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Abstract 

  The periodicity of the Franck-Hertz curve is reproduced under our model. The new feature 
which was put forward by G. Rapior at Ref.2 is reconsidered with the consideration of mean free 
path and surplus energy. We haven’t made the assumption of sequential excitation energy levels, 
therefore we solved the contradiction between the model of Ref.2 and experiment results. We 
believe the descriptions here the real process in the Franck-Hertz tube. 
 
I. INTRODUCTION 

Once the Franck-Hertz experiment was one of the key demonstrations of the quantum 
behaviour of atoms and provided a nonoptical demonstration of the existence of stationary energy 
levels in atom which was first illuminated by Bohr. For this, Franck and Hertz received the Nobel 
Prize in 1925.  

The proof comes from the Franck-Hertz curve, which presents curtain periodicity. It is general 
assumed that the periodicity of maxima or minima should be strict and stands for the lowest 
excitation energy of atoms (63P1 state). It is also widely used to fix the lowest excitation energy by 
calculating the mean value of the spacings between maxima or minima through Franck-Hertz 
experiment, with no regard to the visible change of the spacing, which usually shows a continuous 
increase.  

If the spacings are not fixed, how can we claim it to be an evidence for stationary energy levels? 
Or what exactly happens in the Franck-Hertz tube can result in the changing of the spacing? It is 
urgently needed to explain the seemingly contradiction between the stationary energy and the 
changing periodicity. By taking into consideration the influence of the mean free path, authors of 
Ref.2 supplied us a model, claiming that they have solved the problem with that model. But there 
is an additional assumption in their model which cannot be satisfied in the experiment. 

In this article, we provide an ideal model that can reproduce the strict periodicity. Then, by 
introducing the influence of the mean free path and the surplus energy, we describe the real 
process in the Franck-Hertz tube and explain the increase of spacing.  
 
II. APPARATUS AND GENERAL RESULTS 

The apparatus we used is just the one of used in Ref.3. Electrons releasing from the heater F 
will be extracted by VG1k, and enter into the accelerating and collision area. If the electron’s 
energy is high enough, it will overcome the retarding voltage VG2p and contribute to the anode 
current in P. The mercury tube is a Fudan Franck-Hertz tube which is cylindrically shaped.  



 
Fig. 1. Schematic diagram of the Franck-Hertz experiment. 

Fig. 2. Sketch of a Fudan Franck-Hertz tube. 

 

   The mercury atom states depend on two outside electrons. Ground state and some important 
low states are as follows. In the Franck-Hertz experiment , the most important ones are the lowest 
three states 63P0,1,2. In many experiment descriptions, the 63P1 excitation determines the result, as 
the other two are metastable states, which has a longevity about 10-5 s, that is thousands times 
larger than the longevity of 63P1. But this is not enough to remove their influence in Franck-Hertz 
experiment. If the electrons received in one second are comparable with the quantity of Hg gas 
atoms in the tube, then, anytime there is at most one atom in 105 that may stay in these states. As a 
result, all the three excitation states should be taken into consideration in order to understand the 
real process of the experiment.  

Fig 4 is the typical Franck-Hertz curve at the temperature T=180℃. The periodicity of the 
maxima or minima is clearly showed. It also shows an increase of the spacing from about 4.6 volt 
to 5.1 volt. The mean spacing from the first maximum to the last one is (87.9 V)/18=4.88 V.  

 
Fig. 3. Lowest energy levels in mercury. 

Fig. 4. Typical Franck-Hertz curve at 180℃. The precision of the Accelerating voltage is 0.1 V. 

 
III. AN IDEAL MORDEL AND THE PERIODICITY 

To reproduce the periodicity, we assume that there is only one excitation level effecting in this 
experiment, and inelastic collision happens as soon as the electron gains corresponding energy, 
and at the same time, its kinetic energy reduces to zero.  



Further more, we take into consideration the dispersion of electron energy, which always 
happens in physical processes. That is to say, the electrons will have different kinetic energy when 
they come into the accelerating and collision area. In the energy representation, the electrons will 
form a distribution curve. For simplicity, we suppose that the distribution curve is across all the 
energy space from zero to the excitation energy. Notice that the distribution curve stands for the 
energy distribution of electrons at a fixed distance between G1 and G2, for example at G1 or G2. 

 
Fig. 5. The distribution curve in the energy presentation. 

 

  In this aspect, as the moving forward of the electrons from G1 to G2 under a fixed VG1G2, the 
distribution curve at the distance where these electrons located will move forward by relevant 
distance in energy representation. And for former supposition, the over part of the energy 
distribution curve will add in from the left due to the immediate inelastic collisions. So electrons 
transmitting through the tube under a certain accelerating voltage will experience relevant number 
of inelastic collision cycle before the final arrival at G2.  

 

Fig. 6. The change of cycles according to VG1G2. 



 

Fig. 7. The distribution curve at different distance between G1 & G2. 

 
If we set the retarding voltage VG2p at one energy value (the black line) of this range, as is 

always done in Franck-Hertz experiment, electrons arriving G2 with lower energy will not 
contribute to the anode current in P. The effective ones are the electrons with energy higher than 
eVG2p. So it is easy to understand that the anode current will be determined by the integral of 
electron energy distribution curve above the retarding voltage.  

 

Fig. 8. The integral of electrons above eVG2P. 

 
Fig. 9. The distribution curve at G2 changes according to the increase of Accelerating voltage. 



 
As the accelerating voltage grows, which is similar to the movement from G1 to G2 under a 

fixed VG1G2 in this ideal model, the distribution curve of G2 will move forward at the energy 
presentation. As a result, the integral of distribution curve above the retarding voltage will change 
from the smallest to the biggest, then smallest, and the periodicity is equal to the energy range. 
That is why this experiment could be used to test the first excitation energy, provided that there is 
only one excitation effecting. 

 
Fig. 10. The ideal periodicity based on this model. 

 

  Consider of the different directional velocities, the electrons releasing at the same time but with 
different energy will not always move equal distance forward in the same time. So the distribution 
curve will have some change when moving forward. But it will keep relative stabilization under 
this ideal model for the continuous process. 
 
III. THE INCREASE OF SPACING BETWEEN MAXIMA OR MINIMA 
  The real process in a Franck-Hertz is much more complicated than the model above. There are 
more than one excitation levels, and inelastic collision will not happen soon after the electron 
gains enough energy. These should be taken into consideration to explain the experiment record.  
  Let’s analyze the record curve first. When the accelerating voltage is fixed on 3th maximum, 
electrons will have to experience 3 inelastic collision cycles (energy cycle) before the arrival to G2, 
and 19th maximum 19 cycles. If nth maximum appears when the accelerating voltage is U0, then 
the equal energy cycle will be (U0-δ)/n, where δ is a little adjustment varies from different VF and 
VG1K. In this article, the energy cycle is replaced by the average of all spacings before the relevant 
maximum for simplicity. Therefore, the energy cycle is close to 4.88eV when the accelerating 
voltage is 91.9V (the 19th maximum) for the record curve of Figure 4. 



 
Fig. 11. The energy cycle as a function of the number of maximum at temperature T=180℃. 

 
Since the energy cycle is the cell process, the increase of spacing between maxima or minima 

should be solved by analysis of the energy cycle. To begin with our discussion, we shall introduce 
the concept of mean free path first. Here, the mean free path stands for the average directional 
distance that the electron moves before an inelastic collision takes place after the excitation energy 
has reached. The mean free path mainly depend on the inelastic collision cross section which 
differs from different excitation levels. The cross section depends on pressure of mercury, equal to 
say the temperature in this case, and varies with the energy of electrons. We take the total inelastic 
collision section of 63P0,1,2 to determine the mean free path, and regard it to be independent of 
electrons’ energy since it varies not much around the energy of 5.0eV, which is the effecting 
energy scope of this experiment. Although the mean free path keeps the same if the temperature 
remains, ‘mean free energy’ grows with the increase of accelerating voltage. Here the ‘mean free 
energy’ is the mean free path multiplies the electric field intensity which stands for energy electron 
gains in one mean free path.  

So it is possible that the mean free energy causes the increase of energy cycle. Here we shall 
introduce the work of G. Rapior (Ref.2). In that paper, authors also introduced mean free path to 
explain the increase of spacing. But they add an additional presupposition which says as soon as 
the inelastic collision happens, no matter what energy they have brought, they will lose almost all 
of them, assuming that there are many higher energy excitation levels ensuring this. From their 
model, it can be deduced that  
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So the mean free path calculated from (1) is about 0.011mm at the temperature T=180℃ 

according to Figure 11. And the inelastic collision cross section defined as Bk T pσ λ=  will be 

4.8×10-19 m2. This is much bigger than the excitation cross sections of 63P0,1,2 given in Ref.4. 
Their model also violates the following experimental phenomenon. Figure 12 shows the records 

with retarding voltage at 4.5V, 5.0V, 5.5V, and 6.0V separately, keeping other conditions the same. 



If their model is true, then there will be little electrons which have energy higher than (4.67+2λΕ) 
eV, equal to 5.09 eV at 19th maximum. This violates the record curves.  

 
Fig. 12. Records with retarding voltage at 4.5V, 5.0V, 5.5V, and 6.0V separately. The temperature T=180℃. 

 

In fact, according to Figure 12, the mean free energy will be close to (or above) 5.5eV at 19th 
maximum, provided that the mean free energy is close to the place (of the energy) which separates 
the electrons (electrons with energy above 4.67eV) into two equal parts (see the heights of peaks 
at about 92V). To estimate the real mean free path, we choose the mean free energy at 19th 
maximum to be 1.0eV. So the mean free path reads 0.045mm, the cross section of inelastic 
collision is 9.4×10-20 m2. This agrees with the total cross section for the electron excitation of 
mercury states 63P0,1,2 given in Ref.4. 

The violation of their model and experiment lays on the additional presupposition that as soon 
as the inelastic collision happens, no matter what energy they have, they will lose almost all of 
them. In fact, for the range of 4.5eV to 6.0eV, there are not many energy levels effecting. So it is 
unjustified to take the excitation energy levels after 4.67eV to be sequential. 
  In our concern, as has stated before, the three levels 63P0,1,2 determining the experiment together. 
And for the change of energy, they have only three possibilities, 4.67eV, 4.89eV, or 5.46eV. That is 
to say, an electron with 4.80eV will lose 4.67eV, an electron with 5.60eV will lose 4.67eV, or 
4.89eV, or 5.46eV, but not all the energy after an inelastic collision. As a result, not all of the 
electrons will reduce back to near zero energy state. Indeed, only a few of them will, when the 
mean free energy is large. In other word, many electrons don’t begin to accelerate with zero 
energy. Because of this, the mean inelastic collision energy (that is the lowest excitation energy 
plus the mean free energy) cannot stand for an energy cycle. 



 
Fig. 13. Surplus energy after inelastic collision. 

 

  So what on earth causes the change of spacing? Let’s describe the process from the view of 
mean free path, without the additional presupposition of Ref.2. At the beginning, accelerating 
voltage is small that few electrons have excrescent energy larger than 0.22eV when inelastic 
collision takes place, which is the gap of 4.67eV and 4.89eV. At that time, 4.67eV excitation is 
dominating and consequentially the energy cycle is close to 4.67eV. As the accelerating voltage 
grows, the effect of 4.89eV excitation grows. When some electrons’ plus energy reaches to 0.79eV, 
the 5.46eV excitation enters in. With the increase of accelerating voltage, more and more electrons 
will experience relative higher excitation. And the proportions of the three excitations determine 
the energy cycle. For simplicity, we can write the energy cycle as,  

4.67 4.89 5.46CU α β γ= + +                         (2) 

α,β,γ are the percentages of relevant excitations respectively. Notice that, consider of different 
cross sections, α, β, γ could not be found so easily. 

 
Fig. 14. The energy cycle as a function of the number of maximum at different temperatures. 



 

  The above expression is valid with definite temperature scope, for example, higher than 150℃, 
but lower than 180℃. For lower temperature, the mean free path will be longer, which will bring 
the influence of higher excitations (6.70eV, etc.; see Ref.7). For higher temperature, the starting 
spacings always read to be around 4eV. This may be coursed by other effects, for example the 
unobserved 6s6p2 4P1/2,3/2,5/2 ion resonances which were predicted by Heddle in Ref.8. Discussion 
on this subject is beyond this article. 
 
Ⅳ. SUMMARY 
  We established an ideal model that reproduces the periodicity of the maxima or minima in the 
Franck-Hertz curve. To explain the increase of the spacings between maxima or minima, we 
discussed the mean free path and the surplus energy after inelastic collision. The influence of the 
mean free path is used to introduce the influence of higher excitations, and the surplus energy is 
the key to solve the seeming contradiction between the observed mean inelastic collision energy 
and the mean energy that electrons will gain during one inelastic collision cycle. We consider it to 
be the real process happens in the Franck-Hertz tube.  
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