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How can a given number of rigid, rectangular blocks be stacked in a planar arrangement to produce
the maximum overhang over a support edge? To answer this question, three cases of increasing
complexity are considered: single-wide stacks, multiwide stacks that do not rely on friction, and
multiwide stacks that do rely on friction. The solution to the first case has existed for more than 150
years; the answer to the second case is attempted in this paper; and the considerable complexity of
the third is demonstrated. Many mathematical aspects of block stacking are discussed, and a new
challenge is posed. The analysis uses the principles of static equilibrium and stability and free body
diagrams, key concepts in classical mechanics. © 2005 American Association of Physics Teachers.

�DOI: 10.1119/1.2074007�

I. INTRODUCTION

Textbooks on engineering mechanics contain many
simple, yet interesting, applications of the principles of static
equilibrium. One particular problem involving a stack of
rigid, rectangular blocks is especially intriguing. Its answer
is not intuitive, even in the ideal world in which the problem
is formulated.

The problem is to place N blocks in an overhanging stack
�Fig. 1� and calculate the overhang D. Block 1 �the top
block� is positioned so that its balance point is on the upper
right corner of block 2; blocks 1 and 2 together are posi-
tioned so that their balance point is on the upper right corner
of block 3, etc., until finally the entire stack of N blocks is
positioned so that its balance point is on the corner of the
support. Thus, block 1 is on the verge of tipping about the
upper right corner of block 2; blocks 1 and 2 together are on
the verge of tipping about the upper right corner of block 3,
etc. The block positions can be determined by considering a
series of free bodies of the individual blocks beginning with
block 1 and satisfying the equilibrium of forces and mo-
ments. Free bodies are constructed with the realization that
forces acting between adjacent blocks and at the support are
vertical forces concentrated at the balance points.

Local overhangs are determined one by one as the free
bodies are analyzed: d1= 1

2b, d2= 1
4b, d3= 1

6b, ¯ dN
= �1/2N�b, where b is the block length, and

di =
b

2i
�i = 1 to N� �1�

is the overhang of block i relative to block i+1 directly be-
low �or the support for i=N�. The total overhang D is calcu-
lated from the sum

D = �
i=1

N

di =
b

2
· �

i=1

N
1

i
. �2�

Because Eq. �2� is a harmonic series, D approaches infinity
as the number of blocks N approaches infinity. This result is
unintuitive.

The block stacking problem has been exposed to a wide
audience, and the items being stacked are variously referred
to as blocks, books, bricks, slabs, cards and coins. It is used
to demonstrate the harmonic series in mathematics,1,2 and
has been noted as a curiosity in the physics literature.3,4

There is even an interactive Web site5 where one can stack

green colored blocks, which turn red if an instability is de-
tected. The problem has a long history in textbooks of engi-
neering mechanics,6–13 dating back to the 1800’s at the Uni-
versity of Cambridge where it is cited in the context of
material relevant to the Examinations for the Mathematical
Tripos. Perhaps its origins are even older.

The purpose of this paper is to discuss some work related
to the original block stacking problem as well as more gen-
eral cases. An example is given to demonstrate that by using
some blocks as counterweights, greater overhangs than given
by Eq. �2� can be achieved for the same number of blocks.
Then an attempt is made to answer the question, given N
blocks, what stacking arrangement produces the largest over-
hang? As far as can be determined, this question has not been
formerly considered; although the overhang given by Eq. �2�
has been incorrectly claimed to be the maximum
achievable.2,3 Following the treatment of the maximum over-
hang problem, a new block stacking challenge is posed. This
paper is intended to be an enjoyable exploration of a stimu-
lating class of problems that involves only simple principles
of statics.

II. ASSUMPTIONS FOR BLOCK STACKING;
SINGLE-WIDE STACKS

Several assumptions are made to facilitate the analysis.
Each block is rigid, rectangular, the same size, the same den-
sity, and has its center of gravity at the centroid; the support-
ing surface is rigid and horizontal; the gravity field is vertical
and uniform. Each block can be positioned exactly as desired
and no disturbing influences are present. These conditions
establish the ideal world of block stacking. In addition, each
block is to be laid flat with its long axis horizontal. Only
planar stacks will be considered.

The stacking method described in Sec. I is consistent with
these assumptions. It employs a single-wide stack, that is,
consisting of a single block on the support with the remain-
ing blocks stacked above one-on-one. In this case, the only
forces acting are vertical, including the block weights and
the forces between the blocks and at the support. Thus, the
only parameter on which the overhang depends is the num-
ber of blocks N and the block length b. In particular, the
block height and any coefficient of friction are not involved
in single-wide stacks.

Although it may seem obvious that the method of stacking
described in Sec. I would achieve the maximum overhang
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for N blocks in a single-wide stack, a proof is desirable.
Refer to the single-wide stack shown in Fig. 1, where ai is
the horizontal distance between the edge of the support and
the center of gravity of block i. Moment equilibrium requires
that the following equations be satisfied:

1

i
�a1 + a2 + ¯ + ai� = ai+1 +

b

2
− �i �i = 1 to N − 1� ,

�3a�

1

N
�a1 + a2 + ¯ + aN� = − �N, �3b�

where the �i are arbitrary non-negative distances. Equation
�3� states that the center of gravity of a group of i blocks at
the top of the stack �i=1 to N−1� must not lie beyond the
right edge of block i+1, or for the entire stack �i=N�, its
center of gravity must not lie beyond the support edge. These
N equations can be solved for a1 by eliminating a2 through
aN:

a1 = C · b − �N − �
i=1

N−1
1

i + 1
· �i, �4�

where C is a positive constant. Because the �i are non-
negative, a1 is maximized when all of the �i are zero. Thus,
the �i in Eq. �3� can be set to zero, and then Eq. �3� is
modified by a series of substitutions to produce:

ai = ai+1 +
b

2i
�i = 1 to N − 1� , �5a�

aN =
b

2N
−

b

2
. �5b�

From Eq. �5�, the local overhangs are found to be

di = ai − ai+1 =
b

2i
�i = 1 to N − 1� , �6a�

dN = aN +
b

2
=

b

2N
, �6b�

which are the same as given in Sec. I. This result completes
the proof for a single-wide stack.

One possible flaw in this analysis is the assumption that
the top block is the one that overhangs the most. In fact, for
any single-wide stack of at least two blocks, block 1 can be
shifted a distance 1

2b to the left while block 2 is shifted a
distance 1

2b to the right, putting the second block in the
maximum overhang position while maintaining equilibrium.
The top block acts as a counterweight in this case. The maxi-
mum overhang is unchanged, but the configuration that
achieves the maximum overhang is now seen to be nonu-
nique. This case is believed to be the only way that the top
block does not set the maximum overhang for single-wide
stacks.

A good approximation to Eq. �2� is

D = 0.2886 · b +
b

2
· ln�N + 0.5� , �7�

whose inverse relation is

N = exp�2D

b
− 0.5772� − 0.5. �8�

From Eq. �8� the multiplicative factor by which the number
of blocks has to be increased to extend the overhang a full
block length b can be calculated by taking the ratio of N�D
+b� to N�D�. This ratio is a measure of the efficiency of a
stacking arrangement. As D /b increases, the ratio quickly
approaches a limit that is termed the stacking factor S. From
Eq. �8�,

S = e2 � 7.39. �9�

Thus, approximately 7.39 times as many blocks are required
to produce an overhang of length, say, D=5b as compared to
D=4b.

This relatively high value of S is one reason why achiev-
ing a substantial overhang is difficult if one were to stack
actual blocks. Therefore, the computer is the preferred block
stacking tool. Figure 2 shows a computer generated plot of a
stack for N=40, with local overhangs computed according to
Eq. �1�. In this case, D=2.139b.

III. NOT-SO-PERFECT CONDITIONS FOR BLOCK
STACKING

The question addressed in this section is how many of the
ideal world conditions listed in Sec. II are actually necessary
for the unintuitive result of Eq. �2� to hold, that is, D→� as
N→�. Theoretically, the infinite overhang is still possible by
using blocks of different length and density, and centers of
gravity not necessarily at the centroid. The method of stack-
ing would be similar to that described in Sec. I where suc-
cessive groups of blocks are positioned with their balance
point on the upper right corner of the next block �or support�
below. Also, a support surface that is not exactly horizontal
and top and bottom block surfaces that are flat but not ex-
actly parallel �one way in which a block could be nonrectan-
gular� could be compensated for by stacking the blocks in a
predetermined order, dependent on their shapes, to keep the
current stacking surface essentially horizontal. So, these de-

Fig. 1. Stack of N blocks overhanging the support a distance D, showing
local overhangs di and distances ai from the support edge to a block’s center
of gravity.
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partures from ideal conditions do not seem to be limiting
factors either. On the other hand, the rigid assumption of the
blocks and support seems necessary for the result D→� as
N→� to hold. If the blocks and support are made of a flex-
ible material, the stack will lean forward due to strains in-
duced from bending in the blocks and from the narrow con-
tacts between the blocks and at the support. This effect
places a limit on the overhang that could be achieved, al-
though using lighter blocks partially compensates.

Another aspect of the assumption that the blocks are rect-
angular is that the corners are perfectly sharp. This assump-
tion allows the balance point of each group of i blocks at the
top of the stack to be placed exactly over the right edge of
block i+1 directly below �or the support edge if i=N�, en-
suring that the maximum local overhang is reached. To see if
this assumption can be relaxed, consider more realistic
blocks whose corners are replaced by tapers beginning a
horizontal distance x in from the block edge �see Fig. 3�, the
same x for every block and also for the support. When such
blocks are stacked, the balance point for each group of
blocks is shifted to where the taper begins, that is, the dis-
tance x from the right edge of the next block below, as is also
shown in Fig. 3. Thus, block 1 is placed on block 2 with a
local overhang d1= 1

2b−x. The other local overhangs are

computed by the same method discussed previously, consid-
ering a series of free bodies and satisfying equilibrium of
forces and moments. The result is

di =
b

2i
−

x

i
, �10�

which gives a total overhang for N blocks of

D = �
i=1

N � b

2i
−

x

i
� . �11�

If x�
1
2b, D still approaches infinity as N approaches infinity.

This result is surprising because the shifts x can be much
greater than the local overhangs present in the lower part of
the stack. The shifting does reduce the efficiency of the
stack; the stacking factor can be computed as

S = exp� 2

1 − 2x/b
� , �12�

which varies from 7.39 at x=0, to 9.23 at x=0.05b, to 12.18
at x=0.10b.

Shifting balance points to the left can also be used to
impart positive rotational stability to the stack4 if the shifts
are beyond the points where the tapering begins. Otherwise,
the rotational stability is only neutral. A stable stack offers
resistance to finite disturbances.

A final assumption is that the blocks can be placed exactly
where desired. As an example of how this assumption can be
assessed, suppose that the blocks are being stacked by a ma-
chine that is only able to set a finite number of local over-
hang distances, say, multiples of a block length fraction �b.
For simplicity, take x=0 and assume the local overhangs are
set exactly to multiples of �b. If �=0.01, then d1 would be
set to the desired value 0.5b, and d2 would be set to the
desired value 0.25b. However, d3 would have to be set to
0.16b instead of the desired value 0.1666¯b. Subsequent
local overhangs are calculated by satisfying force and mo-
ment equilibrium for the series of free bodies as before, but
choosing the greatest �b multiple that is less than or equal to
the computed overhang. Eventually, a situation will be
reached where there is a sequence of zero local overhangs, a
single one at �b, a longer series of zero local overhangs,
another one at �b, etc. This method of stacking also produces
the result D→� as N→�, with the stacking factor S given
by

Fig. 2. A single-wide stack for N=40 achieving an overhang D=2.139b.
Local overhangs are determined according to Eq. �1�.

Fig. 3. Single-wide stack with tapered blocks. The triangle marks the bal-
ance point for the group of i blocks above.
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S = � 1

1 − 2�
�1/�

, �13�

which approaches e2 for small �. For �=0.01, S�7.54, rep-
resenting only a small decrease in stacking efficiency.

Thus there is considerable robustness in stacking blocks to
achieve a large overhang. Additional variables could be ex-
amined such as uncertainty in the block positions. The re-
mainder of the paper returns to the ideal world of block
stacking as characterized by the original list of assumptions.

IV. MULTIWIDE STACKS

A multiwide stack is one that has a single block on the
support and one or more blocks in each layer above. Each
upper block rests on one block or two adjacent blocks on the
next layer below. With this definition, single-wide stacks are
included as a special case. Forces are transferred only be-
tween blocks on adjacent layers and between the base block
and the support.

Multiwide stacks are able to use blocks to provide coun-
terweight. This stacking method can increase the maximum
overhang for a given number of blocks, that is, a lower stack-
ing factor S. For example, consider a stack whose leading
edge consists of n blocks placed with equal local overhangs

1
2b �see Fig. 4�. Such a stack needs counterweight to be
stable. By applying force and moment equilibrium to a series
of free bodies, the minimum counterweight forces in terms
of the block weight W can be computed; these are also
shown in Fig. 4. The use of minimum counterweight imparts
a neutral rotational stability to the stack.

The counterweight forces are actually applied through ad-
ditional blocks stacked on those forming the leading edge.
Thus, to obtain a total overhang D of 1

2nb, N=2n−1 blocks
are required, which gives a stacking factor S=4, a little more
than half the value of S for the single-wide stack. Figure 5�a�
shows how the blocks providing the counterweight can be
positioned for n=5, which involves N=31 blocks. To clarify
the correspondence to the counterweight forces, the seven
blocks supplying the counterweight to block 4 are shown
shaded.

A symmetric version of this type of stack exists for any
value of n, achieving the same overhang with the same num-
ber of blocks. An example is shown in Fig. 5�b� for n=5.

V. OPTIMUM STACKS OF TYPE V

The fact that the counterweighted stacking method pre-
sented in Sec. IV produces greater overhang for a given
number of blocks, compared to the original single-wide
stacking method, raises the question as to what is the abso-
lute maximum overhang that can be achieved for a given
value of N. This question turns out to be very difficult to
answer and involves finding the optimal stacking arrange-
ment. A multiwide stack of N blocks that reaches maximum
overhang mobilizes friction forces between the blocks, and
so the maximum overhang becomes a function of the coeffi-
cient of friction � between the blocks. In addition, the block
aspect ratio h /b, where h is the block height, becomes a
parameter. This general case is discussed in the Appendix
where results for N=4 and N=5 are presented as illustra-
tions.

A simpler case, one in which equilibrium of the stack re-
quires only vertical forces between the blocks to be present,
is more amenable to analysis and is examined in the follow-
ing. These solutions for maximum overhang apply only to
perfectly smooth blocks or for blocks that are negligibly thin
compared to their length. This special case will be referred to

Fig. 4. Blocks on the leading edge of a multiwide stack with constant
overhang 1

2b, also showing minimum counterweight forces.

Fig. 5. Two multiwide stacks of constant local overhang 1
2b; N=31; n=5; and D= 5

2b. Unsymmetric �part �a�� and symmetric �part �b�� versions.
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as type V �for only vertical forces acting�; the more general
case is type F �with friction forces acting as well, as dis-
cussed in the Appendix�.

As in Sec. IV, the stacks considered here have a leading
edge of n blocks counterweighted with additional blocks �see
Fig. 6�. However, the positions of the blocks in the leading
edge are now to be determined to maximize the overhang D
of the stack, which is assumed to be set by block 1. In addi-
tion, n itself is unknown and must also be determined to
maximize D. Counterweight forces are applied to all n lead-
ing blocks or only to the bottom m of these �m�n�, with m
as well needing to be determined to maximize D. The coun-
terweight forces are denoted by Fn−m+1 , · · ·Fn. These forces
are computed to provide minimum counterweight, and so
with these forces acting, each group of i blocks from the top
on the leading edge would be on the verge of tipping. This
condition implies that the forces acting between the blocks
on the leading edge, Ri for the force between blocks i and
i+1 �or Rn for the force between block n and the support�,
are concentrated at the upper right corner of block i+1 �or
the support corner if i=n�. Note that Ri= i ·W for i=0 to n
−m and that Rn=N ·W, where W is the block weight. A free-
body diagram of block i is shown in Fig. 7. All forces are
vertical.

Summation of moments on the free body in Fig. 7 about
any point on the left edge of block i leads to

�b + ai+1 − ai� · Ri =
b

2
w + b · Ri−1 �i = 1 to n� . �14�

From these n equations, the block positions a2, a3 , ¯an can
be eliminated, resulting in a single equation for a1 in terms of
N and the unknown Ri for m�2:

a1 = f�Rn−m+1, ¯ Rn−1,N� . �15�

To maximize a1, set

� f

�Ri
= 0 �i = n − m + 1 to n − 1� , �16�

which results in a set of equations from which the unknown
Ri can be found. These relations are nonlinear but have a
simple form:

Ri
2 = �W

2
+ Ri−1� · Ri+1 �i = n − m + 1 to n − 1� , �17�

and are easily solved with an iterative algorithm.
The positions of the blocks in the leading edge can now be

calculated recursively from bottom to top �decreasing i� as

an =
b

2
−

b

2N
−

b

NW
· Rn−1, �18a�

ai = ai+1 + b − b ·
Ri

Ri+1
�i = n − 1 to n − m + 1� , �18b�

ai = ai+1 +
b

2i
�i = n − m to 1; i � n� , �18c�

where Eq. �18b� is used when m�2, and Eq. �18c� is used
when n�m. The stack overhang is then

D = a1 +
b

2
. �19�

The counterweight forces Fi are not needed to find D. How-
ever, these forces are required to determine the positions of
the blocks providing the counterweight. For this purpose, the
Fi can be found from

F1 = R1 − W , �20a�

Fi = Ri − i · W − �
j=1

i−1

Fj �i = 2 to n� . �20b�

The above procedure for computing D must be repeated
for every possible combination of n and m. For example,
there are 26 possible choices of n and m for N=10, consist-
ing of one single-wide stack n=10/m=0 and 25 multiwide
stacks where n=1 to 9 and m=1 to min�n ,10−n�. Of the 26
combinations, n=4/m=4 produces the largest overhang.
Table I lists the values of n and m that produce the largest
value of D for N=1 to 40, as well as the resulting values of
D. All of these stacks for N�3 are counterweighted. The
N=2 stack is a special case in that both a noncounter-
weighted version �n=2/m=0� and a counterweighted ver-
sion �n=1/m=1� reach the same maximum overhang.

Before the selection of an n /m combination that maxi-
mizes D for a given N can be accepted, a verification must be
made that a valid stack of the blocks providing the counter-
weight can be constructed. The existence of such a counter-

Fig. 6. Blocks on the leading edge of a multiwide stack with variable local
overhangs di to be determined to maximize the overhang D. Counterweight
forces are applied to the lowest m blocks of the leading edge.

Fig. 7. Free-body diagram of block i in the leading edge of a multiwide
stack.
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stack is not guaranteed for all n /m combinations. For
N=10, the n=9/m=1 combination cannot be realized
because block 8 in the leading edge occupies too much of
the top surface of the bottom block 9, onto which the single
counterweight block 10 must also be placed. No block inter-
penetration is allowed. Also, in general, the blocks providing
the counterweight must produce the correct counterweight
forces �Eq. �20��; these blocks must be in equilibrium;
and all vertical forces between block layers must be com-
pressive and directly transmitted through block-to-block
contact.

Experience has shown that a valid counterstack always
seems to exist for the particular n /m combination leading to
the maximum overall D for a given N, although this obser-
vation has not been proven. In fact, except for N�3, such
counterstacks seem to be nonunique. Thus, the values of n, m
and D in Table I for N=1 to 40 are believed to be for opti-
mum, realizable type V stacks.

The method employed for computing a counterstack in-
volves some trial and error; no fully automated procedure
has been developed. To overcome some of the nonunique-
ness, the forces between the blocks in any two adjacent lay-
ers are placed at the upper corners of the blocks in the lower
layer, as if rotation is impending about these corners. Such a
stack has neutral stability for two types of mechanisms. One
of these is a rigid-body rotation about the corner of the sup-
port, and the other involves a nonrigid-body set of block
motions that opens up all of the block-to-block contact sur-
faces through rotation and slipping at the aforementioned
block upper corners. These two mechanisms are illustrated in
Fig. 8 for a N=4 stack. Such a configuration is referred to as
fully mechanized, and it greatly facilitates the analysis. Fig-
ure 9 shows fully mechanized, optimum type V stacks for
N=1 to 8.

The type of nonuniqueness overcome by considering only
fully mechanized stacks can be illustrated with the N=4
stack in Fig. 9. Blocks 3 and 4 of the counterstack can be
displaced horizontally toward each other by equal amounts
�thus, keeping their combined center of gravity stationary�,
but not so far as to slide block 3 off block 1 or to penetrate
block 1 with block 4. All of these configurations satisfy equi-
librium, but are not fully mechanized because blocks 3 and 4

Table I. Values of n and m that maximize the overhang D of type V stacks
for N=1 to 40.

N n m D /b

1 1 0 0.500
2 1 1 0.750
2 2 0 0.750
3 2 1 1.000
4 2 2 1.168
5 3 2 1.305
6 3 3 1.437
7 3 3 1.530
8 4 4 1.632
9 4 4 1.715
10 4 4 1.787
11 5 5 1.859
12 5 5 1.925
13 5 5 1.985
14 5 5 2.038
15 6 6 2.093
16 6 6 2.144
17 6 6 2.191
18 6 6 2.235
19 7 7 2.277
20 7 7 2.319
21 7 7 2.358
22 7 7 2.395
23 7 7 2.431
24 8 8 2.465
25 8 8 2.499
26 8 8 2.531
27 8 8 2.562
28 8 8 2.592
29 9 9 2.620
30 9 9 2.649
31 9 9 2.677
32 9 9 2.703
33 9 9 2.729
34 9 9 2.754
35 10 10 2.778
36 10 10 2.802
37 10 10 2.825
38 10 10 2.848
39 10 10 2.870
40 10 10 2.892

Fig. 8. Fully mechanized stack for N=4 showing the rigid-body rotational mechanism �part �a�� and the opening mechanism �part �b��.
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would move as a unit in the opening mechanism. This nonu-
niqueness seems to be present for N�4.

Another type of nonuniqueness of the block positions in
the counterstack involves block connectivity. Consider
thetwo N=7 stacks in Fig. 9, for which n=3/m=3 produces
the optimum stack. Block 7 must be placed on block 4, 5, or
6. Valid solutions can be obtained for block 7 atop either
block 4 or block 5 �see Fig. 9�. Except for N=8, such nonu-
niqueness seems to be present for N�7. As N becomes
large, many nonunique connectivities emerge. Even so, valid

counterstacks become difficult to find. Figure 10 shows an
optimum stack for N=40 that was obtained through much
effort.

A computer calculation to determine parameters of opti-
mum type V stacks for N up to 10 000 generated the results
in Table II. Trends seen in Table I continue. Namely, for the
optimum stack, m appears to equal n, and n becomes a
smaller fraction of N as the stack size increases. A good fit to
the data in Table II is given by

N = 3.013 36 · exp�D

b
� − 3.4722 · exp� D

2b
� + 0.425,

�21�

where the dominant term eD/b is believed to be the correct
functional form. This term yields the stacking factor

S = e � 2.72, �22�

which is lower than the stacking factors given previously.
Also, the data in Table II indicate that as N increases by a
factor of e to extend the overhang a length b, n increases by

Table II. Values of n and m that maximize the overhang D of type V stacks
for N producing overhangs of approximately integer multiples of b from b to
8b.

N n m D /b

3 2 1 1.000 000 0
14 5 5 2.038 216 9
46 11 11 3.011 459 4

140 21 21 4.004 648 2
406 37 37 5.001 531 7
1147 64 64 6.000 540 3
3190 109 109 7.000 001 3
8794 183 183 8.000 049 7

Fig. 9. Fully mechanized, type V stacks for N=1 to 8 that achieve maximum overhang. Triangles denote contact points where vertical forces between blocks
and at the support are concentrated.

Fig. 10. Fully mechanized, type V stack for N=40 that achieves maximum
overhang �D=2.892b�. Triangles denote contact points where vertical forces
between blocks and at the support are concentrated.
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a factor of e1/2, which is consistent with n becoming a
smaller fraction of N for larger stacks.

Finally, two curious features of optimum type V stacks are
emphasized. First is the involvement of the constant e in the
relations among N, D and n, and in the stacking factor S.
This constant also appears in Eq. �9� for the stacking factor S
of single-wide stacks, but there the reason for its presence is
clear. For optimum multiwide stacks, there is no obvious
suggestion in the mathematics that e will play a role. Perhaps
the presence of e indicates that a continuum version of these
optimum stacks exists for large N. Second is the fact that the
procedure for computing the maximum overhang D using
Eqs. �17�–�19� does not have to compute the positions of any
of the blocks that provide the counterweight forces, only to
assume that a valid counterstack exists �which always seems
to be the case�. Only the positions of the leading edge blocks
need to be found, along with n and m, and a simple algorithm
has been described to do this.

VI. OTHER STACKS

One property of a single-wide stack is that any group of i
blocks from the top of the stack can be rotated as a group
180 deg about a vertical axis through the balance point of the
group, a maneuver that will be called flipping. For example,
the two N=2 stacks in Fig. 9 can be viewed as flipped ver-
sions of each other. For the N=40 stack shown in Fig. 2, if
the top 39 blocks are flipped, then the top 38 blocks, etc.,
continuing to the top, the tree stack shown in Fig. 11�a� is
produced. This stack has neutral stability. If x shifting �see
the previous discussion on tapered blocks� is applied prior to
flipping, a stack with positive stability is retained. An ex-
ample is the stack shown in Fig. 11�b�, which was produced

with an initial x shift varying linearly from 0.5b at the top to
0.1b at the bottom. Some intriguing patterns can be made in
this way.

Various other problems can be posed other than achieving
maximum overhang. One of these is to build a stack atop a
block-wide support that encloses the maximum opening per
total number of blocks used. If the area of the opening is
quantified by the number of block areas �one block area
equals b times the block height�, then this ratio, Z, is dimen-
sionless. As the problem is posed, the opening should be
continuous.

Consider the symmetric stack in Fig. 12 consisting of two
overhanging vertical columns of k blocks each, capped with
a vertical column of l blocks. The overhanging stacks each
occupy a length w of the support. The ratio Z is

Z =
k�1 − 2w/b�

2k + l
. �23�

A relationship between w, k and l can be found by using
moment equilibrium on an appropriate free body on which
only vertical forces are considered �a type V stack�:

w

b
=

k

2k + l
. �24�

The substitution of w /b into Eq. �23� yields

Z =
	

�2 + 	�2 , �25�

where 	= l /k. Maximizing Z with respect to 	 leads to 	
=2 and

Z = 1
8 = 0.125. �26�

This value of Z could be increased if friction forces were
mobilized �type F stack�.

The stacking type shown in Fig. 12 may or may not be the
one that results in the largest value of Z. Many other types of
stacks with enclosed openings are possible, such as shown in
Fig. 13, which consists of two free-standing stacks. The one
on the right side is of the type depicted in Fig. 2, but has
been flipped at its base to make room for the vertical stack
on the left. This particular stack with 49 blocks has Z

Fig. 11. Tree stacks made with x=0 �part �a�� and a linear variation of x
�part �b��.

Fig. 12. Use of two vertical columns capped by another vertical column to
create an enclosed opening. The length of the support is same as the block
length.
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=0.109, which is less than Z=0.125 for the other stacking
method. Finding the stacking type that produces the maxi-
mum Z is a challenging problem and is left for the interested
reader.

VII. CONCLUSIONS

The major part of this paper attempts to answer the ques-
tion: Given N rigid, rectangular blocks, what is the optimum
stacking arrangement that maximizes the overhang over a
support edge? The answer involves using most blocks in a
counterstacking role. If only vertical forces are considered to
act between blocks �type V stack�, an algorithm can be for-
mulated to compute the locations of the blocks on the lead-
ing edge of the optimum stack, which determines the maxi-
mum overhang. However, this calculation is subject to
verification that a valid solution for the blocks providing the
counterweight can be found. For all values of N examined so
far, this verification step succeeded, but no proof has been
offered that a valid counterstack always exists when the
overhang is maximum. If the blocks are stacked to mobilize
friction forces �type F stack�, then greater overhang can be
achieved. However, a type F stack is a much more compli-
cated situation to analyze, and no general procedure has been
developed.

Although no practical applications have been claimed for
the results presented, the block stacking problem could pose
a worthy test for general optimization algorithms. To reduce
some of the nonuniqueness involved, the original question
could be restated, for example, to maximize the minimum
gap between adjacent blocks, in addition to maximizing the
overhang.

APPENDIX: OPTIMUM STACKS OF TYPE F

A type F stack is one in which friction forces are involved,
as compared to a type V stack in which all forces between
the blocks are vertical. All single-wide stacks are type V.
Multiwide stacks can be either, and greater overhangs can be
obtained with type F stacks depending on the friction coef-
ficient � and the block aspect ratio h /b.

Figure 14 shows free-body diagrams of the blocks in a
N=4 stack including friction forces. Vertical forces between
blocks have been located in the same manner as done in the
analysis of type V stacks at maximum overhang. Friction
forces arise naturally as the stack is spread out to increase the
overhang. Consideration of the horizontal equilibrium of the
blocks of the N=4 stack shows that all the friction forces are
equal in magnitude. These friction forces, denoted by f , exert
stabilizing couples on blocks 1 and 4 and thereby allow these
blocks to be spread further apart than if only vertical forces
were acting. The analysis of the N=4 stack is complicated by
the presence of the extra unknown f and by the fact that f
could be controlled either by impending sliding of block 3 on
block 1 or by impending sliding of block 3 on block 4. Nev-
ertheless, a solution can be found without great difficulty,

Fig. 13. Use of two free-standing stacks to create an enclosed opening. The
length of the support is the same as the block length.

Fig. 14. Free-body diagrams of the blocks of a N=4 stack with friction
forces mobilized �type F stack�.

Fig. 15. Relationship between maximum overhang D and the friction/aspect
ratio parameter �h /b for N=4 and N=5 stacks of type F.
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and it reveals the maximum overhang D to be a function only
of the combined parameter �h /b. This relation is plotted in
Fig. 15. The overhang cannot be increased further once �h /b
reaches unity; this final configuration is shown in Fig. 16�a�
�D=1.5b�.

A similar solution for N=5 has also been completed, and
again the maximum overhang D depends only on �h /b. This
relation is also plotted in Fig. 15. For �h /b�0.25, D is
controlled by a n=3/m=2 configuration, and for �h /b
�0.25, the controlling configuration switches to n=2/m=2.
The overhang cannot be increased further once �h /b reaches
2.281; this final configuration is shown in Fig. 16�b� �D
=1.656b�. For higher values of N, the complexity of the
analysis increases severely, and no general solution proce-
dure has been obtained as for type V stacks.
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