation (12) the t ra jec tory  is a s t raight  line coinciding with 
the r-axis. 
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Moll:  E q u a t i o n s  (16) a n d  (17) a re  s o l v e d  b y  u s ing  t h e  r e su l t s  for  FA, ~A, ra o a n d  ~a  o. O n l y  

t h e  t r a j e c t o r y  of t h e  q u a s i s t a t i o n a r y  p h a s e  is t h u s  c o m p u t e d .  

STOKES 2 

ABRAHAM 
/ \ 

0,2 

1 4 

3 r  

q2s 
REUTER 

so ~ _ _ . _ . _ L _ . _ _ _ _ ~ . . ~ -  ~-~ 

Fig. lo. The horizontal trajectory of a sphere as computed by four different methods 

Fig .  10 shows  t h e  fou r  d i f f e r e n t  t r a j e c t o r i e s  for  t h e  p a r a m e t e r c o m b i n a t i o n  E k  = o,oo5,  

e/el = 1,1, ro/a = 30. I t  s h o u l d  be  m e n t i o n e d  t h a t  in r a n g e s  of t h e  p a r a m e t e r s  w h i c h  h a v e  n o t  

b e e n  s t u d i e d  in t h e  e x p e r i m e n t s  t h e  d i f f e rences  b e t w e e n  t h e  f o u r  t r a j e c t o r i e s  m a y  be  q u i t e  

d i f fe ren t .  
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