

第一部分.

G-M计数器脉冲特性

和分辨时间探究

G-M计数管中负脉冲的形成过程概要:

①射线进入,引起电离

②雪崩放电,产生脉冲

③阳极附近形成"正离子鞘", 放电终止 ——"死时间"

图1: G-M计数器实验装置图

一、工作原理与仪器介绍

原始负脉冲的问题: ①信号宽度过大 ②信号幅度较小 ③信号噪声过大

时间间隔较短的两个相 邻信号无法被准确记录!

为了减小分辨时间,提高计数准确度, 需要**对G-M管得到的脉冲信号进行处** 理,改变其脉冲特性,使得计数更准 确。

图3: 原始负脉冲图

图4: 脉冲信号处理示意图

图5: 实验仪器控制面板

脉冲和计数的影响因素: 附录1: 改变计数管电极上的电压(HV)——"坪特性曲线" 附录2: 改变采样电阻——电阻大,负脉冲高,宽度变大 附录3: 添加放大电路——增大脉冲强度

附录4:

添加积分电路——减小一些毛刺噪声

二、脉冲特性与微分电路

图6: 微分电路档位图

实验参数:
采样电阻R=5KΩ
计数管电极电压HV=493V
X光管电压U=16.0kV
X光管电流I=0.15mA
积分电路INV-0档(关闭积分电路)

调节微分电路档位: MAX档:未经过微分处理 I档:其中电容约10000pF。 DIV-C档:可变电容档,通过更换电容 探究微分电路电容对仪器的影响。

图7: 不同微分档位脉冲U-t图

注: I档对应的电容约为10000pF

数据分析: 随着电容值的增大, 得到的信号的脉冲**宽度变宽**, 脉冲<mark>幅度增大</mark>。 脉冲宽度:与RC(微分电路的时间常数)有关,RC越大,尖脉冲波形越宽。 $U_0 = RC \frac{\mathrm{d}U_i}{\mathrm{d}t}$ 脉冲幅度:

二、脉冲特性与微分电路

微分档位	峰宽(us)	峰高(mV)
560pF	5.7	2290
1000pF	6.5	3960
2200pF	12.7	6220
4700pF	18.5	7680
47000pF	71.3	10937
无微分	181.0	6990
档	35.4	9550

随着电容值的增大,	得到
的信号的脉冲 <mark>宽度变宽</mark>	,脉
冲 <mark>幅度增大</mark> 。	
从分辨能力的角度,	峰
宽 <mark>越小</mark> 越好,峰高 <mark>越高</mark>	越好。

电容的选择? ——更准确的计数率 ——"分辨时间"

三、分辨时间的拟合

分辨时间:一个脉冲出现后,在一定时间内出现的脉冲无法被定标器计数,而 在这段时间后出现的脉冲**能被定标器记录下来**,这就是分辨时间。

在一次计数后的时间内进入的辐射粒子就会被漏记,若单位时间内记了m次, 每次计数后有一段时间t要产生漏记,单位时间内共有mt时间被漏计。如果没有漏 记单位时间内的计数为n次,则在mt时间内应该记nmt次,恰好等于漏记数n-m。

$$n - m = nmt$$

$$m = \frac{n}{1 + nt}$$

$$n = kI + b$$

$$m = \frac{(kI + b)}{1 + (kI + b)t}$$

$$x = nmt$$

$$m = \frac{(kI + b)}{1 + (kI + b)t}$$

$$x = nmt$$

$$x = mmt$$

三、分辨时间的拟合

$$m = \frac{(kI+b)}{1+(kI+b)t}$$

实际计数率m——读数。由于计数波动较大,采用连续30s计数取平均值。

用k, b, t的**三个待定参数**进行自定义函数拟合, 拟合计数率m和X光管电流I。

实验条件:
采样电阻R=5KΩ
计数管电极电压HV=493V
X光管电压U=16.0kV
X光管电流I=0.15mA
积分电路INV-I档

			Value	Standard Error
		k	1499.03268	53.59976
1	E	b	21.16631	8.03012
1		t	4.31019E-7	3.21702E-5

三参数拟合结果——过拟合?准确性?

微分档位	分辨时间(us)	<u>分辨时间不确定度(us)</u>
MAX	231.161	28.6862
Ι	46.4018	24.0337
560pF	159.465	27.4868
1000pF	0.431019	32.1702
2200pF	15.8779	34.0017
4700pF	65.1229	14.5588
47000pF	55.6201	19.7073

待定参数过多容易出现**过拟合**, 拟合得到的参数不确定度较大,准 确性也不能保证。 三、分辨时间的拟合

$$m = \frac{(kI+b)}{1+(kI+b)t}$$

分析公式的物理意义,先确定参数拟合 中的其中一个参数b,减少待定的参数。

时间的影响。可以通过线性拟合得到参数b,减少后续待定的参数。

INT-I、DIV-MAX

INT-I、DIV-I

图11: 不同档位计数率m关于X光管电流I拟合图

图11: 不同档位计数率m关于X光管电流I拟合图

积分档位	微分档位	<i>R</i> ²
INT-I	DIV-MAX	0.99951
INT-I	DIV-I	0.99973
INT-I	DIV-C-560pF	0.99966
INT-I	DIV-C-1000pF	0.99948
INT-I	DIV-C-2200pF	0.99944
INT-I	DIV-C-4700pF	0.99998
INT-I	DIV-C-47000pF	0.99983

微分档位	分辨时间(us)	<u>分辨时间不确定度(us)</u>
MAX	201.308	14.810
I	62.732	11.249
560pF	149.319	12.880
1000pF	43.530	15.778
2200pF	54.505	16.240
4700pF	56.488	6.900
47000pF	68.380	8.969

注: MAX档为未经微分电路处理的档位, I档对应的电容约为10000pF。

有无微分——分辨时间差别? 560pF——微分电路电容不宜太小(处理后脉冲强度不够)。 在实验条件下,比较合适的电容是uF量级,此时分辨时间较小。 实验参数: 采样电阻R=5KΩ 计数管电极电压HV=493V X光管电压U=16.0kV X光管电流I=0.15mA 积分电路INV-I档

图5:实验仪器控制面板

因此我们可以通过设计**微分电路**,选择**合适的** 电容,以此减小G-M计数器的分辨时间。除此以外, 需要选择合适的计数管电极电压(HV)(附录1)、 选择合适的**采样电阻**(附录2),添加**放大电路** (附录3)、**积分电路**(附录4)等等方式,使最后 计数器得到的脉冲信号适合计数。 而当下好的G-M计数管,能够有较高的计数,也 就是通过各种方式,产生并处理脉冲信号,提高计

数的准确性。

第二部分.数据统计部分

王章晶17307110149

低计数的统计规律

 $\chi^2 = 9.7066$ V=11 取 α =0.1 $\chi^2_{1-\alpha} = 17.275 > \chi^2$ 可以认为符合泊松分布

低计数下呈现泊松分布

所有数据均在微分1档,积分1档下完成

高计数的统计规律

 $\chi^2 = 9.3665$ V=8 取 α =0.1 $\chi^2_{1-\alpha} = 13.362 \times \chi^2$ 可以认为符合正态分布

高计数接近正态分布 (横坐标20个点为1组)

数据统计的发现

	А	В	С	D	E	F	G	H		J	K	L	М	N	0	Р	Q	R	S
1	865	312	1056	1944	852	2964	1116	108	1032	60	2976	48	60	348	1464	2340	720	96	504
2	873	948	60	960	84	1608	1248	972	2748	708	1644	2124	984	1692	132	636	840	468	6612
3	855	108	2040	48	684	492	4332	84	1896	660	84	384	2196	216	7176	108	108	336	1704
4	811	1620	588	48	2256	6312	2400	900	1080	1740	192	48	1140	1032	912	912	1272	1956	324
5	860	564	588	48	1500	6228	108	4176	1536	96	684	1404	1344	120	1320	3768	588	1644	252
6	929	672	180	444	984	2544	1704	348	600	2148	204	528	240	96	84	48	1176	1716	516
7	930	348	120	2088	108	228	1224	516	1164	228	1020	1440	48	120	504	1440	1404	3948	1824
8	791	600	204	3444	912	864	1380	132	2280	228	948	612	168	900	1860	2724	48	192	252
9	802	6072	2064	576	1236	2208	2928	252	384	276	360	192	2652	240	4824	180	2604	60	60
10	888	96	336	576	120	1020	168	72	252	2280	5820	3096	2112	3420	684	1836	5460	624	840
11	792	2196	120	240	804	4860	2328	96	2856	2376	516	192	84	2712	2496	4236	2556	60	792
12	902	2400	840	2232	1296	396	276	228	300	588	468	1272	408	612	960	120	60	552	1812
13	863	804	1212	528	324	2892	1788	1128	288	4860	132	936	1896	60	84	408	84	2064	672
14	850	1320	1092	1236	240	504	84	36	2220	2592	60	2112	108	1272	72	24	828	1428	264
15	818	468	1044	2004	636	2292	696	84	3180	312	96	9264	756	144	2628	60	300	48	912
16	861	192	3660	720	444	480	348	144	5304	360	960	2976	912	2016	5136	48	1356	576	1320
17	842	396	156	1008	120	4176	84	1008	96	1860	1320	408	1140	1272	2328	60	408	48	2772
18	903	672	120	912	60	1452	492	120	3420	1224	84	384	48	72	60	2340	60	828	72
19	830	1212	132	4224	1176	60	1308	48	288	1344	252	120	396	3024	192	1500	360	1356	72
20	760	552	1956	60	288	1200	636	108	1248	1332	192	132	2472	2124	720	36	1500	3192	3072
21	818	1296	3636	144	3768	420	540	2292	48	132	60	276	1368	228	372	2436	300	4104	2772
22	869	1464	168	96	228	2784	168	3600	444	3204	156	672	1248	852	2604	36	396	384	2268
23	905	756	1248	1272	408	1260	1308	1872	960	1476	180	936	48	204	168	540	120	2604	84
24	798	264	1632	228	2856	2520	1200	3000	1344	3696	468	1056	1308	5952	1884	1668	96	996	1668
25	715	6096	2352	8964	132	1620	3444	1092	1104	936	3768	3480	156	108	888	120	804	480	4164
26	861	2928	564	5496	72	600	828	1824	2724	168	1728	468	60	684	564	36	96	96	756
27	898	972	552	384	1320	60	60	252	108	72	2964	2700	2544	624	3636	228	132	396	96
28	851	1020	4152	696	2016	204	948	216	1860	528	96	2844	504	912	3132	492	432	84	2580
29	832	2064	432	144	6636	132	2376	1644	324	2220	1032	4476	1308	2724	1512	444	204	192	516
30	885	4368	780	192	1440	1620	732	924	420	72	1968	3300	816	60	60	636	1068	1188	660
31	806	2652	216	1272	1320	108	792	192	156	96	1176	228	1332	168	2988	180	1800	2520	2124
32	853	1416	384	72	864	156	2532	96	516	48	4764	456	120	48	1164	72	1020	828	132
33	821	1512	1128	612	912	768	72	276	528	324	1908	468	2796	108	1452	60	1560	2640	1368

第一行为计 数数 其余为间隔 时间,均为 12的倍数

系统软件编 写的问题? 所有数据均 向12整数倍 取整?

数据究竟如何分布?

- •猜测:
 - 12微秒为一单位时间,平均每 单时间位产生信号的概率 p=1.0273%
 - 产生一个信号后, 第n个单位时间后产生第二个信号的概率为:
 - E (n) = p × (1 p) ⁿ⁻¹

E(n)概率密度

有趣的均值

- •均值为95.8667,意味着平均间隔时间为95.8667×12us=1150.40us
- •53秒内记录了45373个数据
- 53s÷45373=1168.10us
- •为什么不相等?
- •1.系统误差,分辨时间的存在(最大原因)
- •2.如记录时间为每一秒中每两个信号之间的时间间隔,可能每一 秒最后信号到该秒结束的时间没有记录,直接进入下秒的数据 (53s÷(45373+53)=1166.73us,该原因影响不大)
- •3.存在两个相邻信号联合, 仪器对信号峰值位置判断错误 (可能 性较小, 因为记录的是微分电路处理后的信号)

时间间隔分布规律

- 两个差异较大的概率密度直接作差必有大量 负值
- 所以我们假设存在两个概率分布有下面公式
- $F=F1 \times p+F2 \times (1-p)$
- 保证概率密度积分为1
- 在n大于15之后,几乎为指数分布,对15之后 的F进行拟合
- 1 p = 0.7816
- p = 0.2184

额外的概率密度是什么?

最前面一小节负值很可能是由于死时间及分辨时 间影响,并没有所有数据如实记录

关键问题在于,这个高耸的峰对应什么概率? 为什么这里的概率密度极高?

数据中,最小记录为两单位,意味着两个信号之间的最小信号为24us,这显然小于死时间,故猜测该段概率密度并非为实际射线产生信号,而是GM计数管中猝灭不彻底,使得一个粒子可以连续引发放点,产生信号。

但是在示波器上并没有发现该情况

示波器信号显示

如此高概率的信号在示波器上完全没 有显示出来(该图中最小时间间隔约 80us)

N=2

N=10

随着n逐渐变大,图形由指数分布变为泊松分布最后趋向于正态分布

附录1:

改变计数管电极上的电压(HV)——"坪特性曲线"

附录2:

采样电阻对脉冲的影响

附录**3:**

添加放大电路对脉冲的影响

附录4:

添加积分电路对脉冲的影响

附录5:

"死时间"

附录6:

微分电路和积分电路

附录1: 改变计数管电极上的电压(HV) ——"坪特性"曲线

电压较低时,放电只在计数管局部 地区发生,产生的负脉冲较小。电压低 于Vo时,由于脉冲幅度过小,无法触发 定标器计数,因此计数率为零。在V₀到 V₁区间内,一小部分产生原始粒子对数 较多的粒子,引起负脉冲较大,能触发, 但概率较小。随着电压超过V₁,进入盖 革区,此时增加脉冲幅度而不增加脉冲 个数,所以计数率保持不变,称为坪区。 电压超过V₁,进入连续放电区。

附录2:采样电阻对脉冲的影响:CH1:G-M管输出信号;CH2:经过微分积分处理过的电路

$R=1K\Omega$

R=5KΩ

图II: 采样电阻对脉冲的影响 R=100KΩ

附录3: 放大电路对脉冲的影响 CH1:G-M管输出信号; CH2:经过放大处理过的电路

附录4:积分电路对脉冲的影响——去除噪声、C越大,峰值越小

其中, R=5KΩ,U=16kV,I=0.15mA

图IV: 积分电路对脉冲的影响

实验参数:
采样电阻R=5KΩ
计数管电极电压HV=425V
X光管电压U=16.0kV
X光管电流I=0.60mA
积分电路INV-I档

图V: "死时间"的示波器测量

死时间:上一次放电后,阳极附近电场刚刚恢复到可以放电的时间。

附录6: 微分电路和积分电路

图VI: 微分运算电路

 $i_C = i_R = C rac{dv_I}{dt}$ $v_O = -RC rac{dv_I}{dt}$

 $= -rac{1}{RC}\int_{t_1}^{t_2} v_I dt + v_O(t_1)$ v_O

图VII: 积分运算电路