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Zusammenfassung

In dieser Arbeit werden Ausdriicke fiir das Verschiebungsfeld in einer elastischen
Kugel angegeben, deren Oberfldche a) elastisch gelagert, b) eingespannt, c) frei ist.
Die Verschiebungen werden durch diejenigen Verschiebungen und Spannungen
ausgedriickt, die in einem unendlichen Ko&rper unter derselben Verteilung von Sin-
gularititen entstehen.

(Received: Mai 19, 1960.)

On the Wall Effect Correction of the
Stokes Drag Formula for Axially Symmetric Bodies Moving
Inside a Cylindrical Tube’)

By I-pEE CHANG, Pasadena, California, U.S.A.2)

It is well known that the drag on a body moving in an incompressible
viscous fluid may be determined from Stokes equations for small Reynolds
numbers. When the flow field is infinite, formulae for computing the drag on
bodies of various shapes are available [1, 2]3). Recently, a class of solutions of
Stokes equations for axially symmetric bodies moving in an infinite flow field
were given by PAYNE and PeLL [3]. Due to the nature of the Stokes equations,
however, the effect of the wall of the containing vessel is generally not negli-
gible [4]. This is clear from the fact that flow conditions specified at infinity
often play vital roles to the solutions of Stokes equations.

The motion of a sphere in a vertical tube filled with stationary fluid was
first studied by LADENBURG [5]. Assuming that the radius of the sphere is much
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smaller than the radius of the tube, he obtained the following formula for the
drag on the moving sphere:

D:6nuaU(L+L€%% (1)

where a and R are, respectively, the radii of the sphere and the tube; u is the
viscosity of the fluid; U the velocity of the sphere; and L a constant approxi-
mately equal to 2.104 [2].

The above formula was obtained from an approximate solution of the
Stokes equations. It gives the drag on the sphere to the order of approximation
O(a/R). Under the same conditions, we shall show that the drag on any axially
symmetric body moving inside a tube of radius R is given by the formula:

% D a?
D =Do(1+ i) + O 5). @
where D, is the Stokes drag for the body moving in an infinite domain of fluids,
and x is a constant approximately equal to 2:203. The second term inside the
bracket of (2) accounts for the wall effect correction; for the sphere, Dy=67zuUa
and then (2) reduces to LADENBURG's formula (1).

Our problem consists in finding the drag force on an axially symmetric body
moving with constant velocity U inside a tube filled with viscous fluid. The
tube is assumed infinitely long, and the body is moving rectilinearly along the
centerline of the tube so that an axially symmetric flow field, stationary at
infinity, is maintained. We choose a cylindrical coordinate, taking the center-
line of the tube as the z-axis and the radial distance from this axis as the
radius 7. The origin of the coordinate system is chosen to coincide, at a certain
moment of time, with a point on the centerline of the body; the exact location
of this point does not have to be specified. The flow velocity q(r, z) and the
pressure p(7, 2) are given at this moment by the differential equations [5]:

uV*q—-Vp=0 (3a)
divg=0, (3b)

and the boundary conditions

q=-Ui at body (4a)

q=>0 forr = R, (4b)
and

q-—>0 when z — 4 oo, {4c)

where 7 is a unit vector pointing in the direction of the positive z-axis.
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If the radius of the tube, R, is very large compared with the characteristic
length a of the body, an approximate solution of (3) which gives the drag
formula (2) may be obtained in the following manner. We consider the flow
field in two regions: an snner region which is immediately adjacent to the body
and an outer region which is far away from the body. The velocity q and the
pressure p are treated in these two regions by the following successive approxi-
mations:

Inner solutions:

q~h0+h1+'--) (53)

p~bot+prt . (5b)
Outer solutions:

q~8g +8+- -, (6a)

pNﬁO'{'ﬁl‘{—---' (6b>

The first order inner solution h, and p, are obtained by letting R -» co.
The differential equations and the boundary conditions for determining h, and
Po are then

ulVethy— Vg, =0, (7a)
divhy, =0, (7b)
and
hy=—Ui at body, (8a)
hy—0 at infinity, (8b)

and the solution is simply that for a body moving in an infinite flow field, which
is assumed already obtained. The drag force D, given by such a solution is also
assumed known.

For later reference, the asymptotic expressions for the velocity h, and the
pressure field p,, valid for large values of » and z, are given below (cf. equation
(4.9) and (4.11) of reference [3]):

e o
oot 0(%), @=rea. (9b)

The above expressions hold true for any shape of bodies with characteristic
length a. The terms displayed satisfy the Stokes equations and give description
to the velocity and pressure fields induced by applying a concentrated force of
strength — Dy i on the fluid at the origin. Such solutions are usually referred
to as the fundamental solutions of the Stokes equations [4].
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The outer solutions are valid approximations of the exact solutions ina
region far from the body; for large tube radius R, this includes the region near
the wall. In determining the outer solutions using the Stokes equations, the
non-slip condition ¢ = 0 at the wall is used. Near the body the outer solutions
are not expected to be valid, hence the boundary condition at the body may
not be used. In the place of the later, we introduce the matching conditions
existing between the suner and the oufey solutions. Loosely speaking, this con-
dition states fthat the leading terms of the outer solutions when expanded into
a series for small values of ¢ must agree with the leading terms of the inner
solutions when expanded into a series for large values of . When such matching
is possible, an additional condition is available for the determination of the
solutions.

The first order outer solutions g, and p, are thus solutions of the Stokes
equations which satisfy the boundary condition g, = 0 at the wall and which
reduce to equation (9) for small values of p. By direct calculation one can show
that the proper solutions for g, and 5, are given by the equations

1 Vg —Vhy=Dyd(r) 1, (10a)
divg,=0, (10b)

and the boundary conditions
g,=0 forr=R, (11a)
go—>0 when z - o0, (11b)

where §(r) is the d-function which is zero when # + 0 and is co when r = 0
and its integral over any volume containing the origin is equal to unity. From
equation (10a) one sees that the boundary condition at the body (4a) is expres-
sed by introducing a forcing term D, é(r) 7 in the momentum equation. This is
equivalent to replacing the body by its retarding force on the fluid.

The solution of g, may be divided into two parts: g, = g{¥ + g@. The first
part, gV, consists of terms which are singular at # = 0. These terms arise due
to the singular forcing function Dy §(r) i. We shall show by explicit calculation
that this part is identical to the asymptotic expressions of hy and #, displayed
in (9). The second part, gi¥), contains terms which are regular at r = 0 and
arises due to the non-slip boundary condition gy = 0 at the wall. The second
flow field is therefore induced by the #eflection of the wall. Since the flow is
axially symmetric, the induced velocity g has only the z-component at the
point r = 0. For small values of p, one finds (cf. eq. (31) below)

g =wi+ 0(fy). (12)



10 I-pEE CHANG ZAMP

Next, we consider the second order inner solutions k; and p,. The require-
ments for h, and p, are then that they should match with g{¥ which is the
unmatched part between the first order ¢nner and outer solutions. Thus

pVhy —Vp, =0, (13a)
divh, =0, (13b)
with the boundary conditions
hi=0 at body , (14a)
h,—u'i at infinity . (14b)

The second condition, (14b), is the matching condition mentioned above. By
considering equations (13) and (14) in conjunction with equation (7) and (8),
one sees easily that the sum h, + h, is the solution of the Stokes equations
which correspond to the body moving with a relative velocity U + »'. The
effect of the wall, to the order O(a/R), is therefore an apparent increase of the
velocity of the body in the ratio 1:(1 4+ #'/U). There is an equal amount of
increase in the drag force if the momentum integral of the velocity field is
computed. The drag force on the body in the presence of the wall is then equal to

] 0

This basic formula to be used below was also used by LADENBURG in obtaining
(1) based on a different argument. The above formulation follows essentially
the singular perturbation procedure developed in [6]. In a formal application of
the theory one should first introduce the small parameter ¢ = a/R and then
consider the various limits of the flow quantities g and p corresponding to
different orders of the space variables » and z with respect to e. This systematic
procedure leads to an énner and an owfer expansion similar, respectively, to (5)
and (6). Such formal development, while leading to justification to many
arguments given above, is too lengthy to be used in this short paper.
Now, let us find the value of #' by considering (10) and (11). We put

ngé?[vm¢i—~V%§J, (16a)

0D
Po=— Do Vi -. (16b)

By inserting these expressions into equations (10), one casily verifies that (10b)
is identically satisfied and (10a) becomes

Vg = 5(r) . (17)
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Furthermore, (11a) and (11b) lead to the following conditions for @z, 2):

0D 02d
WZW:() forr= R, (18a)
D -0 when 2 — + oo . (18b)

We define the Fourier transform of a function F(7, ) by the pair

Fir, 1) = / e Flr, 2) dz (192)
and
F@@=;j/WFMMM, (19b)

and denote 7*@ by the function ¢z, z). After applying the transform to
equation (17) there follows

P 1D =) (20)
Here () is a J-function defined by

o(r) = 0(r) o(x) - (21)
The solution of equation (20) is

GO 1) = =, Ky(An) + 4= Ifir) | (22)

The equation for @(r, 1) is then

azd 1 do
dar? v odr

—RB=g (), (23)

which gives the result

B

RO = FL RN+ LA L)

Iy 7). (24)
In (24), A and B are the constants of integration to be determined from
boundary conditions (18) and I,, I;, K, and K, are the modified Bessel func-
tions. By direct calculation one finds

14 R) Ky(d B) — 25 (1,0 R) B2 R) + L,(2 R) K3 R)]
A(AR) =

B (25a)
Iy(4 R) I;(4 R) + 5~ [I3(2 R) — I§(A R)]
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and
LR
4

B R) = —.

1 R) L R) + 2 X 130 R) - 13 )

The z-component of g,, u(r, z), is given by the expression
D, 0%
u(r, z) = ~;- [(;)(V 2} — ﬁ@(”’ z)] .
The Fourier transform of u(r, 2) is
_ D, — .
u(r, A) = " lp(r, ) + 22 D(r, 1)]
= u®{r, }) + u@r, 1),

where

w(r, J) = — 212"’“ [Ko(l 7) — %CKI()» 1’)]

and

Uy, 3) =

A@Qr) (Io(Ar) +Ar I,(A7) + BAAR) Iy(Ar

ZAMP

(25b)

(26)

(30)

These two parts of wu(r, 1) correspond, respectively, to the z-component of

gl and g{@ . The inverse of #®)(r, 1) is obtained by using (19b):

u®(r, 2) R / “’(‘/R)u — g, a) do; o=LR,

and #®)(r, z) is regular at the point ¥ = 0:
uO(r, 2) = u' + 0(%),

where #’ is the value of (7, 2) at the point r = 0. One finds

w = 2nu /[(pO A + 2B, A)] di

Dy

7t u
. xDy
T 2a*u R

- / [A(AR) + B(A R)] dd — ﬂﬁ%ﬁ / H(o) do

(31a)

(31b)

(32a)
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where
0 © I,(0) Kolo) — = [I4(0) Kof0) + I4(0) Ky(o)] + —
v / H(g) do_, _ / 1 2 (1] _ 0 1 1 4
5 b Iy(o) I1{0) + - [13(0) — I§(0)] (32b)
~ 2:203 . |
So, finally,
u’ » D
D:D0(1+7):D0(1+ an—;@—). (33)

In Table I we list several cases where the value D, is given in reference [3].

Table 1
- .. . Drag
Body Drag (Infinite Domain) (Inside Tube of Radius R)
(1) Hemispherical Cup 17.525 pa U 17-525 pa U(1 4 1.956 a/R)
(2) Flat disc of radius a 16 pual 16 pa U(1 4 1.786 a/R)
(3) Sphere of radius a 6rpual 6nua U+ 2.104 a/R)
(4) Prolate spheroid 8rmoapual 8naualU (14 2.805xa/R)
(5) Oblate spheroid 8nBualU 8afualU(l+2.8058a/R)

In the above, a is the radius of the frontal area circle of the body for cases
(1)=(3). The cross section of the spheroids, (4), (5), intercepted by the » — z plane,
is an ellipse. For the prolate spheroids the foci are at (- a, 0) and « is equal
to the value

1 + 1 -1
a=[7(32+1)10g§_1—s] . (34)

For the oblate spheroids the foci are at (0, 4 a) and f is equal to the value
f=[1—s*cotls+s]t. (35)

In (34) and (35) s is equal to the ratio of the semi-axis along the z-axis to the
focal length a, of the ellipse.
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Zusammenfassung

In dieser Arbeit wird der Einfluss der Wand auf die Bewegung eines rota-
tionssymmetrischen Korpers lings der Achse eines mit zdher Fliissigkeit gefiillten
Rohres betrachtet. Der Widerstand des Korpers wird unter der Voraussetzung
berechnet, dass die Dimensionen des Korpers gegeniiber dem Radius des Rohres
klein sind. Wir finden fir den Widerstand D eines Kérpers, der sich mit der Ge-
schwindigkeit U lings der Achse einer zylindrischen Réhre mit dem inneren Radius

R bewegt,
- »x Dy
=Dt 5 itrg]

wo D, der Widerstand des Korpers in einer sonst den ganzen Raum fiillenden
Fliissigkeit, » eine Konstante etwa gleich 2.203, und pu die Viskositatskonstante ist.

(Received: June 10, 1960.)

Die Instabilitit der Strémung zwischen zwei rotierenden
Zylindern gegeniiber Taylor-Wirbeln fiir beliebige Spaltbreiten

Von Kraus KiRcHGASSNER!), Freiburg i. Br., Deutschland

Einleitung

Diese Arbeit beschaftigt sich mit der zuerst von TAYLOR [1]?) untersuchten
Instabilitdt der laminaren, inkompressiblen Stromung zwischen zwei rotie-
renden koaxialen Zylindern. Die Stérungen, die von einer gewissen Rotations-
geschwindigkeit des inneren Zylinders an auftreten kénnen, bilden sich be-
kanntlich in Form eines in Richtung der Zylindererzeugenden periodischen
Wirbelmusters aus.

Um die numerischen Auswertungen mit ertraglichem Aufwand durchfiihren
zu konnen, musste TAYLOR, neben anderen Annahmen wie der Kleinheit der
betrachteten Stérungen, verlangen, dass die Spaltbreite (Differenz der Zylin-
derradien) klein sei gegeniiber den Kriimmungsradien der Zylinder.

Die Erweiterung dieser Theorie auf den Fall beliebiger Spaltbreite gelang
erstmals CHANDRASEKHAR [2] in neuester Zeit. Die von ihm angewandte Me-
thode zur Loésung des Problems beruht auf einer auch von TAYLOR angesetzten
Reihenentwicklung der Stérungsamplituden nach Besselfunktionen.

In der vorliegenden Arbeit wird zurLosung desselben Problems ein anderer
Weg beschritten, der wesentlich auf der von GORTLER [3] und HAMMERLIN [4]

1) Aus dem Institut fiir angewandte Mathematik der Universitdt Freiburg und dem Institut
fiir angewandte Mathematik und Mechanik der DVL an der Universitidt Freiburg. Diese Unter-
suchung wurdeg vom Wirtschaftsministerium des Landes Baden/Wiirttemberg gefordert.

%) Die Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis, Seite 29.



