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The Motion of « Sphere in a Rotating Liquid.
By G. I. Tavror, F.R.S.
(Received June 9, 1922.)

In some recent papers® the author has drawn attention to certain general
properties of rotating fluids, especially to the differences which may be
expected between two- and three-dimensional motion. Unfortunately,
mathemaftical -difficulties have so far prevented the solution of any three-
dimensional problem in a rotationally moving fluid from being obtained,
except -in one case, when the motion is very slow. In  this case,
Prof. Proudman has shown how it is possible to approximate to the
solution of the problem of the slow motion of a sphere in a rotating fluid.t
Even in this case the analysis is very complicated,

There seems little prospect of obtaining a more general solution of the
problem when the inertia terms which Proudman neglected are taken into
account. .On the other hand, it is shown in the following pages that a
solution can be obtained in the case when the sphere moves steadily along
the axis of rotation of the fluid. The limitation imposed by considering
only a steady motion necessarily excludes the case considered by Proudman,
for all slow steady motions of a rotating fluid are two-dimensional.

In the case when the sphere moves steadily with velocity U along the
axis of a fluid rotating with angular velocity Q, it is possible to reduce the
flow to a steady motion by superposing a velocity —U on the whole system.
Since the motion is symmetrical about the axis, only two independent
co-ordinates specifying position are necessary, namely, =, the distance of any
point from the centre of the sphere, and 8, the angle between the radius
from the centre and the axis of symmetry.

Let » be the component of velocity of the fluid along a radius from the
centre of the sphere, » the component in an axial plane and perpendicular to
the radius, w the component perpendicular to the axial plane. The scheme
is shown in fig. 1. Since the motion is symmetrical, the equation of
continuity is satisfied if
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where ¥ is Stokes’ stream function.

* ‘Roy. Soc. Proc.,” A, vol. 100, p. 114 (1921) ; ¢ Proc. Camb. Phil. Soc.,” vol. 20, p. 326
(1921) ; ‘Roy. Soc. Proc.,” A, vol. 93, p. 99 (1917).

t ‘Roy. Soc. Proc., A, vol. 92, p. 408 (1916). Proudman’s work has recently been
extended by Mr. 8. . Grace (these ¢ Proceedings,’” p. 89, supra).
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Since the motion is symmetrical, the equations of motion are
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- where p is the pressure and p the dens1ty of the fluid.
D 0 7 a

Since the motion is steady

Dtlsul 752?.

F16. 1.—Scheme of co-ordinates.

It'is easy to verify that w = A«r/(»sin 0) satisfies the equation (4), and if
the motion at infinity consists of a flow with uniform velocity —U parallel
to axis and a rotation about this axis with angular velocity Q, the
constant A is evidently equal to 2Q/U, so that

w = 204 [/(Ursin 6). )

This equation evidently expresses the fact that the circulation in a ring of
fluid, which is symmetrical with respect to the axis, remains constant
during the motion.

Let us now search for possible solutions of the form

4 = fsin® @, 6)
~where f is a function of » only.

The components of velocity are then

= —2fcos 6’ y =/ sin 9’ w = 282 fsin 6’ )
r o U »

where /' is df/dr.


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on April 28, 2017

182 Mr. G. L. Taylor. The Motion of

Eliminating p  between (2) and (3), it will be found that the form
assumed for  is legitimate, provided that f satisfies the equation

PP = 28— 2 8+ (4D U (of —2) = 0. ®)

The complete solution of this equation is

J=CEA+A <eos~—» sin 2 >+B (sm z+ COSZ)

or alternatively

JS= 022+D{cos(z+e)—s—hl-(-§ii)}, 9
where kE=20/U, z = kr,

and A, B, C, D, ¢ are arbitrary constants. When z becomes infinite, the first
term in (9) becomes large compared with the others. The motion at a
great distance from the sphere is therefore represented by f = Cz? and, on
comparing this with (7), it will be seen that this represents a uniformly
rotating fluid moving with velocity —2Ck® along the axis. Hence

C=TU/2k (10)
The condition at the surface of the sphere, r =@, is v = 0. Writing
u = ka, this condition gives

JUL4D {Cos(p—}e)—w} =0, (11)

Any values of D and ¢ which satisfy ( 11) lead to a possible solution of the
problem.

It appears, therefore, that there are an infinite number of possible motions
round a sphere moving steadily along the axis of a rotating fluid, and that all
of them vanish at infinity.

I have not been able to discover how the motion could be set up. Perhaps
the different solutions represent the stream-lines due to different ways of
starting the motion. It is clear, however, that some of the possible motions
represented by (9) could not be set up by starting the sphere from rest; it
would be impossible for instance to set up a motion in this way for which f
vanished or changed sign anywhere except at the surface of the sphere,
because a negative value of f corresponds with a reversed rotation of the fluid
about the axis. Such a motion is dynamically possible however, and it
corresponds with a case in which all the liquid inside a certain sphere, con-
centric with the solid sphere, moves with it, forming a kind of sheath of liquid
which possesses a rotation about the axis opposite to the rotation at infinity.

It is possible that these considerations may be extended so as to differentiate
between the various possible motions correspending to the various possible
pairs of values of D and e which are consistent with (11). The circulation
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round any symmetrical ring of fluid remains constant during any motion of
the fluid. 1t is equal to I = 27Qy?%, where y, is the initial distance of
a particle of the ring considered from the axis. If the sphere starts from
rest, the total deficiency of fluid in the field which possesses circulation lying
between I and T+ (dI/dy,)dy, below that which the fluid would possess in the
absence of the sphere, is the volume of tluid displaced by the part of the
sphere which is contained between cylinders concentric with the axis, whose
radii are 7, and g+ 8yo. This volume is
29y (AP —yo®$2 Syo if 4o << @0, or 0 if yy > a.

When the sphere moves in steady motion with velocity U, 4 is connected

with g, by the equation
yo? = 2¢r/U.

The total deficiency of fluid possessing circulation lying between I and
14 (d1/dy0)8ys is, therefore, found by calculating the deficiency of fluid possess-
mg circulation between I and I+ (dI/dy)éyr (where &y = Uy,dy,), by inte-
grating the total volume of fluid between the stream-lines +» and o+ 3y
through the whole field. If this deficiency is not equal to 27 (a®—wo?) 8y,
when y,<<a and 0 when y,>>a, then the motion could not be produced by
starting a sphere from rest in a rotating fluid, unless there is a finite motion
of the fluid at infinity along the stream-lines close to the axis during the
time the motion is being established. This reasoning makes it appear that
there is very little chance that any of the motions represented by (9) would
be started by moving a sphere from rest in a rotating fluid.

It is interesting to notice that it is possible to find solutions in which
w=wv=w=0 at the surface of the sphere, so that there is no slipping
between the fluid and the surface of the sphere. The condition U = 0 at
7 = a leads to the equation 0 = [/'],=,,

or £l 4D {(/%5—1) sin(;n+e)—’11: cos (,b+e)} = 0. (12)
This together with (11) yields the following values for D and e.
D = 3U (u*+3p2+9)/ 1, (13)
tan (u+¢) = 3u (3— )", (14)
so that the motion represented by
%’;ff= 2 (ud 32+ O {oos(z+e)-—§i’3_(zifl}, (15)

is one for which the disturbance due to the sphere vanishes at infinity, and it
is characterised by the fact that there is no slipping at the surface of the
sphere.
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This may be a point of some importance because it is the assumption that
there is slipping at the surface of a solid body moving in a liquid which
vitiates all the ordinary hydrodynamical theories of the motion of solids in
fluids. It is possible, therefore, that the solution given above may represent
the motion of a sphere in a rotating liquid more closely than the ordinary
irrotational solution for a sphere moving in an infinite fluid at rest represents
the actual flow in that case.

The surfaces + = constant are surfaces of revolution and the stream-
lines are spirals wrapped on these surfaces. The sections of the surfaces
+J» = constant by an axial plane may be called the stream-lines of the motion
in the axial plane. These stream-lines are shown for a particular case in
fig. (2). The case chosen is that of a sphere moving along the axis of a

==

F1e. 2.—Stream-lines due to the motion of a sphere in a rotating fluid. Case when
@ o= 2,

rotating fluid at such a speed that it travels a distance equal to its diameter
(ie., p = 2m) during each revolution of the liquid, and the particular solution
_for which there is no slipping between the sphere and the liquid is chosen.
It will be seen that the stream-lines are very different from. those which
surround a sphere moving in a non-rotating liquid.
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Propagation of an Isolated Disturbance along the Axis of a Rotating Flurd.

An interesting point about the motion represented by (15) is that it is
possible to reduce the radius of the sphere to zero while still retaining a
finite velocity in the disturbed motion.

Taking & very small, u becomes small, and (14) becomes tan e = 0, so that
€ = 0, (15) then becomes

U sinz -

= 243 -2 | 16

S Zkzl: +o<eos4 . >] (16)

It can be verified, by substituting in the original equations of motion, that
— Ul2.. < n,__Sink”"\] in2 17

= '2_75_9[]6 7243 (cos ki = ) sin? @, an

is a solution of the equations of motion, (17) also represents a motion for
which the veloeity and the pressure are finite and continuous at the origin.
The motion consists of a kind of non-rotating core* of liquid propagated with
velocity U along the axis of a rotating liquid. It is analogous to the motion
produced by a vortex ring, but in an inverse sense.

The stream-lines, due to the motion of a non-rotating core in a rotating
fluid, are shown in figs. 3 and 4. The stream-lines of the steady motion,
relative to the moving core, are shown in fig. 3. It will be seen that there
-are no closed stream-lines, so that the disturbance does not carry any fluid
with it.

The stream-lines, relative to the main body of the liquid, are shown in
fig. 4. It will be seen that the central part of the disturbance resembles
Hill’s spherical vortex,+ and that it is surrounded by spherical waves which
travel with it. The analogy between the present disturbance and a spherical
vortex is only superficial, for the vortex ring is a mass of rotating fluid which
ccan move through a non-rotating fluid. The present disturbance is a type
which could only be propagated in a rotating fluid, and it consists of a core
which rotates more slowly than the surrounding fluid and moves parallel to
the axis of rotation.

Wave Systems in « Rotating Fluid.

An essential feature of the motions described above is the system of
spherical waves which accompany the moving sphere or moving disturbance.
That a system of waves would accompany a body moving in a rotating fluid
is to be expected. It has been pointed out by Lord Kelvin} that rotation
¥ Region on the axis where the rotation about the axis is small compared with the
rotation of the fluid as a whole.

t+ M. J. M. Hill, “On a Spherical Vortex,” ¢ Phil. Trans.,’ A, 1894,
{ Kelvin’s ‘ Mathl. and Physical Papers, vol. 4, pp. 152, 170.
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confers on a fluid certain properties resembling those of an elastic solid, and
in particular, a rotating fluid can transmit waves.

In order that a system of waves may accompany a disturbance which moves
with velocity U along any axis, it is necessary that the velocity of the wave:
along a normal to the wave-front should be Ucos«, where « is the angle
between this normal and the direction of the axis along which the disturbance:
is moving. It is easy to show that a plane wave, of given wave-length, moves
in a rotating fluid with velocity proportional to cos«, so that the required

condition is satisfied.

-
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core travelling along the axis of a rotating fluid.
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F16. 3.—Stream-lines relative to the centre of the disturbance due to a non-rotating

Writing the equations of motion of a fluid relative to rotating rectangular:
axes in the form

(18)
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F1a. 4.—Stream-lines relative to the main body of the fluid in the disturbance due to a
non-rotating core propagated along the axis of a rotating fluid.

and the equation of continuity as

it will be seen at once that these equations are satisfied by
(u, v, w, p/P__Q2742) —_ (A, B, C, P) ¢t (aztby+eztnt)
provided* ,
niA—20B = —iaP
niB+20A = —ibP I>
10 = 4cP | ' (19)
Aa+Bb4+Cc=0
* The terms involving products of » and » all vanish in this solution on account of the

relation Aa+Bb+Ce = 0, a condition which implies that the motion of the fluid is
confined to the plane of the wave front.
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Eliminating A, B, C, P it will be found that
@+ b2+ = 40%2 [0 (20)
Hence n[2Q = ¢(a?+ 0>+ )73,
but ¢(a?+ b2 +¢?)" = cos «, hence
720 = cos a. (21)

The velocity of the waves represented by (18) is n\/27, where A is the
wave-length. Hence, from (21), the velocity is QA cosa/m, which is pro-
portional to cos « if A is constant. It appears, therefore, that a spherical
system of waves of length Uz /Q can be propagated with velocity U parallel
to the axis of a rotating fluid.

It is an unusual feature of both the plane and the spherical types of wave
that the amplitudes are not limited to small motions.

EBuperimental Demonstration of the Kzistence of a Non-rotating Sheath of Fluid
Round a Sphere Moving in a Rotating Fluid.

Tt is difficult to realise a practical demonstration that any of the types of
motion, considered above, actually exist in any real fluid ; on the other hand,
T have been able to show experimentally that, when a sphere moves along the
axis of a rotating fluid, it is surrounded by a sheath of fluid which does not
votate with the rest of the fluid. That this result is to be expected is clear
from equations (7), for at the surface of the sphere /= 0, so that w = 0, v,
the fluid immediately in contact with the sphere has no tendency to rotate it.

The apparatus with which this was demonstrated is shown in fig. 5. In
this diagram G is a glass cylinder full of water, A is the axis about which the
cylinder is made to rotate uniformly, B is the sphere which consists of a light
celluloid ball, of the type used in the game of ping-pong. T is a thread which
holds the ball down. The ball can be moved at a uniform speed along the
axis by unrolling the thread, T, at a uniform speed from a reel R. This reel
is mounted on a spindle fixed in the middle of a lid, C, which is fitted over
the glass cylinder G. The thread passed from R through a series of small
eyes, E, the last of which was in the centre of the bottom of the cylinder, and
the ball, B, was painted with black and white quadrants, so as to make it
easy to see whether it was rotating.

The apparatus was first rotated uniformly for some time till the ball and
liquid were both rotating as a solid body with the glass cylinder. To perform
the experiment, the reel, R, was suddenly fixed so that the thread, T, wound
round the reel at a uniform rate. This gave the bhall, B, a uniform speed
along the axis of the cylinder.
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It was found that the ball stopped rotating directly it started moving along
the axis. As soon as the reel was released, so that the ball stopped moving

along the axis, it quickly picked up the
rotation of the rest of the system once more.
To perform the experiment successfully, it
was found necessary to use the lightest
possible type of ball, to use a thin single or
plaited silk thread, and to take great care
that it was not twisted at the time of the
experiment. To ensure success, it was found
necessary also to make the ball move at a
rate greater than about one diameter per
revolution of the system (ie, u<<2w). If
the ball travelled more siowly than this it
was found that it did not stop rofating,
and investigation of the stream-lines with
coloured water, showed that a column of
liquid, of the same diameter as the sphere,
was apparently pushed along in front of the
sphere. This observation suggests that the
explanation of the rotation of the sphere,
when it moves slowly along the axis, is that
the stream-line, y» = 0, does not keep to the
surface of the sphere.

In the course of these experiments, it was
noticed that if the sphere was stopped
suddenly when half-way up the cylinder,
and if there was some colouring matter
present to show up the motion, a mass of
liquid appeared to detach itself from the
sphere, and to continue moving along the axis
of rotation with the same velocity as that
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Fie. 5.—Apparatus intended to
demonstrate that a sphere is
surrounded by a non-rotating
sheath of liquid when it travels
along the axis of a rotating
fluid.

with which the sphere had been moving. The impressibn produced on the
author’s mind was that the flow was similar to that shown in fig. 3. This
conclusion, however, should be treated with reserve.
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