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Zusammen/assung 

In  dieser Arbe i t  werden Ausdriicke fiir das Verschiebungsfeld in einer e las t ischen 
Kugel  angegeben,  deren Oberflgche a) elastisch gelagert,  b) eingespannt ,  c) frei ist. 
Die Verschiebungen werden durch diejenigen Verschiebungen und Spannungen  
ausgedriickt,  die in e inem unendlichen K6rper  un te r  derselben Ver te i lung von  Sin- 
gular i t~ten entstehen.  
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On the Wall Effect Correction of the 
Stokes Drag Formula for Axially Symmetric Bodies Moving 

Inside a Cylindrical Tube 1) 
By I-DEE CHANG, Pasadena,  California, U. S. A. ~) 

I t  is well known that  the drag on a body moving in an incompressible 
viscous fluid may  be determined from Stokes equations for small Reynolds 
numbers. When the flow field is infinite, formulae for computing the drag on 
bodies of various shapes are available [1, 2] a). Recently, a class of solutions of 
Stokes equations for axially symmetric bodies moving in an infinite flow field 
were given by  PAYNE and PELL [31. Due to the nature of the Stokes equations, 
however, the effect of the wall of the containing vessel is generally not negli- 
gible [41. This is clear from the fact that  flow conditions specified at infinity 
often play vital roles to the solutions of Stokes equations. 

The motion of a sphere in a vertical tube filled with stationary fluid was 
first studied by LADENBURG ES]. Assuming that  the radius of the sphere is much 

1) Research done under U.S.Air Force Office of Scientific Research Contract Nr. AF 49 
(638) - 521. 

2) California Institute of Technology. 
a) Numbers in brackets refer to References, page 13. 
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smaller than the radius of the tube, he obtained the following formula for the 
drag on the moving sphere: 

D :  6 ~ a  U ( I +  L ~ - ) ,  (1) 

where a and R are, respectively, the radii of the sphere and the tube; # is the 
viscosity of the fluid; U the velocity of the sphere; and L a constant approxi- 
mately equal to 2.104 E2]. 

The above formula was obtained from an approximate solution of the 
Stokes equations. I t  gives the drag on the sphere to the order of approximation 
O(a/R). Under the same conditions, we shall show that  the drag on any axially 
symmetric body moving inside a tube of radius R is given by the formula: 

~: D O a 2 
= + ) +  (2) 

where D O is the Stokes drag for the body moving in an infinite domain of fluids, 
and z is a constant approximately equal to 2.203. The second term inside the 
bracket of (2) accounts for the wall effect correction; for the sphere, D O = 6~#  Ua 
and then (2) reduces to LADENBUaa'S formula (1). 

Our problem consists in finding the drag force on an axially symmetric body 
moving with constant velocity U inside a tube filled with viscous fluid. The 
tube is assumed infinitely long, and the body is moving rectilinearly along the 
centerline of the tube so that  an axially symmetric flow field, s tat ionary at 
infinity, is maintained. We choose a cylindrical coordinate, taking the center- 
line of the tube as the z-axis and the radial distance from this axis as the 
radius r. The origin of the coordinate system is chosen to coincide, at a certain 
moment  of time, with a point on the centerline of the body; the exact location 
of this point does not have to be specified. The flow velocity q(r, Z) and the 
pressure p(r, z) are given at this moment  by  the differential equations E5;: 

# P q  - Vp = 0 (3a) 

div q = 0 ,  

and the boundary conditions 

(3b) 

q = - U i at body ,  (4a) 

q = 0  f o r t = R ,  (4b) 
and 

q -~ 0 when z -+ ~ oc , (4cl 

where i is a unit vector pointing in the direction of the positive z-axis. 
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If the radius of the tube, R, is very large compared with the characteristic 
length a of the body, an approximate solution of (3) which gives the drag 
formula (2) may be obtained in the following manner. We consider the flow 
field in two regions: an in~er region which is immediately adjacent to the body 
and an outer region which is far away from the body. The velocity q and the 
pressure ib are treated in these two regions by the following successive approxi- 
mations : 

Inner solutions : 

Outer solutions" 

q ~ h 0 + h I + . . .  , (5a)  

P ~'~ P0 + P~ + "'" - (5b) 

q "~ go + g l  + "'" , (6a) 

P ~ 13o +/~1 + . . . .  �9 (6b) 

The first order i:r solution h o and Po are obtained by letting R --> o~. 
The differential equations and the boundary conditions for determining h o and 
Po are then 

# V2ho -- VPo = O, (7a)  

div h o = O, 

and 
h o = -- U i at body,  

(7b) 

(8a) 

h o -+ 0 at infinity,  (8b) 

and the solution is simply that  for a body moving in an infinite flow field, which 
is assumed already obtained. The drag force D O given by such a solution is also 
assumed known. 

For later reference, the asymptotic expressions for the velocity h 0 and the 
pressure field P0, valid for large values of r and z, are given below (cf. equation 
(4.9) and (4.11) of reference [31)" 

Do ( i _ V z )  
h ~  ~ 4 ~ #  ~ ~ § 0 ( ~ )  (9a) 

- -  i ) 0  2" l aZ \  
Po 4 7ro-~+ O[_Qa), ( ~ 2 ~  r ~ +  F ) .  (9b) 

The above expressions hold true for any shape of bodies with characteristic 
length a. The terms displayed satisfy the Stokes equations and give description 
to the velocity and pressure fields induced by applying a concentrated force of 
strength -- D O i on the fluid at the origin. Such solutions are usually referred 
to as the fundamental solutions of the Stokes equations [4]. 
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The outer solutions are valid approximations of the exact solutions in a 
region far from the body; for large tube radius R, this includes the region near 
the wall. In determining the outer solutions using the Stokes equations, the 
non-slip condition q = 0 at the wall is used. Near the body the outer solutions 
are not expected to be valid, hence the boundary condition at the body may  
not be used. In the place of the later, we introduce the matching conditions 
existing between the inner and the outer solutions. Loosely speaking, this con- 
dition states fhat  the leading terms of the outer solutions when expanded into 
a series for small values of ~ must agree with the leading terms of the inner 
solutions when expanded into a series for large values of Q. When such matching 
is possible, an additional condition is available for the determination of the 
solutions. 

The first order outer solutions go and 130 are thus solutions of the Stokes 
equations which satisfy the boundary condition go = 0 at the wall and which 
reduce to equation (9) for small values of ~. By direct calculation one can show 
that  the proper solutions for go and P0 are given by the equations 

# P g o  - VPo = Do d(r) i ,  (lOa) 

and the boundary conditions 

div go = 0 ,  (10b) 

go = 0 for r = R ,  (lla) 

go -> 0 when z + ~= oo , ( l ib)  

where d(r) is the &function which is zero when r 4= 0 and is oo when r = 0 
and its integral over any volume containing the origin is equal to unity. From 
equation (10a) one sees that  the boundary condition at the body (4a) is expres- 
sed by  introducing a forcing term D o d(r) i in the momentum equation. This is 
equivalent to replacing the body by  its retarding force on tile fluid. 

The solution of go may  be divided into two parts  : g0 ~ g(01} - ] -  g{O 2)" The first 
part,  #0 ~/, consists of terms which are singular at r = 0. These terms arise due 
to the singular forcing function D o d(r) i. We shall show by  explicit calculation 
that  this part  is identical to the asymptotic  expressions of h 0 and P0 displayed 
in (9). The second part,  g(02/, contains terms which are regular at r = 0 and 
arises due to the non-slip boundary condition go = 0 at the wall. The second 
flow field is therefore induced by  the reflection of the wall. Since the flow is 
axially symmetric, the induced velocity g~2! has only the z-component at the 
point r = 0. For small values of 9, one finds (cf. eq. (31) below) 
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Next, we consider the second order inner solutions h I and Pi. The require- 
ments for h 1 and pl are then that  they should match with g(0 e) which is the 
unmatched part  between the first order inner and outer solutions. Thus 

# ~72h I ~7pl = 0 , (13a) 

div h 1 = 0 ,  (13b) 
with the boundary conditions 

h 1 = 0 at body ,  (14a) 

h 1 -+ u'  i at infinity.  (14b) 

The second condition, (14b), is the matching condition mentioned above. By 
considering equations (13) and (14) in conjunction with equation (7) and (8), 
one sees easily that  the sum h 0 + h 1 is the solution of the Stokes equations 
which correspond to the body moving with a relative velocity U + u'. The 
effect of the wall, to the order O(a/R), is therefore an apparent increase of the 
velocity of the body in the ratio 1:(1 + u'/U). There is an equal amount of 
increase in the drag force if the momentum integral of the velocity field is 
computed. The drag force on the body in the presence of the wall is then equal to 

+ § 

This basic formula to be used below was also used by  LADENBURO in obtaining 
(1) based on a different argument. The above formulation follows essentially 
the singular perturbation procedure developed in [61. In a formal application of 
the theory one should first introduce the small parameter  e = a/R and then 
consider the various limits of the flow quantities q and p corresponding to 
different orders of the space variables r and z with respect to e. This systematic 
procedure leads to an inner and an outer expansion similar, respectively, to (5) 
and (6). Such formal development, while leading to justification to many  
arguments given above, is too lengthy to be used in this short paper. 

Now, let us find the value of u' by considering (10) and (11). We put 

=__[ V ~ ] go D~ V205 f -- (16a) 
,u Oz J' 

15 ~ = _ Do V2 0~ (16b) 
Oz " 

By inserting these expressions into equations (10), one easily verifies that  (10b) 
is identically satisfied and (10a) becomes 

V2V2# = 6(r).  (17) 
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Fur the rmore ,  ( l la )  and ( l lb )  lead to the following conditions for q)(r, z): 

- 0 for r = R ,  (18a) Or Or 2 

~b ---> 0 when z ---> ~ oo . (18b) 

We define the Fourier  t ransform of a function F(r, z) by  the pair  

o o  

F(r, ).) = o/" e -i~ F(r, z) dz (19a) 
- -  o o  

and 
o o  

F(r, z) = 1 / TW~ e iz~ F(r, ).) d). , 
- -  c O  

(19b) 

and denote 
equat ion (17) there follows 

d ~  1 d~ 
d r  2 + r d r  

V2~b b y  the function of(r, z). After applying the t ransform to 

The solution of equat ion (20) is 

1 Ko().  r) + A 4 ( ) .  r) (22) ~ ( ~ ' ~ ) -  2 ~  2 ~  " 

The equat ion for ~(r ,  ).) is then 

d~dr~ + rl d~dr ).2 ~ = ~ (). r) , (23) 

which gives the result 

)2 q0(r, ).) = "~ r K I ( )  . r) + X B i o ( )  , r) 4 ~  2 ~ ). r I1(). r) + -2~ " (24) 

In  (24), A and B are the cons tants  of integrat ion to be determined from 
bounda ry  conditions (18) and  Io, 11, K o and K 1 are the modified Bessel func- 
tions. B y  direct calculation one finds 

I,(Z R) Ko(Z •) -- Z_if_ [Io(Z R) Ko(Z R) + I1(Z R) KI(Z R)] 
A (). R) = (25a) 

I0(~ R) II(Z R) + ~ -  U~(Z R) -- I~(~ R)] 

6(r) = 6(r) 6(x) . (21) 

).2 ~ = ~(r). (20) 

Here 3(r) is a ~-function defined b y  
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and 

B(~ R) = 

2 R  
4 

Io(~ R) I~(2 R) + ~ [I~(Z R) -- I~(~ R)] 
(25b) 

The z-component of go, u(r, z), is given by the expression 

u(r, z) D~ [9(r, z) 02 1 )7-  - ~ r z)j .  

The Fourier transform of u(r, z) is 

u(r, 4) D~ 

= ~(t)(r, ).) + ~(~)(r, ~), 

where 

and 

(26) 

(27) 

(2s) 

Do [Ko(2r)_Af_~ Kl().r)] (29) u(1)(r, 4) - 2 ~ 

Do [A (4 r) (Io(4 r) + Z ~ I #  ~)) + B(Z n) Zo(Z r)].  ;(2)(r, 4) - 2 ~ (30) 

These two parts of ;(r,  4) correspond, respectively, to the z-component of 
g(01) and g(02) . The inverse of ;m)(r, 4) is obtained by using (19b): 

Go 1 /  ) = 

u(m(r, z) -- 2 x R e *<z/R) u a, a da , a )~ R , 
- -  G o  

(31a) 

and um)(r, z) is regular at the point r = 0: 

\ z x - ]  
(31b) 

where u' is the value of u(r, z) at the point r = 0. One finds 

u' -- 2=ttD~ / [(p(0, ;t) + ,~2q)(0, ,t.)] d2 
- o o  

Go Go 

Do f [A(2 R) + B(2 R)] d2 - D o  j"  H(a) da 
4 ~ 2 ~ a  2 r  R 

- o o  0 

2 ~ # . R  , 

(32a) 
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where  

= f do = 
o 0 

So, f ina l ly ,  

(y 
I i(a)  Ko(a) - 2 [S~ K~ + I~(a) Kl(a)]  + 

cr 
Io(a ) Ii(a ) + ~  [I~(a) -- I02(a)] 

_~ 2 . 2 0 3 .  

D O 

(32b) 

(33) 

I n  T a b l e  I we l is t  s e v e r a l  cases  where  the  v a l u e  D O is g iven  in re fe rence  [3]. 

Table  1 
Drag 

Body Drag (Infinite Domain) (Inside Tube of Radius R) 

(1) Hemispher ica l  Cup 17.525/~ a U 
(2) F l a t  disc of radius  a 16 # a U 
(3) Sphere of rad ius  a 6 rr/ ,  a U 
(4) Pro la te  spheroid  8 ~ e/~ a U 
(5) Obla te  spheroid  8 ~ fl # a U 

17.525 tt a U(1 + 1.956 a/R) 
16 tt a U(1 + 1.786 a/R) 
6 ~ # a U(1 + 2.104 a/R) 

8~e/~a  U (1 + 2.805c~a/R) 
8~fl~a U(1 + 2.805flu~R) 

I n  t he  above ,  a is t h e  r a d i u s  of t h e  f ro n t a l  a r ea  circle  of t he  b o d y  for  cases  
(1)-(3).  T h e  cross sec t ion  of the  sphero ids ,  (4), (5), i n t e r c e p t e d  b y  the  r - z p lane ,  
is an  el l ipse.  F o r  t he  p r o l a t e  sphe ro ids  t he  loci  a re  a t  (4- a, 0) a n d  c~ is equa l  
to  the  v a l u e  

= (s 2 + 1) log s - -  1 s . (34) 

F o r  t he  o b l a t e  sphe ro ids  t he  loci  a re  a t  (0, 4- a) a n d  fl is equa l  to  t he  v a l u e  

fl = [(1 --  S ~) cot  -1 S + s] -1 . (35) 

I n  (34) a n d  (35) s is equa l  to  t he  r a t i o  of t he  s emi -ax i s  a long  the  z-axis  to  t h e  
focal  l e n g t h  a, of t he  el l ipse.  
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Zusammerz/assung 

In dieser Arbeit wird der Einfluss der Wand auf die Bewegung eines rota- 
tionssymmetrischen KOrpers 1/ings der Achse eines mit zgher Fliissigkeit gefiillten 
Rohres betrachtet. Der Widerstand des K6rpers wird unter der Voraussetzung 
berechnet, dass die Dimensionen des K6rpers gegeniiber dem Radius des Rohres 
klein sind. Wit finden ftir den Widerstand D eines K6rpers, der sich mit der Ge- 
schwindigkeit U 1/ings der Achse einer zylindrischen R6hre mit dem inneren Radius 
R bewegt, 

D = D  o 1 +  o # ~ U R  2 

we D o der Widerstand des K6rpers in einer sonst den ganzen Raum fiillenden 
Fliissigkeit, a eine Konstante etwa gleich 2.203, und # die Viskosit/itskonstante ist. 

(Received:  J u n e  10, 1960.) 

Die Instabilit{it der Str6mung zwischen zwei rotierenden 
Zylindern gegeniiber Taylor-Wirbeln fiir beliebige Spaltbreiten 

Von KLAtrS IZlRC~IGXSSNER*), Freiburg i. Br., Deutschland 

Einleitung 

Diese Arbeit besch~iftigt sich mit der zuerst yon TAYLOR ~1~ 2) untersuchten 
Instabilit~it der laminaren, inkompressiblen Strbmung zwischen zwei rotie- 
renden koaxialen Zylindern. Die Stbrungen, die von einer gewissen Rotations- 
geschwindigkeit des inneren Zylinders an auftreten k6nnen, bilden sich be- 
kanntlich in Form eines in Richtung der Zylindererzeugenden periodischen 
Wirbelmusters aus. 

Um die numerischen Auswertungen mit ertr~iglichem Aufwand durehfiihren 
zu kbnnen, musste TAYLOR, neben anderen Annahmen wie der Kleillheit der 
betrachteten Stbrungen, verlangen, dass die Spaltbreite (Differenz der Zylin- 
derradien) klein sei gegeniiber den Kriimmungsradien der Zylinder. 

Die Erweiterung dieser Theorie auf dell Fall beliebiger Spaltbreite gelang 
erstlnals CHANDRASEKFIAR E2] in neuester Zeit. Die von ihm angewandte Me- 
thode zur L6sung des Problems beruht auf einer auch von TAYLOR angesetzten 
Reihenentwicklung der Stbrungsamplituden nach Besselfunktionen. 

In der vorliegenden Arbeit wird zurLbsung desselben Problems ein anderer 
Weg beschritten, der wesentlich auf der von G6RTLER E3~ und HRMMERLIN E4] 

I} Aus dem I n s t i t u t  ftir angewandte  Ma thema t ik  der Universi tf i t  Fre iburg  und dem Ins t i t u t  
fiir angewandte  Ma thema t ik  und  Meehanik der DVL all der Universi t / i t  Freiburg.  Diese Unter- 
suchung wurdq ve in  Wir t scha f t smin i s t e r ium des Landes Baden /Wt i r t t emberg  gef/Srdert. 

~) Die Ziffern in eekigen  K l a m m e r n  verweisen  au/ das  L i t e ra tu rve rze ichn i s ,  Seite 29. 


