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-ABSTRACT

A comprehensive survey of particle motion in
rotating fluids is presented. Particle motion in di-
rections both parallel and perpendicular to the axis
of rotation and in beth bounded and unbounded
geometries is described. Various theoretical and ex-
perimental investigations are summarized in tabular
form, as are the associated results deduced for the
hydrodynamic force on the particle. Descriptions
of the flows induced by the particle motion are also
presented,

1. INTRQDUCTION

The motion of an isolated body leaves us with a
feeling of understanding when we can visualize the
forces on the bedy, and so imagine how the body
will move in accordance with Newton's laws, In
high viscosity fluids, for example, the body forces
acting on a steadily translating particle are bal-
anced by a retarding frictional force. In-rapidly ro-
tating flows, however, the fluid motions induced by
particle motion are more complex, as are the associ-
ated hydrodynamic forces acting on the particle. Tn
particular, the anisotropy imposed by a fluid’s solid
body rotation ensures that the components of the
hydrodynamic force in directions parallél and per-
pendicular to the rotation axis be entirely different.

Proudman [1] and Taylor [2] predicied theoret-
ically that a particle translating slowly through a
rapidly rotating low viscosity homogeneous fluid will
be accompanied by a column of fluid circumnscrib-
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ing the particle and aligned with the rotation axis.
The early experiments of Taylor [3-5] confirmed this
“blocking” phenomenon and the existence of the so-
called “Taylor column™ structures. An example of

_the Taylor column structure accompanying the rise

of a buoyant drop is provided in Figure 1. Many
theoretical and experimental studies have since ex-
amined the influence of viscous and inertial effects
on the structure of Taylor columns accompanying
particle motion, and on the hydrodynamic force ef-
fecting the particle. The problem of particle motion
through viscous rotating fluids has received consid-
erable attention due to its importance in a variety
of industrial applications.

The motion of rigid particles or drops in rotating
fluids occurs in a variety of industrial applications
of centrifugation; for example, the manufacturing of
monodisperse latex microspheres (6], hollow shells
[7], the inference of molecular weights (8}, the ther-
mocapillary fining of glass melts [9], electrophore-
sis of gas bubbles [10], the separation of valuable
minerals (e.g. uranium), extraction of proteins and
other macromolecules in biological and pharmaceu-
tical operations, and industrial and municipal waste
treatment [11,12). In addressing a number of these
problems, investigatora often apply theory from the
viscously dominated flow limit even when it is not
warranted {13],

" Rotationally-induced blocking effects may alse
be significant in a number of geophysical and plane-
tary flows. While rotation dominates the large-scale
dynamics of planetary atmospheres and oceans, the
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Figure 1 A drop of silicone fluid of radius 0.5 cm rising
through a tank of water rotating at 56 rpm. This configuration
corresponds to the effectively unbounded geometry (see Section 3).
A Taylor column flow structure is clearly evident.
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effects of stratification and fluid inertia generally
tend to suppress Taylor column formation in flow
past surface or seafloor topographic features. None-
theless, regions of blocked fluid have been observed
above seamounts in the oceans (e.g. {14]), and the -
interaction of bottom topography, rotation and strat-
ification is a problem of great interest in geophysi-
cal fluid dynamics (for a review, see [15]). Hide [16]
suggested that Jupiter's Great Red Spot may be the
surface manifestation of & Taylor column extending
above an obstacle at the bottom of the Jovian atmo-
sphere, This theory has been criticized by Stone &
Baker [17], and alternative explanations have been
proposed [18]. It has also been recently suggested
that Taylor column phenomena may influence mo-
tions within the Earth's liquid outer core, whose de-
gree of stratification is very poorly known. In par-
ticular, Moffatt [19] proposed a model of core con-
vection characterized by discrete parcels of buoyant
fluid rising under the influence of the Earth’s rota-
tion with accompanying Taylor columns.

We here review a number of theoretical and ex-
perimental investigations of particle motion in ro-
tating fluids. We consider independently motions
parallel and perpendicular to the rotation axis, and
henceforth refer to these motions as, respectively,
‘axial’ and ‘transverse’. The effects of container
boundaries in both problems are considered. We
also describe the effects of particle shape on the
dynamics, as well as the extension of a number of
the rigid particle results to the case of a deformable
fluid drop. In addition to summarizing the vari-
ous results for the hydrodynamic force on the par-
ticles, we illustrate, wherever possible, the form of
the fluid motion induced. In particular, we summa-
rize criteria for Taylor column formation for both
axial and transverse particle motion.

In Section 2, we present the equations governing
both particle and fluid motion in a rotaking system.
The inviscid and viscously dominated flow limits
are discussed and a brief review of Ekman bound-
aty layers and the transient spin-up process is pro-
vided. In Section 3, we consider the case of axial
particle motion and consider separately both un-
bounded and bounded flow geometries. The case
of transverse particle motion is treated in Section
4. The relation between the dynamics of isolated

particles and rotaling suspensions is discussed in
Section 5. In Section 6, we briefly describe two re-
lated problems in which a strong two-dimensional
constraint is imposed on the fluid motion; namely,
particle motion through electrically conducting flu-
ids in the presence of a strong magnetic field, and
particle motion through stratified fluids.

2. GOVERNING EQUATIONS

2.1 Force Balance on the Particle

Consider a fluid domain of uniform density p and
kinematic viscosity v rotating with constant angular
velocity £2 in a uniform gravity field g. We intro-
duce a cylindrical coordinate system (r,4,2) with
origin on the axis of rotation and with the r-axis
vertical, so that 2 = 1 % and g = —g . A particle
of mass m and density p — Ap located a distance r
off-axis and translating with velocity U is subject to
Coriolis, centrifugal and gravitational body forces,
respectively, —2mQ A U, mrQ*F and —mg2 (refer
to Figure 2). The particle is also subject to a force
associated with hydrostatic and centrifugal pressure
gradients within the fluid given by —m'r{¥2t+m'gZ,
where m’ = pV is the mass of the liquid displaced
by a particle with volume V. In addition, the parti-
cle experiences a hydrodynamic force Fy, associated
with its motion relative to the liquid. We thus wrile
the force balance on the particle (written relative to
the rotating frame) as

m% =F—ApVg—-2mOaAU-ApVQPri

(2.1)
where the hydrodynamic force on the particle is
given by integrating the dynamic stresses over the
particle surface S,

thuLpdndS+./;n'de' (2'2)

Here 7 i the deviatoric stress tensor, and the dy-
namic pressure py is telated to the fluid pressure p
by subtracting the hydrostatic and centrifugal pres-
sure components:

pd=p+pgz—§ﬂ2r2. (2.3)

In general, the force balance equation (2.1) must be
accompanied by a torque balance equation relating
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Figure 2: Forces acting on a particle translating in
a plane perpendicular to the rotation axis include
the Coriolis force, the centrifugal force, and the hy-
drodynamic force, which s decomposed into its drag
and lift components. Am = m—m'is the difference
between the mass of the particle and the displaced
fuid.

the particle’s rate of change of angular velocity to
the applied and hydrodynamic torques. Imparting
gpin to a particle will influence the flow around the
particle and so also the hydrodynamic force on the
particle: the conservation of linear and angular mo-
mentum of the particle thus couple through the fAuid
equations of motion.

When a particle translates steadily in an ax-
ial direction, equation (2.1) indicates a balance be-
tween the buoyancy and hydrodynamic forces, When
the particle translates in a plane perpendicular to
the rotation axis, the hydrodynamic force may be
decomposed into two components: the drag force,
which acts to oppose the particle motion, and the
‘lift’ force, which acts perpendicular to U and € (re-
fer to Figure 2). A solution for the hydrodynamic
force on the particle requires detailed knowledge of
the form of the flow around the particle and the
associated pressure and viscous stress distributions
over the particle surface. In general, the magnitude
of the axial, drag and lift forces depends critically on
the parameter regime describing the external flow.

2.2 Fluid Equations of Motion

In a frame rotating uniformly with angular ve-
locity €2, the fluid velocity v{r) = (u,v,w) is related
to that in the stationary frame, u{r), by v{(r) =
u(r) — £ Ar, and the Navier-Stokes equations for
an incompressibie flow take the form [20]

av
— + v Vv + 2QAv = —le¢+ vViv,

o
(2.4)
V.v=20.

In early theoretical studies of particle motion
in rotating fluids, inertial effects were introduced
through considering the unsteady inviscid equations
[21)

ov
p(— + ZHA_V) =-Vm , V:v=0,.

8t

(2.5)
Stewartson [22-25] considered the time-dependent
problems of an impulsively started rigid body trans-
lating in directions boih parallel and perpendicuiar
to the rotation axis through an inviscid fluid, and
thus deduced the steady asymptotic behaviour of
the flow and the hydrodynamic force on the phr-
ticle at long times. It is noteworthy that in these
particular problems the ultimate state of the fran-
sient inviscid problem corresponds o the solution
of the steady viscous equations (2.6) [20]. This cor-
respondence is not generally valid, but appears to
depend on the particle shape [26]. Since these early
studies, solutions have primarily been sought to the
steady viscous equations of motion in which all in-
erti)ai terms are neglected (see, for example, Tables
1-5).

When focussing on the effects of fluid viscosity
on particle motion in rotating fluids, it is convenient
lo choose length, velocity, time, and pressure scales
of, respectively, e (a characteristic particle dimen-
sion), U, afU, and ul/a, so that the dimensionless
momentum equation assumes the form

Re (%tv_ + v-Vv)+2‘T BAV = ~Vpy + Vv,
(2.6)
The Reynolds number, R, = Ua/v, characterizes

the rélative importance of inertial and viscous forces,
while the Taylor number, T = f2a?/v, that of Cori-
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olis and viscous forces, Alternatively, the flow may
be characterized by the Rossby number, %, = I/ /Qa
= T-'R,, which characterizes the relative impor-
tance of inertjal and Coriolis forces, and the Ekman
number, £ = T-1, which characterizes that of vis-
cous and Coriolis forces.

The majority of research on particle motion in
rotating flows has been concerned with the low Rey-
nolds number limit where local and convective ac-
celeration effects are negligible. In this case, parti-
cle motion is described completely in terms of the
Taylor number 7

2TEAV = -Vpg + Vv, V.v=0. (27)

Most theoretical research has investigated the trans-
lation of isolated rigid particles along or perpendic-
ular to the rotation axis in the asymptotic limits of
either small or large Taylor numbers.

2.3 The Viscous Limit (7 < 1)

In many problems involving centrifugal separa-
tion, the Reynolds and Taylor numbers are small;
consequently, the flow induced by the centrifugally-
forced particle motion is typically treated as a Stokes
flow: the hydrodynamic force on the particle corre-
sponds precisely to the Stokes drag —6rpaU, and
the lift force vanishes. Particle trajectories for the
centrifugally and gravitationally forced motion of
a rigid sphere [6] and a spherical bubble [27] in a
Stokes flow have been deduced. Experimental jnves-
tigations of particle motion at small but non-zero T
[7,28] indicate thet alight corrections to the Stokes
drag coefficienta are required in order to match ob-
served particle trajectories. For example, Moll [29]
argued that the anomalously low efficiency of com-
mercial centrifuges used to clean sewage was related
to enhanced drag on the particles associated with
the presence of Taylor columns.

In the limit where viscous effects dominate, ro-
tation makes a small correction to the Stokes drag
ou a particle. The first theoretical study of the low
T limit was presented by Childress [30] for the mo-
tion of a rigid sphere along the rotation axis and
the corresponding motion perpendicular to the ro-
tation axis was described by Herron et al. (31]. In
both these cases the correction to the Stokes drag is

O(T'/%), as is the lift force introduced in the trans-
verse problem (see equation 4.1).

2.4 The Geostrophic Limit (7 3 1)

For a sufficiently slow-moving and low-viscosity
fluid, inertial and viscous effects may be ignored
within the bulk of the fluid, where a ‘geostrophic
balance' exists between Coriolis and pressure forces:

22Av = -V py, - (2.8)

where p; has been rescaled with a characteristic geo-
strophic pressure pl/Qa. Taking the curl of equation
(2.8) yields the Taylor-Proudman constraint of two
dimensionality:

LA (2.9)
ar ’
The Taylor-Proudman theorem requires that all fluid
motions in a geostrophically balanced incompress-
ible flow be independent of theé spatial coordinate
that varies in a direction parallel to the axis of ro-
tation, Consequently, when a rigid axisymmetric
body translates slowly through a low viscosity fluid
rotating rapidly about a vertical axis, a vertical col-
umn of fluid accompanies the body,

When the bulk flow is geostrophic, viscous ef-
fects are confined to thin boundary layers. While
such boundary layers generally occupy only a small
fraction of the fluid domain, they often play an im-
portant role in establishing weak secondary circula-
tions within the geostrophic bulk. For example, as
will be discussed in Section 3, a buoyant particle in
a rapidly rotating bounded plane layer of fiuid rises
only by virtue of boundary layer transport over the
particle and container surfaces. A brief discussion
of boundary layer transport in rotating fluids, ite
importance in the spin-up process, and its interpre-
tation in terms of vorticity dynamics is presented in
the next three subsections.

EKMAN LAYERS AND EKMAN COMPATIBILITY: A
simple yet illusirative example of a viscous bound-
ary layer in the high 7 limit is the classical Ek-
man spiral solution which arises when a geostrophic
switling motion (e.g. v = V(r)d) is disrupted by a
rigid horizontal boundary. The viscous boundary
layer (or Ekman layer) has a characteristic thick-
ness 6, which is necessarily small relative to the
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particle dimension a: 6/a = T-% « 1, Within the
geostrophic exterior flow, the radial pressure force
is balanced precisely by the Coriolis force associ-
ated with the swirling motion. Within the bound-
ary layer, viscosity disrupts the swirling motion;
consequently, the pressure gradient imposed on the
boundary layer by the geostrophic exterior drives
radial flow. The boundary layer flow assumes the
Ekman spiral solution (e.g. [32]), which serves to
match the geostrophic exterior to the rigid bound-
ary.

Integrating the continuily equation across the
boundary layer reveals that radial gradients in ra-
dial boundary layer fluxes require a verticel flow
w(r) into the boundary layer of magnitude

wir) = -2'%: % (r vir)) . (2.10)

This Ekman compatibility condition relates the mag-
nitude of the primary geostrophic swirling motion
v(r) to that of the relatively weak, HT~Y?), ver-
tical flux into or out of the boundary layer. This
viscously induced vertical flow is referred to as Ek-
man suction or pumping according to whether the
fiow is into or out of the boundary layer. Equivalent
Ekman compatibility conditions may be derived for
an axisymmeiric interface between two immiscible
geostrophically balanzed flows [33-35).

SPIN-UP: An important paradigm in rotating fluid
dynamics is the spin-up problem [20]. Consider a
rigid cylindrical fiuid-filled container of depth 2 and
radius R (with 2 = Q(R)) which rotates at an an-
gular speed Q about the cylinder’s symmetry axis.
The fluid is initially at rest relative to the container.
At some time ¢ = 0 the rotation rate of the container
increeses to (1 -~ €). Ekman layers are established
on the top and bottom container boundaries on a
rotational timescale, and serve to transport fluid ra-
dially outwards within the boundary layer. Ekman
suction draws fluid into the upper and lower bound-
aries and so drives a large-scale circulation which
transports high angular momentum fiuid radially
inwards within the bulk of the fluid. The circula-
tion is completed by vertical transport in viscous
boundary layers on the side walls of the container.

As 2 ring of fluid of radius r and mass m con-

tracts in the inviscid geostrophic interior, conser-
vation of angular momentum rarv requires that the
ring’s angular speed v/r increase from {2 to £3(1+¢)
as its radius decreases by an amount er/2. Since
the internal circulation is driven by the Ekman suc-
tion, which is characterized by a typical speed of
T-120r at a radius r, the convective timescale is
O(T*?/1). This ‘spin-up time’ is O(T ~'/*) smalier
than the timescale of diffusive adjustment, 2%/v. In
the absence of the spin-down process (the reverse
of the spin-up process), a cup of tea would take ap-
proximately half an hour to come to rest after stir-
ting, and the tea leaves would not be swept towards
the center of the cup by Ekman layer transport on
the lower boundary.

VORTICITY DYNAMICS: A number of important
features of rotating flows may be most simply un-
derstood in terms of vorticity dynamics. Taking the
curl of (2.4) yields an equation governing the evo-
lution of the relative vorticity, w = V A v, of the
fluid,

% +v-Vw = (20 + w) Vv + v Viw, (211)
Tn an Ekman layer, a steady state is established by a
balance between diffusion of vertical vorticity across
the boundary layer and the vortex compression or
stretching associated with the vertical velocity gra-
dient across the layer,

dw BFuw,

(2.12)

One may thus alternatively view the spin-up process
as being associated with the stretching of the basic
state vorticity by the Ekman suction into the up-
per and lower boundary layers. Within the inviscid
geastrophic interior, the vorticity evolves according
lo

Bw
= 20.Vv, (2.13)

from which scaling confirms that the fluid’s verti-
cal vorticity will increase by an amount ef2 through
vortex stretching (by the vertical velocity gradient
w/h = T~ alter a spin-up time.
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3.Ax1al PARTICLE MOTION

3.1 Criteria for Taylor Column Formation

In order for a columnar structure to accompany
a rigid sphere translating axially with speed U/, Tay-
lor [4] observed that the Rossby number R, = U/{la
based on the sphere radius ¢ must be less than
a critical value equal apnroximately to 1/x. The
experiments of Long [36] imply a similar critical
Rosshy number of 0.2. Analytical studies of ax-
jal particle motion at finite Rossby number have
been performed by Stewartson [37], Lighthill (38]
and Greenspan [20]. Stewartson deduced a solu-
tion for inviscid flow past an axisymmetric body on
the basis of Oseen’s equations, and inferred a crit-
ical Rossby number of 0.348. Lighthill explained
the Taylor blocking phenomenon in terms of the
propagation of inertial waves from the body, and
so concluded that the body should have a forward
influence on the flow at all Rossby numbers. On
the basis of the solution for the axial motion of a
rigid disc started impulsively in an inviscid flow,
Greenspan concluded that substantial Taylor block-
ing would occur for R, < 0.675. The experiments
of Pritchard [39] suggest that there is weak blocking
at all Rossby numbers, and that substantial Taylor
column formation oceurs for R, < 0.7.

In the case of particle motion at negligibly smail

Rossby number, the Taylor columnn which circum-
gcribes a body rising on-axis has a vertical extent
determined by the fluid viscosity v. In particular,
theory predicts that a truncated Taylor column,
or “Taylor slug”, will extend a characteristic dis-
tance aT up- and downstream of a sphere of radius
a [40] (se= the acaling argument presented in Sec-
tion 3.2). Maxworthy’s [41] experirhents revealed
Taylor columns to be typically an order of mag-
nitude shorter. Similarly, the numerical results of
Tanzosh & Stone [42] for a sphere translating axi-
ally at R, = 0 indicate a blocked region of length
0.11647 at large Taylor numbers {refer to Figure 3;
see also [43]). The problem of axial particie motion
in rotating fluids will be subdivided according to
whether the Taylor column accompanying the par-
ticle interacts with the container boundaries.

3.2 Unbounded Geometry

Table 1 summarizes theoretical studies of ax-
ial particle motion through unbounded rotating flu-
ids. Various analytical and experimental deductions
of the hydrodynamic drag on the particle are pre-
sented in Table 2. The hydrodynamic drag on a
rigid sphere varies dramatically according to the
magnitudes of the nondimensional groups charac-
terizing the particle motion.

Morrison & Morgan [44] considered the steady

T shape method reference
0 sphere exact solution e.g. Batchelor [32]
€1, sphere matched asympiotic Childress [30]
(Re/vT fixed) ‘expansion
>1 disc/sphere unsteady, inviscid analysis  Stewartson [22]

! » boundary layer analysis Morrison & Morgan [44]

" " " Maore & Saffman [40]

" bubble/drop " Bush et al. [48]
arbitrary sphere multipole expansion Weisenborn [45]
arbitrary disc dual integral Vedensky & Ungarish [43)

equations
arbitrary sphere/ellipsoid  boundary integral Tanzosh & Stone [42]
equation
<l sphere numerical: finite difference, Dennis et al. (1982)
series expansion (R. < 1)

Table 1: Theoretical studies of particle motion along the axis of an unbounded rotating fluid.
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NA [»1]{05-14|82xp0%a*
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»1|NA |1

LpalU?

Re |7 o Drag Reference

0 |NA [NA brpal e.g. Batchelor [32]

0 |<1]0 6rpals (14 4 7"I=) Childress [30]

0 |«1]0 6rpall (144 7% + J& T) | Weisenborn [45]

NA [»1]0 LoaQU Stewartson [22]

0 »>1]0 LpdaU Moore & Saffman [40]
NA |»1]|<1 26w pa U Maxworthy [41]

Fpa®T?(Z - ﬁ‘! ln #- — £3) | Stewartson (1968)

Maxworthy [41]

19

]

Schlichting (1979)

Table 2: Analytical approximations to the hydrodynamic drag on 2 rigid sphere of radius a
translating on-axis with velocity U through an unbounded fluid rotating about a vertical axis
with angular velocity {). The symbol NA denotes ‘not applicable’. The results of Maxworthy

are based on experiments.

motion of a rigid disc in an unbounded viscous fluid
for T 3 1. This problem was generalized by Moore
& Saffman [40] to the case of an arbitrarily-shaped
rigid axisymmetric particle with equatorial radius
R. For this high 7 limit, radial velocity gradients
occur on a particle lengthscale R, while axial gra-
dients occur on a scale corresponding to the length
of the Taylor column L 3 R. The pressure dif-
ference up- and downstream of the particle is as-
sociated with the geostrophic swirling motions of
opposite sense above and below the particle, and so
is approximately given by AP = pQlvR, where v
is a typical swirl velocity. From continuity, radial
velocities u are smaller than axial velocities w ac-
cording to u & wR/L. The dominant balance in the
azimuthal component of (2.7) is Qu = vv/R?, and
so indicates that v =& Tu. Similarly, the axial com-
ponent yields AP/L = vpw/R?®. Combining these
estimates indicates that the Taylor column assumes
a length L = RT, and that the swirling motions
generated are comparable in magnitude to the par-
ticle's rise speed: v = U. Balancing the geostrophic
pressure drag x R?pQU/ R with the buoyancy force
g pV yields an estimaie for the steady rise speed:
O(pR*I). For a sphere of radius a the exact re-
sult is listed in Table 2.

Figure 3 illustrates schematically the form of
the flow at moderate Taylor numbers (7" > 50) in-
duced by a particle rising on-axis, and subdivides
the flow into five distinct regions: the Ekman layer
on the particle surface; the geostrophic regime (in

Farflold

Gecatrophic
Region

Eman layer

i
i

i
i

Figure 3: Regions in the flow field of a particle
translating along the axis of a fluid in solid-body
rotation when 7 > 50: Ekman layer, geostrophic
region, recirculating region, far field, Stewartson
layer. (The horizontal and vertical scales are dis-
torted.)

which swirling motions of characteristic magnitude
U and of opposite sense arise above and below the
drop); the recirculating region (which bears some
resemblance to the wake associated with a parti-
cle translating through a nonrotating fluid at mod-
erate Reynolds numbers); the Stewartson layer, a
viscous internal boundary layer region which trans-
ports fluid vertically around the particle; and the
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unperturbed far-field. Figure 4 illustrates the nu-
merically determined extent of several of these re-
gions as a function of the Taylor number [42]. The
two-dimensional constraint imposed by the fluid’s
rotation is released through viscous effects, which
permit large-scale streaming past the body in the
Stewartson layers. Finally, Figure 5 illustrates the
dependence of drag on a rigid sphere as a function
of T, and indicates that the low T result of Chil-
dress [30], when augmented by the high 7 result of
Stewartson [22], provides a good approximation for
the drag at all T [42,43).

In the high 7 limit, the fluid transported through
the Stewartson layers greatly exceeds that through
the Ekman layers on the particle surface. Conse-
quently, the hydrodynamic drag does not depend
on the details of the boundary layer on the parti-
cle surface. In particular, the drag is independent
of the detailed shape of the particle, and depends
only on its equatorial (maximum) radius: a disc
and sphere of equal buoyancy and radius will rise
at identical speeds.

DEFORMABLE DROPS: Since the details of the bound-
ary layer on a buoyant particle rising in an un-
bounded fluid in the high T limit are not impor-
tant, the extension of the rigid particle problem to
the case of a deformable fluid drop rising on-axis

1000
100

Distance

from 10

particle

surfaca

(8]

o001

Taylor Number

Figure 4: Distance from the particle surface (2 —1),
measured along the centerline, of the boundaries be-
Lween different regions of the flow. For sufficiently
large Taylor number, the height of the Ekman layer
scales as 2.57 /%, the geostrophic region as 0.0067
and the recirculating region as 0.0527. [42]

is straightforward [35]. As in the case of the rigid
particle, the drop rise speed is determined by the
drop’s buoyancy and equatorial radius R. The rise
speed of a deformable drop in an unbounded fAuid is
thus determined by the drop shape, which requires
consideration of the normal stress balance at the
drop interface. In the high Taylor number limit,
geostrophic and hydrostatic pressures do not con-
tribute significantly to the normal stress balance at
the drop surface, which is dominated by centrifugal
pressures and curvature forces associated with the
drop’s interfacial tension &. The drop thus assumes
the form of a prolate ellipsoid whose degree of dis-
tortion is prescribed by the rotational Bond num-
ber, & = —Ap2R3/Be, which indicates the rela-
tive importance of centrifugal and interfacial ten-
sion forces. The drop shapes correspond to those
observed in spinning drop tensiometers in the ab-
sence of drop translation [35,46-48], and the shape
and rise speed are uniquely prescribed by the single
parameter Z. In the limit of large surface tension,
the drop assumes a spherical form and its rise speed
{which, according to Table 2, scales as 1/R®) is a
minimum. As rotational effects become more im-
portant, the drops become progressively more pro-
late, and the rise speed increases.

3.3 Bounded Geometry

If a buoyant particle rises through a sufficiently
shallow horizontal fluid layer, the Taylor column ac-
companying the particle will span the entire Auid

depth: the body cannot rise unless the Taylor-Proudman

constraint is relecased. The problem of bounded
pariicle translation was first treated by Moore &
Salfman [49], who considered the rise of rigid ax-
isymmetric bodies at high 7. This work was ex-
tended to the case of a deformable bubble rising
along the rotation axis by Bush et al. [48], who also
generalized the results io the case of a deformable
drop of arbitrary viscosity [35]. The case of vis-
cously truncated Taylor columna comparable to the
length of the container was considered by Hocking
cl al. [50] (see also [51]).

In the high T limit, geostrophic flow arises in
Lhe buik of the fluid and viscous effects are confined
Lo thin Ekman layers on the container and particle
boundaries, as well as the internal boundary Jayers
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Figure 5: Drag on a rigid sphere versus Taylor num-
ber using: (i) the boundary integral method-[38]
and a multipole expansion [40] (solid curve); (ii) ex-
perimental results of Maxworthy [41,53] (gymbols};
(iii) matched asymptotic expansion for 7 < 1 [30]
(dashed curve); {iv) inviscid, Unsteady,geostrophic
analysis for 7 3 1[22] (dotted-dashed curve). The
simple expression [Fy|/6rpall = 1 +{4/TT +
(8/9x)T, which combines the low and high Taylor
number asymptotic limits, is within 5% of the nu-
merical results for afl Taylor numbers [42].

(Stewartson layers [49,52]) which define the verti
¢al walls of the Taylor column. Vortex compression
and stretching in, regpectively, the regions up- and
downstream of the particle give rise to geostrophic
swirling motions of opposite sense above and below
the particle. Ekman suction and pumping on, re-
spectively, the upper and lower container and parti-
cle boundaries serve to transport fluid from the fore
to the aft column regions. Continuity requires that
there be a net down-flow in the Stewartson layers.
Figure 6 illustrates schematically the form of the
flow induced by a fiuid drop bound by surface ten-
sion and rising along the length of a Taylor column
in the case where both internal and external flows
are geostrophic.

As demonsirated in the discussion of Ekman
compatibility conditions (Section 2.4), O(1) geo-

strophic swirling motions are associated with O(7T~1/2)

ageostrophic vertical motions. Consequently, we ex-
pect the geostrophic swirling motions to be O(7'/?)
larger than the rise speed IJ. The geostrophic high

and low pressures existing, respectively, above and
below the particle thus have characteristic magni-
tudes P, = pRRUT'Y?, and the associated geo-
strophic pressure drag on the particle has a typical
magnitude of P,xR?. The steady rise speed is de-
duced by balancing the geostrophic drag with the
buoyancy force, gApV, and so has a characteristic
magnitude

-V Leg
U = The 0 (ﬁ (3.1)

Note that the rise speed increases with fluid vis-
cosity and decreases with increasing rotation rate.
This dependence underlines the role of viscosity in
the bounded geometry which is to release the con-
straint of two-dimensionality imposed by the fluid
rotation,

In the bounded geometry, buoyant particles are
able to rise only by virtue of the finite fluid viscos-
ity, which permits bourdary layer transport from
the fore to the aft Taylor column regions. Conse-
quently, the hydrodynamic drag depends explicitly
on the details of the boundary layer on the particle
surface. For example, the rise speed of a fluid drop

Figure 6: A schematic illustration of the flow in-
duced by a low viscosity {‘geostrophic’) drop rising
between rigid horizontal boundaries [35). The drop
interface is characterized by a double Ekman Iayer,
and the internal flow by a weak downward flow.
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depends not only on the its buoyancy and equa-
torial radius (as in the unbounded case), but also
on its detailed shape and fluid properties (35]. In
particular, the rise speed is now et by T and a
vigcosity ratio parameter 8 = {5/p)(£/v)/? (where
carats denote drop variables) which together pre-
scribe the efficiency of the Ekman transport over
the drop surface. Figure 7 illustrates the nature of
the dependence of rise speed on T and 2 for the case
of a drop rising between rigid boundaries. As in the
unbounded case, the drop’s rise speed increases as
the drop becomes progressively more prelate and
its equatorial radius decreases. Moreover, as # in-
creases, the Ekman transport over the drop surface
becomes progressively more efficient, and the rise
speed increases. For example, the rise speed of a
rigid sphere is larger by a factor of 105/43 than
that of a bubble of equal size and buoyancy.

3.4 Arbitrary Taylor Numbers
Three recent papers have investigated axial par-

ticle motion at arbitrary values of the Taylor num-
ber. Vedensky & Ungarish [43] and Ungarish &

Figure 7: Rise speed and shape of a fluid drop
bound by surface tension and rising on-axis between
rigid horizontal boundaries, as a function of the ro-
tational Bond number I = —Ap?R® /80 (35]. The
lower curve represents the rise speed of an invis-
cid drop and the upper curve that of an identically
shaped rigid body. Rise speeds are normalized with
respect to that of a spherical inviscid drop and de-
formed shapes are scaled suck that the volumes cor-
respond to that of the undeformed spherical drop.

Vedensky [51) present exact solutions for the axial
rise speed of a rigid disc in, respectively, unbounded
and bounded geometries. Hankel transform meth-
ods were used in order to arrive at a system of
dual integral equations which was solved numeri-
cally. The solution allowed for a detailed exami-
nation of the evolution of the flow structure as the
Taylor number was increased, and enabled the au-
thors to identify the presence of the recirculating
regions fore and aft of the particle. These stud-
ies have been complemented by Tanzosh & Stone’s
{42) general integral equation representation of the
solution to equation (2.7). The integral equation
must be solved numerically, but yields solutions for
particles of arbitrary shape (a family of rigid el-
lipsoids was considered) translating axially at arbi-
trary Taylor numbers. Moreover, boundaries are, in
principle, straightforward to incorporate with their
solution method.

3.5 Experiments

Taylor's early experiments {4] have motivated a
number of experimental investigations of axial par-
ticle motion in rotating fluids, several of which have
focussed on the effects of fluid inertia on the parti-
cle motion and so explored the dependence of rise
speed and flow structure on R, [36,39). Ounly lim-
ited experimental work has been done in the low
R, limit, primarzily due to the difficulties inherent
in achieving this parameter regime in the labora-
tory. Maxworthy [53] investigated the dependence
of rise speed on Taylor number in the low 7 and low
R, regime (see Figure 5} and so deduced the first
effects of rotation on a sphere rising on-axis through
a high viscosity fluid. Experimental investigations
of rigid particle motion in the rapid rotation (high
T) limit have also been performed by Maxworthy
in both the bounded [54] and effectively unbounded
[41] geometries. Analogous studies of deformable
drop motion have been performed by Bush et al.
[35).

In an investigation of on-exis _sphere-motion in
the bounded geometry, Maxworthy [§4] demonstrated
that the persistence of inertial effects in the labora-

.tory results in steady rise speeds which are typically

larger than those predicted theoretically by Moore
& Saffman {49]. In particular, Maxworthy observed
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that unless the inertial effects associated with the
vigorous swirling motions within the Taylor column
are negligible, weak radial flows develop within the
Taylor column which serve to complement the Ek-
men boundary layers in transporting fluid {from the
fore to the aft Taylor column regions, releasing the
Taylor-Proudman constraint of two-dimensionality
and facilitating the rise of the drop. Similar diffi-
culties were encountered in Bush et al.’s [35] exper-
imental investigation of drop motion.

Maxworthy [41] also investigated particle mo-
tion in the unbounded flow geometry, and observed
rise speeds which were typically a factor of x/2
smaller than those predicted theoretically by Stew-
artson [22) and Moore & Saffman [40]. This discrep-
ancy was also observed in the drop experiments of
Bush et al. [35]. Ungarish & Vedensky's recent
theoretical work, as described in section 3.1.3, ac-
counts for boundary effects at finite Taylor numbers
and improves the comparison of the linear theory
with Maxworthy's experimental results for long but
finite containers. Nonetheless, there remain signif-
icant discrepancies between the unbounded theory
and experimental observations [51].

4. TRANSVERSE PARTICLE MOTION

4,1 Criteria for Taylor Column Formation

According to the Taylor-Proudman theorem, when

a spherical particle moves through a geostrophically
baianced flow, the fluid inside the Taylor column
circumscribing the sphere behaves as a rigid body,
and the external fluid streams past as if the column
were solid. As in the case of axial particle motion,
however, the Taylor-Proudman constraint may be
released through either viscous or inertial effects,
so that this idealized picture of the flow is not eas-
ily realized.

Experiments reveal that in rapidly rotating flu-
ids, transversely translating “fal bodies” tend to
block fluid from entering a cylindrical region cir-
cumscribing the particle [3]. The Hide criterion [16]
for Taylor column formation may be expressed as a
requirement on the ratio of the vertical length of
the particle 2 to the depth D of the fluid layer:
hjD > R,, where the Rossby number is defined in

torms of the object’s width L: R, = U/L{). Exper-
iments [55,56] suggest that Taylor columns accom-
pany transverse motion whenever 4/D > 0.5 R,,
otherwise convective inertial effects preciude Taylor
column formation.

The criteria for Taylor column formation for trans-
verse particle motion i the zero Rossby number
limit, in which the Taylor-Proudman constraint must
be relaxed by viscous effects, is not well understood.
Analytical {26] and recent numerical (57} studies
suggest that “thin objects” such as a disc do not
block the flow; however, there exists no equivalent
of the Hide criterion for the transverse motion of fat
bodies in the zero Rossby number limit.

4.2 Theory and Experiments

Tables 3 and 4 summarize, reapectively, the ana-
lytical and experimental work related to transverse
particle motion in rotating fluids. Table 5 summa-
rizes a number of results for the hydrodynamic drag
and lift forces on a sphere as deduced analytically
or measured experimentally.

In addition to demonstrating the blocking phe-
nomenon, Taylor [2] predicted theoretically and ver-
ified experimentally that when the flow around a
body translating in the transverse direction is strictly
two-dimensional, the hydrodynamic force on the body
ia equal and oppasite to the Coriolia force on a mass
of fluid with the same volume as the object. For ex-
ample, Taylor observed that a vertical cylinder with
the same density as the surrounding fluid translates
through the fluid exactly as if the fluid were not ro-
tating, as the Coriolis and lift forces on the cylinder
precisely cancel. Conversely, when the flow about
the bedy is three-dimensional, as was the case when
Taylor dragged a neutrally buoyant sphere through
the fluid, the Coriolis force exceeds the lift force;
thus, if the tank is rotating in a counterclockwise
sense, the body is deflected to its right.

Taylor’s experiments were repeated by Hide &
Ibbetson [55], who demonstrated the manner in which
the Taylor-Proudman theorem was violated in the
transverse motion of & sphere at small Rossby num-
bers. Deviations from the purely geostrophic mo-
tion included a weak flow across the Taylor column,
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| RESEARCHER R /T GEOMETRY BounNpDarY | METHOD
EE3T
Herren, Davis <=1 sphere o0 matched asymptotic
& Bretherton (31] expansion
Davis (1992) o(1) sphere oo metched asymptotic
expansion
Tangosh <1 disc ) dual integral equations
& Stone [57]
T»l
Stewartson [23] &1 o(1) oo unsteady, geostrophic
Jacobe [59] <1 o(1) o) boundary layer analysis
Stewartson [25] - <1 o(1) o) unsteady, geostrophie
Moore & Saffman [40] | < 1 disc . boundary layer analysis
Ingetsoll (1969) (1) O(R./T); thin® O(T/R.);3» | | perturbation expansion
Vasiri & Boyer (1971) | O(1)  O(T-Y);thin®  O(T);» 1 | numerical: finite difference

Table3: Analytical work related to the slow translation of 3 particle in a direction perpendicular to the
retation axis. The GEOMETRY refers to the particle height to width ratio and the BOUNDARY refers to
the proximity of rigid boundaries. The ratio Ro/T/? quantifies the importance of convective inertial
effects in the flow. (*actually requires a fess restrictive assurnption R, T1/4 < 1; *requires H/D < T1/?
so that Stewartson layers remain thin and aiso investigates the unbounded case; “assumes that the slope
of the surface topology (particle) along the rotation direction is small}).

"RESEARCHER Ra R T D/L H/L | COMMENT
Taylor (5 blocking
Hide & 7-100  0.003-0.02 10%-101 0.6 4.0 description;
Ibbetson [66] blocking/deflection
Hide & 50~-750 Taylor column
Ibbetson [56] bending; inertial effects
Vesiri o 120 0.04 3000 0.0625 5.0 shallow
Boyer (1971) topography; deflection
Davies (1972} 25 0.01 2500 1 8 flow description
Mason [58] 0.001-1.0  25-250 1 3 — —207 { blocking/deflection;
drag/lift
Maxworthy [61] 0.012 2150 400 5600 disc; streamline
deflection
Karanfilian 0.03~3300 0.24-20  0.08-300 1 34 lift/drag
& Kotas [60]

Tabled: Experimental research related to the slaw translation of a particle in a direction perpendicular
to the rotation axis in finite containers. The columns delineate the approximate parameter range
(Reynolds, Rossby and Taylor numbers) and geometry (H~tark depth; L—particle height, D-particle
width). ®indicates a free surface. Experiments in which Taylor blocking or streamline deflections were

observed are indicated.

and a slightly altered external flow, both of which
the authors concluded were viscous in origin. Ma-
son [58] demonstrated that these ageostrophic ef-
[ects vanish if the transverse motion is sufficiently
slow, and so concluded that, had the Rossby num-
ber been sufficiently small in the experiments of
Taylor, the neutrally buoyant sphere would have

been undeflected by the Coriolis force.

Stewartson [23] examined the transverse trans-
lation of a rigid ellipsoid in an unbounded invis-
cid fluid through consideration of the unsteady geo-
strophic equations. Asthe length of the vertical axis
of the ellipsoid increased from zero, the lift force in-
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R. T R, | Drag “Lift | Reference

0 ca |0 Grpall 0 a.g. Batchelor {32)

05| <l )« |=6rpall =0 Karanfilian & Kotas [60]
0 <l1|0 rpal/(1+ 3717%) | 2 6xuol T'/? | Herron et al. [31]

NA |oo |<«1]|098pvay 0.76 pVIU | Stewartson (23]

NA |co |&1|0 20VQU Stewartson [25]

NA [>1]j<1}|=0 20Vl Mason [58]

L i |xl eVl =0 Mason [58]

»l |>1{>»1]|Epl Ut 0 Mason [58}

Table 5: The hydrodynamic drag and lift forces on a rigid sphere of radius a and volume V
translaticg in the plane perpendicular to the rotation axis 2 with speed U. 2pVQU is the
Coriolis foree which would act on an object with the same mass as the fluid displaced by the
particle. The results of Mason [58] and Karanfilian & Kotas [60] are based on experiments.
Mason’s result for R, =~ 1 was found to be valid provided a Taylor column did not accompany

the particle motion.

creased from zero to a value corresponding to the
Coriolis force on a mass of fluid with the same vol-
ume ag the object. Later, Stewartson [25] consid-
ered the transverse motion of a neutrally bucyant
sphere between rigid horizontal boundaries, and de-
duced a solution for the hydrodynamic force in ac-
cord with that of Jacobs [59], whose solution was
based on the steady viscous equations of motion.
These solutions again indicate that the lift force ex-
erted on a transversely translating particle at suffi-
ciently small Rossby number is equal and opposite
to the Coriolis force on the mass of fluid displaced
by the particle. These conclusions have been veri-
fied in the experiments of Mason [58], who also ob-
served that at very low Rossby numbers, the drag
force experienced by a sphere is comparabie in size
to an order of magnitude estimate of the viscous
forces. The critical Rossby number, below which
a neutrally buoyant sphere was undeflected by the
Coriolis force in a bounded plane layer, corresponds
to that specified in the Hide criterion for Taylor col-
umn formation.

Mason also considered the case of moderate Rossby

numbers, in which no Taylor columns were observed,
and concluded that in this case both the drag and
lift forces are comparable to but less than the Cori-
olis force on a mass of fluid with the same volume as
the displaced fluid. Consequently, a neutrally buoy-
ant sphere translating at moderate Rossby number
through a tank of fluid rotating in a counterclock-
wise sense will be weakly deflected to its right, 25

was the case in Taylor's experiments, This mod-
erate Rossby number regime was also examined by
Karanfilian & Kotas [60], who investigated experi-
mentally the free motion of a particle in a rotating
fluid, and parameterized the drag and lift coeffi-

“cients in various regions of parameter space. They
_concluded that in the limit of rapid rotation, the

lift force has contributions from both the Coriolis
force acting on the fluid surrounding the particle,
and the induced spin of the particle relative to the
liquid.

One problem where analytical progress has been
possible on the viscous flow problem is for the case
of transverse motion of a thin rigid disc in a plane
perpendicular to the rotation axis. Moore & Saffman
[26] investigated this problem in the high Tayler
number limit for both bounded and unbounded ge-
ometries, and demonstrated that the disc motion
‘was not accompanied by a Tayler column. Instead,
fluid particles cross the regions above and below the
particle and, in so doing, are. deflected through a
finite angle. For the case of a disc translating edge-
wise between rigid boundaries, Moore & Saffman
[26] predict a streamline deflection of 18.4°, which
is in remarkably good agreement with Maxworthy's
[61] experimental measurement of 20°. Finally, Wilcox
(62} considered the bounded transverse high 7 me-
Lion of a disc for the case where the disc is inclined
relative to the horizontal boundaries.

Tanzosh & Stone [57] have r.ecent.ly presented an
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exact solution for the translation of a thin disc per-
pendicular to the rotation axis for arbitrary Taylor
numbers. Their results also suggest equations for
the force-velocity relation for the steady translation
of a rigid sphere for arbitrary Taylor numbers:

1+ !TU + 9(164-: T 7-1;2 Tlm
P " o
Grpa = | 3T ekt 14TV T
0 0
0
0 +U. (4.1)

L4 V2 BT

This formula combines the low and high Taylor num-
ber results of, respectively, Herron et al. [31] and
Stewartson [23].

5. SUSPENSIONS

Despite the variety of applications of centrifugal
separation, there remain a number of unanswered
questions concerning the rheological properties of
multiphase mixtures undergoing rapid rotation. In
particular, the appropriate form of the equations
needed to adequately model such flows at arbitrary
T has yet to be developed. Rotating mixtures have
been considered from the approximaie standpoint
of two-phase flow theory [63], which has recently
heen applied in describing an experimental and nu-
merical study of spin-up from rest of a mixture [64].
The topic of multiphase flow modeling of mixtures
is described in a recent monograph by Ungarish [13].
in generai, developing model two-phase flow equa-
tions for the motion of a mixture requires an as-
sumption about the relative velocity between the
particles and the fluid. Typically Stokes drag is
used to deduce the particle velocities, even when it
is inappropriate {13]. Recent research on the axial
and transverse motion of isolated rigid particles has
suggested simple expressions for the drag valid for
all T (see equation 4.1) and so may prove valuahle
in modelling rotating suspensions.

The proper characterization of hydrodynamic in-
teractions is necessary in order to calculate an ef-
fective stress tensor for a suspension. All models of
multiphase rotating suspensions are limited by the

lack of detailed knowledge concerning the hydrody-
namic interactions between pairs of particles in ro-
tating fluids. In particular, it is unknown to what
extent the interaction of Taylor columns attached
lo individual particles influences the hydrodynamic
forces resisting particle motion. For large parti-
cle Taylor numbers, for which Taylor columns with
length 0.1a7 are expect.ed {at least for axial trans-
lation, see Section 3.1}, it is likely that some Taylor
column interference occurs on the scale of individ-
ual particles when the volume fraction of suspended
particles 4 is larger than approximately a(o. lT)‘
[13).

A more general approach for characterizing ro-
tating mixtures would incorporate an exact repre-
sentation of the flow on the scale of the microstruc-
ture. This method would combine the integral equa-
tion approach of Tanzosh & Stone [42], outlined in
Section 3.4, with either Stokesian dynamics ideas
[65] or low Reynolds number multi-particle simula-
tiona {66] in order to enable a computer simulation
of rotating suspension flows valid for arbitrary Tay-
lor numbers. An assessment of the computational
{easibility of such an approach must await future
research.

8. ANArLocoUS FLows

A number of recent developments described herein
may be extended to particle motion problems in
which entirely different physics gives rise to similar
two-dimensional constraints on the motion of the
suspending fluid. In this section, we indicate the
analogies between particle motion in rotating flu-
ids, stably stratified fluids and electrically conduct-
ing fluids permeated by a strong magnetic field, and
refer the reader to more thorough treatments of the
hydromagnetic and stratified flow problems.

6.1 Magnetohydrodynamics

The time evolution of the magnetic field B in
an incompressible conducting fluid with magnetic
diffusivity 7 is governed by the magnetic induction
equation (e.g. [67]):

dB

E3

If a quiescent fluid permeated by a strong uniform

=B:Vu —u-VB + 3VB. (61)
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magnetic field By is perturbed, then equation (6.1)
indicates that any steady weak motions in a low
magnetic diffusivity fluid must be two-dimensional
{e.g. [68]):

Bo-Vu =0. (6.2)

Magnetic field thus acts in 2 manner analogous to
a basic state vorticity field in a rotating sysiem in
suppressing velocity variations in the direction par-
allel to ihe field. As in a rapidiy rotating fluid, slow
steady particle motion is thus accompanied by a
columnar region of blocked fluid. Detailed studies
of particle motion in the presence of sirong mag-
netic fieids may be found in [69-72).

6.2 Stratified Fluids

The anzlogy between rapidly rotating and sta-
bly stratified fluids has been drawn in detail by Yih
(73], Chandrasekhar [68] and Veronis [74]. For an
incompressible stably stratified Auid in a vertical
gravitational field, the continuity equation yields

u-Vp =0 - (6.3)

for steady flow of small amplitude. Vertical fluid
moticns are thus suppressed by the stratification,
as work is required to drive such motions against
gravity. Consequently, when a particle is dragged
slowly in a horizontal direction through a stratified
fluid, it will be accompanied by a horizontal column
of fluid which is analogous to the Taylor columns
observed in rotating fluids. Detailed studies of par-
ticle motion in stratified fluids and stratified ‘Taylor
columns’ may be found in [75-77).

7. CONCLUSIONS

A broad overview of historical arid recent stud-
ies of particle motion in rotating fluids has been
presented. When viscous and inertial cffects are
sufficiently weak in the surrounding fluid, particle
motion is accompanied by a Taylor column. The es-
tablishment of this dramatic blocked flow structure
is generally accompanied by a drastic change in the
hydrodynamic force on the particle.

The criteria for Taylor column formation are
quite well defined in the axial problem; in partic-
ular, one expects a substantial Taylor column to

develop in the high 7 limit provided R, < 0.7,

" otherwise the Taylor-Proudman constraint of two-

dimensionality is relaxed by convective inertial ef-
fects. In the low R, limit, the unbounded Taylor
column has a characteristic length of a7/10, which
may be subdivided into a number of distinct flow
regimes. In both the bounded and unbounded flow
problems, the hydrodynamic force on a particle ris-
ing axially in thc kigh 7 and low R, limit is associ-
ated with geostrophic high and low pressure regions
existing in, respectively, the up- and downstream
Taylor column regions. In the unbounded problem,
the rise speed depends only on the buoyancy and
equatorial radius of the particle; consequently, a
rigid disc, a rigid sphere and a fAuid drop will all
rise at the same rate provided they have identical
equatorial radii and buoyancy forces. Conversely, in
the bounded geometry, the axial rise speed depends
further on the efficiency of the Ekman transport
over the particle surface, and so on the shape of a
rigid particle, or on the shape and fluid properties
of a drop. Finally, the experimental confirmation of
the theoretical predictions for the low R, and high
T limit is generally difficult owing to the persistence
of inertial effects in the laboratory flows.

The criteria for Taylor column formation for trans-
verse particie motion is more poorly understood. In
the bounded geometry, the Hide criterion indicates
when a Taylor column accompanying a fat body in
the high 7 limit will apan the entire fluid depth,
and when jt will be unstable to convective inertial
influences. Specifically, it provides a critical R, be-
low which the Aow around the body changes from
three- to two-dimensional so that the hydrodynamic
lift foree becomes equal in magnitude to the Coriolis
force which would act on the mass of fluid displaced
by the particle. In the case of a neutrally buoyant
sphere translating traversely wilh an accompanying
Taylor column, the Coriolis and lift (orces precisely
cancel, and the drag on the body is comparable in
magnitude to thal associated with viscous effects.
The precise magnitude of this viscous drag force is
uncertain; in particular, it is unclear whether it cor-
responds to that on a spherical or columnar struc-
ture. In the low R, limit, it is unclear when Tay-
lor eolumns develop, and whal their veriical extent
might be. The development of an analogue of the
Hide criterion for transverse particle motion at low
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R, remains an outstanding problem for theorists
and experimentalists alike.

While the original studies of particle motion in
rotating fluids were motivated by purely academic
interest, there has been resurgent interest in such
problems owing to their relevance in a variety of
applications in industrial centrifugation processes.
Through characterizing particle interactions in ro-
tating suspensions, it is hoped that it will be pas-
sible to describe the bulk properties of such flows.
Finally, it is hoped that a number of the mathemat-
ical and numerical techniques considered in this re-
view may find wider application in related studies
of particle motion in stratified fluids and particle
motion in the presence of strong magnetic fields.
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