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Thq buoyancy force on a particle in a rotating fluid is derived. We have not seen a
derivation of this type of buoyancy force elsewhere although it is often presented de facto.
The buoyancy force in hydrostatics is also rarely derived except for rectangular shapes. We

derive it for a sphere.

The centrifuge is an instrument highly crucial to scientific
research and industrial processes. All college and university
science students have undoubtedly encountered the equa-
tions governing the motion of matter in a centrifugal field.
In many textbooks and monographs covering the subject,
the force on a particle in a centrifuge is blithely written
without further comment as

F=V(p - ppa?Ry, (1)

where V is the volume of the particle, p and p, are the
density of the particle and of the fluid medium, respectively,
w is the angular velocity of the centrifuge, and Ry is the
particle’s distance from the central axis of the centrifuge.
Most articles actually delete p; from Eq. (1) and conse-
quently ignore the “centrifugal buoyancy” force.!

The simplicity of this equation might lead one to believe
that its derivation is simple and obvious. We found that this
is not particularly so, when py is not negligible. Our deri-
vation as presented here, could be used as an exercise for
students or as a reminder that the obvious is not always so
obvious.

The centrifugal force on a uniformly dense particle as
experienced in the rotating frame of the fluid is

F.=mw?Rg = Vpw?R, )

as derived in numerous texts. This expression comprises part
of the force in Eq. (1).

Due to the centrifugal force acting on the rotating fluid,
there is a pressure gradient within the fluid that increases
with radius. When this pressure acts on the particle, it ex-
periences a force directed toward the central axis. In anal-
ogy with the hydrostatic pressure equation, the pressure
difference dP across a small interval dr, at a distance r from
the axis of rotation, is

dP = ppw?rdr,

where the centrifugal acceleration w?r replaces the accel-
eration of gravity. In order to determine the pressure within
the rotating noncompressible fluid at a distance  from the
center, it is necessary to integrate the pressure differences
along a radius

P(r) = J; "dp= J; " prlr dr = Yoo (3)

Equation (3) describes pressure in the fluid as a function
of the radius of the cylinder, the fluid density, and the an-
gular velocity. Sommerfeld derived this same expression
more formally.? However, he did not translate this pressure
expression into a force on a particle. In order to do it, we
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need to integrate the pressure over the surface of the par-
ticle.

As in the calculations of Archimedean buoyancy, the
derivation of the general solution is easier than is the surface
integration for a specific shape (except perhaps for a cube).
First we present the solution for a sphere and then do it for
a generalized shape.

Figure 1 shows the coordinates for integration over a
sphere, one of the simpler cases. Due to symmetry we need
only consider the pressure in the x direction.

P, = P cosf = 'hpsw?r? cosd

and the force is

F= P, dA,

surface

where
dA=a?sinfdb do

and

r2 = R} + a? — 2aR, cosd — a? sin20 cos2¢,
giving

27 kg

F= f f Yhpsw?(R§ + a — 2aRq cosh

0 0

— a2 sin20 cos2¢) cosd a2 sinf db d¢.

Several terms in the integration can be immediately elim-
inated, as they are odd functions integrated over even in-
tervals. The expression for the “buoyant™ force reduces
to

F = -2mpw?a’R j;r cos2@ sinf db

= —2mpwla’Ro(?h) = —%hmwadprw?Ro
= —Vpsw?Ry. 4)
Combining this pseudobuoyant force with the centrifugal
force, we get Eq. (1): -
F=V(p— ppw?Ry.

We could have employed a hand-waving argument that
is often used to justify Eq. (1). Namely, the buoyant force
on the particle must equal the “weight” of the displaced

“water which is psVw?Ry. If this were not so, the fluid could

never be in equilibrium.
To derive Eq. (1) in general, we take an arbitrary shape
and put its center-of-mass on the x axis as shown in Fig. 2.
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R2=RZ+a? -2cos BaR,
R2=h2 +r2

h = a sin 8 cos ¢

r2 = R2+a2 —2 cos§ aR, —a? sin? Bcos?

Fig. 1. Coordinates and relationships for integration over sphere in ro-
tating fluid.

As the rotation is about the y axis, we need only consider
a section of the particle in the x-z plane of some thickness
dy. The other parallel sections of the particle will behave
similarly. We then intersect the section by cuts parallel to
the x—y plane dividing it into smaller sections.

First we will consider the section containing the center
of mass. Due to symmetry all forces will cancel except those
in the x direction. The pressure on each of the opposing
faces, A; and A,, is normal to the surface but, as we are only
interested in the force in the x direction, we can consider
the force on each face as its area projected onto the y-z
plane times its respective pressure or

F,' = P,'A,' C080,‘ = P,‘A.

where, by construction, the cross-sectional area is the same
for both faces. Then the total force would be

F=f(P,—Py)dA= § f(P,— Pydydz.
In this case
P; = Yhpsw2x}
F=hpp?f f(xi — x3)dy dz
= prw?f [ fxdxdydz = prw?f x dV. 5)

The radius to the center of mass of this section can be
written

= pfxdv _ fxdv
0 pfav 1%

Substituting into Eq. (5) we get, as expected,
F= prwzro.

For a section above or below the x-y plane the calculation
is slightly more complicated.

P =Yopp?r} = hpr?(x? + y}).

Due to the particular construction of our sections, y, = y,
for the two significant faces of all the sections. The rest
proceeds as above.

Fi = hp? f(ri — r})dA = hpw? f(x1 — x3)dA
and

Fi = pfViw?r;,
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again in the x direction. Now r; is the distance from the
rotation axis to the center of mass of section i. The force in
the z direction on a section above the center of mass is
cancelled by an equal and opposite force on a section below
the center of mass.

The total force on the particle is

F= ZF, = pfw2 Z V,'ri.
i i

The radius to the center of mass of the entire particle, Ry,
is

pZV; |4
or
2Vir; = VR,y.
Substituting, we get Eq. (4):
F = Vpw?R,

the centrifugal buoyancy force.

In addition to the forces in Eq. (1), the only other major
force on the particle in a centrifuge would be the drag force
as it moves through the fluid. It always opposes the motion,
which according to Eq. (1) is radially out for particles
denser than the fluid and radially in for particles less dense
than the fluid. As is shown in a paper related to this one,3
when the axis of rotation is held horizontal rather than
vertical, at low Reynolds numbers the particles can go into
quasistable orbits.

Another common result that is rarely presented to stu-
dents is a derivation of Archimedes’ principle. Most science
students are aware of Archimedes’ principle, but few of
them have seen it demonstrated for an object other than a
cube or a rectangular parallelepided or in some cases for a
generalized object. The computations for the buoyant force
on a sphere immersed in a fluid are simpler than is the cal-
culation already presented for centrifugal buoyant force,
but the approach is similar. Everyone knows that the
buoyant force equals the weight of the displaced water

F=Vpm.

Actually calculating the force on a sphere or other shape
would be a worthwhile exercise for the student. Figure 3
gives the coordinates and other symbols for the case of a
sphere:

f o\ 6

AR T~p,a,

N

Fig. 2. Integration over particle of arbitrary shape in rotating fluid.
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e sphere in static fluid.
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J; Fig. 3. Coordinates for integration over

F= (PdA,
where
dA = 2xwa? sinf do,
P = psgh.
By symmetry we need only consider the z component
P, = P cost, h = ho— a sind.
Thus,

wf2
F = 2na? f //2 pr8(ho — a sinf) cosb sind d.

Eliminating the odd term being integrated over this even
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interval,
w/2
F=2xa’pg f | Sin*0(—cost) df

= 2wa3pg(%h) = Yhmwapsg,
F=Vpgeg,

as anticipated.
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