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Behavior of spherical particles suspended in fluids i s  of fundamental importance in prob- 
lems involving settling, flow through packed beds, fluidization, and pneumatic conveying. 
In  the investigations reported in these papers, uniform spherical particles are employed as an 
idealization of the systems found in practice. The following study is a mathematical treat- 
ment of the motion of a single sphere along the axis of a cylinder through which a viscous 
fluid i s  also moving. General expressions are derived for the force exerted on the sphere and 
the pressure drop experienced by the fluid. The application of these relationships to  similar 
problems involved in assemblages of spherical particles is discussed. A simple relationship is  
derived for pressure drop through very dilute systems. 

TUDIES described in these papers are part of a long range S program that has as its ultimate objective a fundamental soh- 
tion of the hydrodynamic relationships underlying low Reyn- 
olds number phenomena such as fluidization and sedimentation. 
These operations are often carried out in the Reynolds number 
range (based on particle diameter) of 5 or less and, as such, are 
amenable to mathematical treatment employing the hydrody- 
namic equations which describe the so-called creeping motion 
encountered a t  low Reynolds numbers. 

In this case, as in most engineering applications, it  is expedient 
to conceive simple models of the flow which lend themselves to 
analytical treatment but which, a t  the same time, furnish infor- 
mation of value concerning the more complex flow patterns en- 
countered in practice. For these reasons, the sequence of theo- 
retical investigations is supplomented by a corresponding se- 
quence of experimental studies designed to justify the choice 
of idealized models and provide a source of data for verification 
of the results. I n  this manner, i t  is hoped to carry out a system- 
atic study of the major variables encountered in the field of 
fluid-solids dynamics a t  low Reynolds numbers and thereby con- 
tribute to a greater understanding of such phenomena. 

Mathematical analysis is difficult even in the case of a single 
particle, and further complications arise with assemblages of 
particles (6). As logical start toward solving some of the problems 
involved, a study of the influence of boundary proximity on 
the motion of a single sphere is described in this paper. 

A theoretical interpretation of the phenomena of fluidization 
and hindered settling is usually complicated by factors such as 
particle agitation and rotation, mutual collision of the particles, 
interparticle bridging and, in gmeral, a failure of the system to 
attain a steady state. The experimental investigation described 
in an accompanying paper ( 7 )  attempts to justify the choice of 
a fixed, cubical assemblage of uniform, spherical particles as an 
idealizing model of fluidized and sedimenting systems. This 
was accomplished by comparing the experimental data obtained 
on a series of fixed, cubic assemblages with the fluidization and 
sedimentation data of other investigators a t  equal values of the 
(particle) Reynolds number and fractional void volume. 

' 
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SINGLE SPHERE PROBLEM 

In order to determine the magnitude of the effect of boundary 
proximity on the behavior of a spherical particle, a cylindrical 
boundary was selected. This choice was made because a cylin- 
drical boundary can completely surround the fluid stream parallel 
to the direction of flow. 

Relationships are developed for the general case of motion of 
a sphere along the longitudinal axis of a cylinder, through which 
fluid may also be moving. Expressions are given for both the 
resistance of the sphere and pressure drop caused by its presence. 
The equations are rigorous for the case of slow motion, in which 
the inertia terms of the equations of motion can be neglected. 
Hydrostatic and gravitational fields are not considered in the 
present solution. Approximations based on single sphere be- 
havior, are derived for the case of dilute assemblages of particles. 

To date, studies of the pattern of motion caused by a sphere 
moving through a fluid with a cylindrical boundary have been 
confined mostly to the case where the fluid itself is not initially 
in motion. McNown (IO) recently published a survey of mathe- 
matical treatments in this field, together with some new experi- 
mental data a t  Reynolds numbers above the point where iner- 
tial effects are negligible. Ladenburg (8), in a theoretical study, 
derived an approximate expression for the effect of a cylindrical 
boundary on the behavior of a spherical particle falling in a 
quiescent fluid. Faxen (Q), using somewhat the same method of 
derivation, extended the accuracy and corrected a numerical 
error in Ladenburg's treatment. 
-4 very recent investigation by Wakiya (f4) along similar 

lines treated the case of a stationary spherical obstacle in the 
flow of a viscous fluid through a tube. The work reported in 
this paper wa8 completed before this study became available 
and furnishes independent confirmation of the results of Faxen 
and Wakiya by a different computation procedure as well as 
extension t o  the general case where both fluid and sphere move 
simultaneously, which is particularly- relevant in the case of 
fluidization. 

TH EORETl CAL DER I VAT1 ON 

The basic equations which must be satisfied by the fluid are 
the continuity equation and the Stokes-Navier equations, 
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from which the inertial terms have been discarded. For con- 
venience, the origin of the coordinate system is taken at the center 
of the sphere. Cylindrical coordinates have been chosen to 
represent these equations because of the symmetry of the velocity 
field about the longitudinal axis of the cylinder. For the case 
of an incompressible fluid a t  steady state, when both the velocity 
of the fluid and sphere are low, the continuity and Stokes- 
Xavier equations are 

( 3 )  

The threc boundary conditions which must be satisfied are: 

At the surface of the sphere of radius a, where r 2  = o2 = X2 t 
R2, there is no relative motion of fluid and sphere; hence, 

I I ,  = 0 (4) 

Z'R = 0 ( 5 )  
At the cylinder will \There R = Ro, since there is no motion 

of the fluid with respect to  the wall 

ZL + li = 0 (6)  

Z'R = 0 (7)  
A t  large distances from the sphere where S = i m, in the ab- 

sence of the disturbing influence of the sphere, the field must be 
parabolic 

u + u = z - a  [1 - (;D)2] 

-+.e., 

u = uo = (I'n - C )  - BR2 ( 8 )  
and 

kt f? = Eo, ug = -u3, ( U R ) 4  -(VR)$ (16)  
etc. 

and a t  X = & m, 

uj = 0, for a l l j  # 0 

( z ' R ) ~  = 0, for a l l j  
(17) 

(18) 
By utilizing these conditions, if the series represented by Equa- 

tions 10 and 11 are cut off a t  any point, corresponding to an 
arbitrary degree of approximation, the original boundary condi- 
t'ions of Equations 5, 7 ,  8, and 9 will always be satisfied, In  
addition, Equation 4 will be satisfied if the series for u cont,ains an 
even number of t,erms, while Equation 6 will be satiafied by a11 

odd number of terms. 
UI, ( ~ ' ~ 1 1  represents the "reflection" of t'he initial parabolic 

field, UO, ( z ' R , ~ ,  by the sphere. uzj ( v R ) ~  represents t'he reflection 
of u 1 ,  ( V R ) ~  a t  the cylinder wall. uzl ( v R ) ~  represents the reflec- 
tion of up, ( v R ) ~  by the sphere. This process can be repeated 
indefinitely until the contribution of succeeding terms to u is 
sufficiently small that the error int>roduced by the failure of a 
finit'e series exacbly to satisfy either Equation 4 or 6 is vanishingly 
small. 

Because of the symmetry of the velocity fields about the X -  
and R-axes, certain checka are available on the uj  and (va),  
terms. Moat notably, uf must be an even function of both X 
and R, whereas ( z ' R ) ~  must be an odd function of both X and R. 

Simha (11), using the general solution of the continuity and 
Stokes-Xavier equations available in terms of spherical harmon- 
ics (9) ,  has determined the first reflection to be 

3 RX 3RX RX 
V R  = ( f f R ) O  = 0 (') ( u E ) ~  = (VD - (')a [- -1 - lTau3 [F]  Ba3 + 

Thus, the simultaneous solution of equations 1,. 2, and 3 for 

subject to the restrictions imposed hy the boundarv conditions 
u(X ,R) ,  o(X,R),andP(X,R) intheregionOQXG mandOQR<RO. Ba5 [':Ray -&.. - __ 35tX3] + [ - 'EBX + 3E9Z2] (20) 8r7 8r 
of Equations 4 to 9, is required. 

A technique for the approxiinate solution of a similar problem 
has been demonstrated by Ladenburg (8) and is termed the (21) 

-3(r0 - C)aX , B a 3 S  21RdX 35BdX3 
P 27 3 - I -  ) 3  +-r---- 4 ri !? = 

P = 2 P, = Po + P, + P? +Pa + 
i = O  

(12) 

The functions, H and G, are independent of R and X and de- 
pend only on the parameter, They must be evaluated from 
the boundary conditions of Equation 14. I n  order to bring the 
boundary conditions into the same coordinate system as Equa- 
tions 22 and 23, Equations 19 and 20 must be expressed as in- 
tegrals analogous to Esuations 22 and 23. This is done by mak- 

in such a manner that each combination of terms uIt ( O R ) , .  Pj, 
is a particular solution of Equations 1, 2, and 3. Further, 
these particular solutions are so chosen that the following bound- 
ary conditions-applicable t o  the appropriate terms in EWa- 
tions 10 and 11-are satisfied: 

At T = U, ~1 = -uo, ( ~ n ) l  = - ( u &  (13)  i n i  use of the Bessel finction integral of l / r  

1182 I N D U S T R I A L  A N D  E N G I N E E R I N G  C H E M I S T R Y  Vol. 46, No. 6 



FLOW THROUGH POROUS MEDIA 

(u ,  - ~ 1 a 3 ~ 2  5 ~ a 5 ~ 2  
12Rg + %)] + 4 R i  +- 

By repeated partial differentiation with respect to X and R, 
Equation 25 can be used to express all of the functions in Equa- i~ = [% (- 
tions 19 and 20 as integrals. For example, 

iAR Ko(ixR) - Kl(iXR)] cos kXdA (26) 

The Bessel functions, Ko(iAR) and Kl(iAR) are related by the 
equation 

(28) a a I<o(iAR) = -iAK*(iAR) 

Equations 19 and 20 take the form 

-3(Uo - C)a  - (Go - U)A2a3 + 

4 whereM = [ 
Bn3 + Ba5A2 + Bu7k4] Ko(iXR) - 

2 

U)aAR Ba3kR 7Ba6A3R - 
and S = [ -3(Uo - 4 + 2 + -4 

By applying the boundary conditions a t  R = Ro from Equations 

For simplicity, the arguments of the Bessel functions have been 
dropped in the above equations. 

Jo = Jo (i.) 

J1 = J1 (iO1) 

KO = KO(&) 

K,  = Kl ( i O 1 )  

Use has been made of the identity 

(41) 
1 JoK1 - J1Ko = 7 
Zff 

Substitution of H and iG in Equations 22 and 23, followed by 
subsequent integration, yields the desired result for the velocity 
field “reflected” by the cylinder wall. The complex nature of 

certain of the functions to be integrated-e.g., 

does not permit the integrals to be obtained in closed form. 
For this reason i t  is expedient to expand these functions by their 
infinite series representations. When the sphere diameter is 
small compared to that of the cylinder, in the neighborhood of the 

sphere-Le., for - +. 0 and - -+ 0 

1 
2JoJ1- J ;  + J:  - 7 

201 

R X 
RO Ro 

(42) 

(43) 

(44) 

a2R2 ( ’  :o) 4R, J o ( i A R ) = J o  % c y -  =1+ , -  . . . .  

dX2 
2Rg cos AX = cos (g) = I - - - - +  . . . .  

(45) 22 and 23, ffX sin AX = sin (g) = x +  . . . .  
[MIR=., = ’$ ( H  + iG)Jl(iARo) - HJo(ihRo) (33) 

Substitution in Equations 22 and 23 gives 

[.V]E=R, = - go ( H  + iG)Jo(iARo) + GJ1(zXRo) (34) 2 

By substituting R = Ro in Equations 31 and 32, equating Equa- 
tion 31 to 33, and Equation 32 to 34, H and G are obtained by 
solving the two resulting equations simultaneously. For sim- 
plicity, the substitution, 01 = A&, has been made. 

(08 )s  is an odd function with respect to X. rlny integration 
over the sphere of the viscous stresses caused by this field will be 
equal to zero. Therefore, ( v R ) ~  will not, receive any further con- 
sideration. Bt  the surface of the sphere, a2 = r2 = R2 + X2 
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The numerical integrals, J =Hdn;  J =Ha2rEa; etc., can 

be broken down into integrals which have been evaluated by 
Fasen (4 ) .  These constants were also re-evaluated in the pres- 
ent investigation and result in the following equations in which 
numerical values are close to those of Faxen. 

In  order to obtain the next reflection Equation 15, at r = a,, 
u3 = --up; ( Z J ~ ) ~  = - (v& would be used. 

However, [ u z ] ~ - .  is a parabolic field analogous to [ u ~ ] ~ ~ ~ .  
Therefore, U S ,  ( 2 ) ~ ) ~  bear the same relation t'o [ u ~ ] , - ~  as 
UI, ( 2 1 ~ ) ~  bear to  [ u Q ] ~ - ~ .  It is, t'herefore, easily possible to 
repeat the reflection technique indefinitely until the magnitude 
of the reflected fields becomes insignificant. 

Simha (11 )  has determined the frictional resistance, W? of t,he 
sphere due to the init'ial parabolic field and the first reflection. 

W O  + W-1 = Bnpa(C0 - V) - 47rpBa3 (50) 

From Equation 49 

If the procedure is repeated for higher order reflections, the sum 
of the geometric series obtained is 

Gnpia(C0 - C )  - 47rpLBa3 cv = 
[1 - 2.105 (:) + 2.087 (g)'] ( 5 2 )  

If there is no motion of the sphere with respect to the d l ,  

67w U U O  [1 - 3 (z;) ] 
C = Oand 

2 a 2  

( 5 3 )  '' [l - 2.105 ($ f 2.087 (iy] 
The reflected pressure, PO, can be obtained by substitution in 

Equation 24. -4t the ~vall, K = RO and 

If F is designated as the total force required to maintain flow, 
F = (aP')(nR;) ,  in addition to that rrquired to maintain 
normal Poiseuille flow, and powers of a/Ro above the third are 
neglected, the following expression relates F and W :  

F' = 211'[1 - ; (;)'I 
When there is no motion CJf the sphere with respect to the wall, 
u = o  

FORCE ACTING ON SPHERE 

Equation 52 can be applied to  any situation where it is desired 
to predict the force exerted on the sphere alone. If, as is the 
case in sediment,ation problems, the force acting on the sphere is 
balanced by the action of gravity, the sphere will at,t,ain a con- 
stant terminal velocity corresponding to  the equalization of the 
drag force exerted by fluid mot,ion and the gravitational force 
corrected for buoyancy. For cases of viscous flow, the correc- 
tion applicable t,o terminal settling velocity is thus the same 
magnitude as that  for drag force as evaluated above. 

I n  the ideal case, with a sphere falling a t  a uniform speed 
through a stationary fluid extending to infinity or with the same 
fluid moving at uniform velocity past a stationary sphere, t,he 
familiar Stokes' law applies. Table I gives the effect of a cylin- 

drical boundarv on bhe force exerted on 
a sphere for the limiting cases-sta- 
tionary fluid, L'o = 0; stationary sphere, 
U = 0; no slip velocit,y, U = LTc (the 
slip velocity is defined as Lro - U ) .  

For values of u/Ro > 0.3 it would be 
2J0J1  (54)  necessary to employ terms Kith higher 

powers than those in (a/&)3 appearing 
in Equation 52.  For the case of a 
sphere falling in a stationary fluid, avail- 

able experimental data (1,  5,  f0)  indicate good agreement wit'h 
Table I. 

F~~~~ ( 4 )  and rvakiya ( 1 4 )  carry the approximat,ion for a 
Jtationarp fluid to ( a / n , ) b .  11 their formula ia apI,lied to &tle 
case for a/Ro = 0.5, a value for the correction factor roughly 10% 
higher than experimental values of McKown (IO) and Francia ( 5 )  
is obtained. It Seems likely that convergence is not satis- 

factory as higher ratios of a/& are involved. 
The negative signe in the second and fourth cot- 

J,(iAE,) sin XXdx r-- - Ra3 - __ 3([-0 -a 
L 2  7p"'A21 iR0 [Jg(ihRo) + J,2(iiRo) - 2 z] J o  J i  

hJo(ihRo) sin hXdx - .- 

The first term of Equation 54 is equal to - P 1 / p .  To find the 
effect of the sphere on the Pressure drop in the tube, pz must be 
evaluated at a great distance from the sphere. 

Evaluation of Equation 54 at X = 2 is accomplished by ex- 
panding the Bessel functions in series. It is found that, with 
the limitits taken, all the terms in these series vanish except those 
involving the integral of 7- , and the integrations can he 

performed exactly to give %he following result. ~ ~ ~ l ~ ~ t i ~ ~  
of E q u a h n  54 a t  X = i m yields 

sin X X  d h  

- 
umns of Table I indicate a force on the sphere oppo- 
site to the direction taken as positive for either fluid 
or sphere. Thus, if a sphere moves upward in a 

Ga('p - ( - g) - ~7''~ (I - E) (55) 
= = F  
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Table I. Comparison of Force Exerted on a Sphere with 
Stokes’ Law Resistance 

Stationary Stationary 
Fluid Sphere Zero Slip 

a/Re - 6 ~ p a U  Grrralio -6n1.caCa 
W w W 

_I 

stationary fluid the force exerted on it will be downward. At 
values of a/& less than 0.1, the magnitude of the correction to 
Stokes’ law is the same whether the sphere or fluid moves. 
Above a/& = 0.1, terms in a/Ro of higher power become sig- 
nificant, and there is an appreciable difference in resistance 
whether the fluid or the sphere remains stationary. 

The case for zero slip indicates no significant force on the 
sphere until a/Ro exceeds 0.1. At higher values of a/Ra, zero 
slip is possible only if an additional force is applied to the sphere 
in the same direction as the motion, U o  = U. Thus, if flow is 
upward and gravity supplies the external force, the particle must 
have a specific gravity lower than that of the surrounding fluid. 

For the case where W = 0--Le., fluid and sphere of the same 
specific gravity 

and for a/Ro = 0.3, __- u0 ’ X 100 = 6% slip, referred to thc 

axial velocity of sphere and undisturbed fluid. This slip ve- 
locity is due to the fact that the sphere cannot accommodate it- 
self perfectly to a Poiseuille field as it could if the flow were uni- 
form or purely rotational, in which case no such effect would 
occur. 

TOTAL RESISTANCE T O  FLOW 

In engineering applications the pressure necessary to maintain 
flow through a system is important. Equation 58 enables the 
prediction of the incremental pressure above that required to 
maintain the original undisturbed flow. Stokes’ law, since it 
applies to  a fluid which extends to infinity, is not useful in ob- 
taining pressure drop. It might be guessed that, in a system 
where the flow is bounded parallel to the direction of flow, a 
total additional force equal to  that indicated by Stokes’ law 
could be applied. Surprisingly, this is not the case and, in fact, 
the total force required is exmtly twice that predicted from 
Stokes’ law, if the walls of the containing cylinder are a t  an 
infinite distance from the sphere. Thus, from Equation 58, 
letting a/Ro approach zero 

(60) 

Table I1 gives numerical values for the effect of a cylindrical 
boundary on total resistance due to the presence of a sphere a t  

F = 12a ap(L-0 - C )  

Table I I. Comparison of Total Resistance Due to Sphere 
with Stokes’ Analog 

Stationary Stationary 
Fluid Sphere Zero Sliu 

n F F F 
iG -1PupaU 12a& aUo - 1 2 ~  aI.cUo 

the axis of a tube for the same limiting cases as Table I-namely, 
stationary fluid, Uo = 0; stationary sphere, U = 0; zero slip, 
u = uo. 

For values of a/Ro > 0.3 it would be necessary to employ terms 
with higher powers in a/Ro in Equation 58, and a more compli- 
cated over-all expression would result (14). For values of a/Ro 
less than 0.1 it is possible to  employ the same correction factor 
and, furthermore, the correction factor is the same one that 
applies to the force exerted on the sphere alone. The second 
column of Table I1 has the same numerical values as the third 
column of Table I. 

The condition for no pressure drop corresponds to the case 
where W = 0-Le., with fluid and sphere of the same specific 
gravity, Since there is no pressure drop, no additional energy 
will be consumed by friction due to this slip a t  steady-state con- 
ditions, above that required if the space were occupied by the 
fluid instead of the sphere. 

ASSEMBLAGES OF SPHERES 

For the case of dilute assemblages, where interaction and wall 
effect terms involving a/& and its powers can be neglected, the 
force exerted on each of the spheres will be given by Stokes’ law. 
The rate of sedimentatim, or velocity required for fluidization, can 
be computed on this basis. For the calculation of pressure drop 
a corresponding simple derivation is possible, if it  is assumed that. 

. the same force will be exerted on spheres not a t  the axis for a given 
approach velocity as the force indicated by Equation 59 for a 
concentrically placed sphere. If it is assumed for simplicity that 
the assemblage is not moving, Lr = 0, the pressure drop due to the 
presence of a single sphere is 

If there are n spheres involved, the total pressure drop is 

where V is the average superficial velocity of the fluid with re- 
spect to the pipe. 

If E = void volume fraction and L = the length of the amem- 
blage along the direction of flow, 

3 R i L ( 1  - E) n =  
4a3 

Therefore, 

This equation is only an approximation, in view of the assuinp 
tions made in its derivation. However, it  does indicate that the 
pressure drop through very dilute fluidized assemblages should 
approach a value double that required to simply balance the 
buoyant force exerted on the spheres. At present there are not 
sufficient accurate data on dilute systems to test this relation- 
ship. 

No rigorous treatment exists for estimation of the effect 
of intereaction between spheres and a containing wall that will 
occur as assemblages become more concentrated. The classical 
study by Smoluchowski ( 1 2 )  considered the case of a number 
of spheres suspended in an infinite medium. A method was pre- 
sented for calculation of the force exerted on each sphere, and 
the case for two spheres was worked out in detail to a first approxi- 
mation. It appears that, as the number of spheres increases, 
the force exerted on each sphere decreases progressively. I n  
cases involving a boundary this is not usually so, and in situa- 
tions where pressure drop occurs a boundary, enclosing the flowing 
stream, is always present. 
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Several interesting theoretical studies have been made for the 
case of viscous flow around uniform spheres (8, S, 13) .  These 
studies, for simplification, assumed that the effects due to bound- 
ary walls are small compared with interaction among spheres. 
They allowed for interaction by approximate solutions of the 
equations of mot,ion which should best apply in dilute asseni- 
blages. Thus, the authors are confronted by the paradox 
that, in the range of concentration where the interaction effects 
can best be computed, i t  is also necessary to consider the effect 
of bounding walls-i.e., in very dilute systems. It should be 
possible to extend the present treatment to assemblages of sev- 
eral spheres to indicate the relative importance of these interac- 
tion effects. 

SUM MARY 

Expressions are derived, based on the Stokes-Navier equations 
of motion and neglecting inertia terms, for the velocit,y field 
produce? by t,he presence of a sphere a t  the axis of a cylindrical 
tube through which fluid is passing. The results are given in 
general equations expressing t’he force exerted on the sphere and 
on t,he cylindrical boundary in terms of appropriate independent 
variables. 

Numerical applications for the case of a single sphere are given 
that, make possible the predict’ion of rdte of movement of the 
sphere and pressure drop, as well as the extent to which correc- 
t,ion factors to the simple Stokes’ law type of equations are 
necessary. It, is demonstrated that a sphere falling in a fluid 
a t  a given velocity does not experience the same reL’ wtance as 
that  caused by fluid moving with the same axial velocity past B 

stationary sphere. I n  addition, the pressure drop caused by the 
presence of a sphere is not simply equivalent to t,he buoyant 
force exerted on it. The application of the relationships to  the 
similar problems involved in a spherical assemblage is also dis- 
cussed. A simple relationship is derived for pressure drop 
through very dilute systems. 
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NOMENCLATURE 

(Consistent absolute units) 
a = radius of sphere 
B = C‘o/R: 
F = total force necessary to maintain flow due to presence 

\ -  

functions i‘f parameter x 
Bessel !unction of the first kind, zero order, with 

imaginary argument 
A 712m z *2 
m =O 
Bessel function of the first kind, first order, with imaxi- 

nary argument 

2 m=O 2 22“m! 7: + l)! 
Bessel function of the second kind, zero order, with 

imaginary argument 

m m 

. These Bessel functions of the second kind, K,, 
are related to Neumann’s Bessel functions of the 
second kind, Y,, by the relation 

K ,  = -Y ,  f J2 In 2 - y + - ( 3 
for both real and imaginky arguments, and for all 
orders n 2 0. 

= Gauss constant = 0.5772187 
&(iy) = Bessel function of the second kind, first order, with 

imaginary argument 
L = length of aasemblage measured in direction of flow 
M ,  X = functions defined by Equations 31 and 32 
n = number of spheres in an assemblage 
P = pressure 
P’ = increase in pressure due to  presence of sphere or 

AP‘ = pressure drop due to presence of a single sphere 
APS = total pressure drop due to presence of an assemblage 

PI ,  PIj Pa, etc. = pressure due to velocity fields u l ,  us, 113, etc., 

Y 

spheres 

of spheres 

resDectivelv 
= radial distanoe from center of sphere to element of 

fluid 
= perpendicular distance from longitudinal axis of cyl- 

inder to element of fluid 
= velocity of sphere in direction of X-positive, with re- 

spect to a transverse plane passing through arbi- 
trary point on pipe mall 

= velocity of element of fluid a t  longitudinal axis of cyl- 
inder, in + X-direction, a t  large distance from sphere 

= relative velocity of eiement of fluid in + X-direction, 
with respect to center of sphere 

= velocity of element of fluid in direction perpendicular 
to longitudinal axis of cylinder (radial direction) 

= average fluid velocity in empty tube approaching an 
assemblage 

= frictional resistance of sphere 
= distance from center of sphere along longitudinal axis 

of cylinder t o  element of fluid 
= XRo = parameter 
= fractional void volume 
= parameter 
= viscosity 
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