钠原子光谱与其实验数据处理

Abstract: Introduce two ways to deal with the dates of Na atom spectrum experiment. One is Rydberg Form method and the other is Excel 'Goal Seek' method.

Key words: Na atom spectrum; Rydberg form; Excel 'Goal Seek';

一、基本原理与概念:

1、碱金属原子结构:

我们知道,碱金属原子的最外面的壳层上只有一个容易电离的电子,把这个电子成为价电子。而内壳层则都是满壳层,满壳层上的电子不易电离而绕原子核运动,这些电子与原子核形成一个比较坚实的集团,成为原子实。因此,可以提出这样的碱金属原子模型,即一个价电子围绕原子实运动,原子实的净电荷 Z 是 1。因此,碱金属是一种类氢原子,但它有别于氢原子,它的原子实并不密实。原子实是由 Z 个带正电荷的质子和 Z-1 个带负电荷的电子所组成,在价电子场的作用下,正、负电荷的中心不再重合,原子实被极化,这样,价电子不仅受到库电场的作用,还将受到偶极距的作用,即价电子的势能成为

$$V = -\frac{e^2}{r} - C\frac{e^2}{r^2}$$

式中 C 是一个与原子实极化程度有关的一个常数。由于价电子的势能增加了极化能这一项,类氢原子的能级将为

$$E_n = -hcR_H \frac{1}{n^{1/2}}$$

式中 n'成为有效量子数。同时,价电子的轨道将能在原子实中贯穿,电子进入原子实内时,所受的作用力比在外面时的大,所以贯穿轨道对应的能量应比同一主量子数 n 的非贯穿轨道的能量要低一些。显然,只有在主量子数 n 不大时,上述两种效应才显著。

因此上式中的 $n'=n+\Delta$,n 为正整数, Δ 称为量子亏损,对应于 I=0,1,2,3 时的 Δ 值分别 用 Δ s,Δ p,Δ d,Δ f 来表示。

2、钠原子光谱:

我们一般可以观察到钠原子光谱中的四个谱线系:

主线系: 相应于 np 向 3s 的跃迁。n=3,4,5,…。在可见光仅一条谱线,波长约为 589.3 nm, 其余均在紫外区。特点为谱线光强很大。

锐线系:相应于 ns 向 3p 的跃迁。n =4,5,6,…。第一条谱线波长约为 818.9 nm,其余均在可见光区域。特点为谱线强度较弱,但边缘比较清晰。

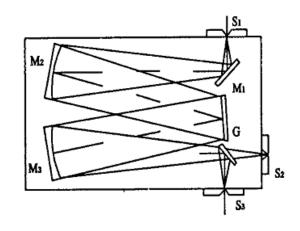
漫线系:相应于 nd 向 3p 的跃迁。n =3,4,5,…。第一条谱线波长约为 1139.3 nm,其余均在可见光区域。特点为谱线较粗且边缘模糊。

基线系:相应于 nf 向 3d 的跃迁。n=4,5,6,…。所有谱线均在红外区。特点为谱线强度很弱。

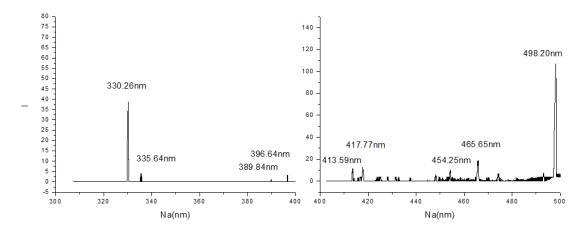
各谱线系的波数公式为:

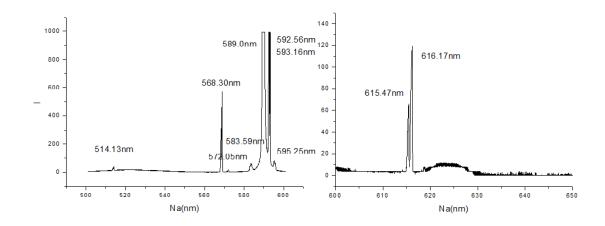
主线系:
$$n^2S \rightarrow 3^2P$$
 跃迁, $\sigma = \frac{R}{(3-\Delta s)} - \frac{R}{(n-\Delta p)}, n \ge 3$

锐线系:
$$n^2P \rightarrow 3^2S$$
 跃迁, $\sigma = \frac{R}{(3-\Delta p)} - \frac{R}{(n-\Delta s)}, n \ge 4$

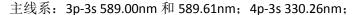

漫线系:
$$n^2D \rightarrow 3^2P$$
 跃迁, $\sigma = \frac{R}{(3-\Delta p)} - \frac{R}{(n-\Delta d)}, n \ge 3$

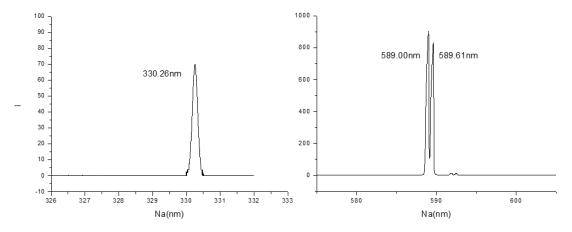
基线系:
$$n^2 F \rightarrow 3^2 D$$
 跃迁, $\sigma = \frac{R}{(3-\Delta d)} - \frac{R}{(n-\Delta f)}, n \ge 4$

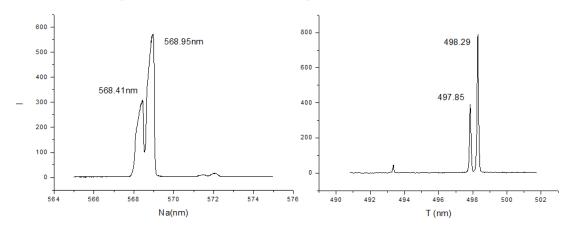

二、实验和数据记录:


1、实验仪器:

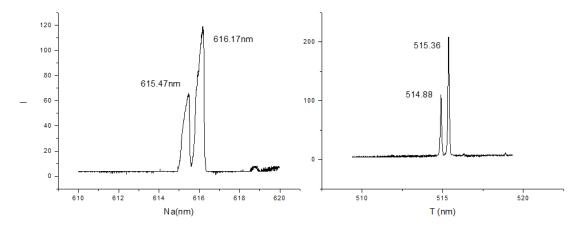
44W 型平面光栅光谱仪采用水平非对称光学系统,光源发出的光束经过透镜 T聚光后,均匀地照明入射狭缝 S1,由于 S1 位于凹面反射镜 M2 的焦平面上,因此光束经过 M2 反射后成为一束平行光,照射到平面光栅 G。凹面反射镜 M3 将衍射光汇聚到它的焦平面(出射缝 S2/S3)上。




2、数据记录和钠原子光谱图:



利用在原子与分子数据库中(Http://www.camdb.ac.cn/)的 300-650nm 的钠光谱与实验 测得的光谱进行对照,并确定六组主要的谱线系:



漫线系: 4d-3p 568.41nm 和 568.95nm; 5d-3p 497.85nm 和 498.29nm;

锐线系: 5s-3p 615.47nm 和 616.17nm; 6s-3p 514.88nm 和 515.36nm;

三、数据处理:

由于个谱线都有一个固定项,因此,同一谱线系中的谱线的波数差中没有这一固定项。 例如,在锐线系中的两条相邻谱线系的波数差为

$$\tilde{v}_1 - \tilde{v}_2 = R_{\infty} \left[\frac{1}{(n + \Delta s)^2} - \frac{1}{(n+1+\Delta s)^2} \right]$$

$$\tilde{v}_1 - \tilde{v}_2 = R_{\infty} \left[\frac{1}{n'^2} - \frac{1}{(n'+1)^2} \right]$$

式中 n'=n+ Δ s。根据锐线系中的两根相邻谱线就可以求得 Δ s 的值。 为计算方便,令 n'=m+a,其中 m 为整数,a 为正小数,里德伯常数 R=109737.31cm⁻¹。

1、里德伯表插值法:

以锐线系: 5s-3p 615.47nm 和 616.17nm (平均 615.82nm); 6s-3p 514.88nm 和 515.36nm (平均 515.12nm)为例。

$$\tilde{v}_1 = \frac{1}{T} = \frac{1}{615.82nm} = 16238.51/cm$$

$$\tilde{v}_2 = \frac{1}{T_1} = \frac{1}{515.12nm} = 19412.95 / cm$$

$$|\tilde{v}_1 - \tilde{v}_2| = 3174.44 / cm$$

查里德伯表可知,这个值介乎于 3138.65nm 和 3185.27nm,即 n'介乎于 3.64 与 3.66 之间。利用线性插值法可知:

$$a_{12} = 0.64 - \frac{0.64 - 0.62}{3185.27 - 3138.65} * (3185.27 - 3174.44) = 0.635$$

所以(m+a) = n' = 3.635;

因此 $n_1' = 3.635$ $n_2' = 4.635$ 由于 $n-\Delta_1 = m+a$,令 n=5,得 $\Delta_1 = 1.365$ 即量子缺 $\Delta_1 = 1.365$ 。

2、单变量求解法(Excel 软件处理):

以主线系为例,欲求解(3S-nP)固定项方程:
$$A_{3s} = \tilde{v}_1 + \frac{R}{(3-\Delta p)^2} = \tilde{v}_2 + \frac{R}{(4-\Delta p)^2}$$
可

以使用 Excel 软件中的单变量求解功能。

"单变量解"是一组命令的组成部分,这些命令有时也称作假设分析工具。如果已知单个公式的预期结果,而用于确定此公式结果的输入值未知,则可使用"单变量求解"功能,通过单击"工具"菜单上的"单变量求解"即可使用"单变量求解"功能。当进行单变量求解时,Microsoft Excel 会不断改变特定单元格中的值,直到依赖于此单元格的公式返回所需的结果为止。

启动并进入 Excel 软件,设计并输入各表头项目,在 C3: D8 区域依次输入实验测得的各谱线(双线)波长(nm);在 E3: F8 区域分别计算出各谱线的平均波长和波数(1/cm),在 I3: I8 区域输入各谱线对应的主量子数 n;在 H3 单元格输入量子缺 Δ p 数 "1"(初值),在 H4 单元格输入 "=H3",在 H5 单元格输入量子缺 Δ b 数 "1"(初值),在 H6 单元格输入 "=H5",在 H7 单元格输入量子缺 Δ 数 "1"(初值),在 H8 单元格输入 "=H7";在 G3 单元格输入计算式"= $F3+109737.31/(I3-H3)^2$ ",确认后得到固定项 A_{35} 的值(初值),

复制此式至 G4: G8 区域,得到各固定项 A_{3S} 、 A_{3P} 的值(初值);在 J4 单元格输入"=ABS(G3-G4)",得到主线系两固定项间差的绝对值之和(初值),在 J6 单元格输入"=ABS(G5-G6)",得到漫线系两固定项间差的绝对值(初值),在 J8 单元格输入"=ABS(G7-G8)",得到锐线系两固定项间差的绝对值(初值),用科学记数表示。

接下来确定各量子缺和各固定项,选定 J4 单元格,单击工具菜单,在其下拉菜单中单击"单变量求解",在"单变量求解"对话框中,目标单元格填"J4",目标值填"0",可变单元格填"\$H\$3",然后单击"确定",即得主线系对应的量子缺 Δ_P ,同理可确定漫线系、锐线系对应的量子缺 Δ_P ,结果见下表:

	A	В	С	D	E	F	G	Н	I	J
1				Na原	子光谱	数据处理	2009-12-9			
2			波长1(nm)	波长2 (nm)	平均波长 (nm)	波数 (1/cm)	固定项(1/cm)	量子缺损△1	n	差值
3	主线系	3p-3s	589. 00	589. 61	589. 31	16969. 14	41628. 27	0.890	3	
4	土线尔	4p-3s	330. 26	330. 26	330. 26	30279. 17	41628. 27	0.890	4	4. 41E-05
5	漫线系	4d-3p	568. 41	568. 95	568. 68	17584. 58	24491. 94	0. 014	4	
6	受线尔	5d-3p	497. 85	498. 29	498. 07	20077.50	24491.94	0. 014	5	4. 00E-07
7	锐线系	5s-3p	615. 47	616. 17	615.82	16238. 51	24525. 48	1. 361	5	
8	坑线杀	6s-3p	514.88	515. 36	515. 12	19412. 95	24512. 25	1. 361	6	1. 32E+01

一些说明: 单变量求解即是求 J 列 方程
$$(\tilde{v}_1 + \frac{R}{(3-\Delta p)^2}) - (\tilde{v}_2 + \frac{R}{(4-\Delta p)^2}) = 0$$
 时自变

量 H 列(即 Δ p)的值,而通过 excel 选项-数据中设置误差宽容度等调整计算的精度。

四、结论:

从上面的计算过程来看, 用里德堡表插值法进行计算量子缺比较繁琐,用 Excel 软件 进行数值计算过程简单。从计算的结果来看,Excel 的运算精度要优于里德堡插值表法 。这是显然的, 因为里德堡表法里列出的波数只保留到小数点后第二位, 而且有效量子数的划分也是以 0.02 为单位,还要用到线性插值法进行计算,这就限制了运算精度的提高。

参考文献:

- 1、戴道宣, 戴乐山,《近代物理实验》, 高等教育出版社, 2006年7月, 第二次印刷;
- 2、高铁军,朱俊孔,《近代物理实验》,山东大学出版社,2000年,第一版;
- 3、黄振广,杨旭,郭玉刚,《钠原子光谱数据处理方法的研究》,《国际物理教育通讯》, 第 40 期,2007 年 11 月;
- 4、郭金水, 曹慧珍, 《利用 Excel 快捷处理钠原子光谱实验数据》, 《赣南师范学院学报》, 第 3 期, 2003 年;
- 5、刘小平,赖秀娟,张正贺,徐荣仔,《用 WDMI 型光栅单色仪研究钠原子光谱》,《湛江师范学院学报》,第 28 卷,第 3 期,2007 年;

附: 里德伯表

0.98	910, 23	191, 55	1 101. 78	259.04	1 360, 82	362, 43	1 723, 25	529, 14	2 252, 39	816, 29	3 000, 00	1 336, 14	4 424, 82	79.206.2	6927.69	5 429, 50	12 357, 25	15 634, 10	991.	0.98
0.96	913, 55	192, 66	1 106, 21	260, 69	1 366. 90	365. 02	1 731. 92		2 265. 35	823, 96		1 371. 27	4 460, 58	2 537. 26			12 524. 80	16 040. 72	28 565, 52	0.96
0.94	916. 90	193, 76	1 110, 66	262.37	1 373, 03	367, 63	1740.66	537.77	2 278, 43	831.72	3 110. 15	1 386. 62	4 496, 77	2 572, 29	7 069, 06	5 626, 73	12 695, 79	16 461, 75	29 157, 54	0, 94
0.92	920, 26	194. 88	1 115. 14	264. 05	1 379, 19	370, 27	1749.46	542. 16	2 291. 62	839.58	3 131, 20	1 402, 20	4 533, 40	2 607. 98	7 141.38	5 728. 92	870.	897.	29 768. 15	0.92
0.90	923.64	196.01	1 119, 65	265.75	1 385, 40	372.93	1 758. 33	546, 59	2 304, 92	847.54	3 152, 46	1 418. 02	4 570, 48	2 644, 33	7 214. 81	5 833, 62	13 048, 43	17 349. 72	30 398. 15	0.90
0.88	927.04	197, 15	1 124, 19	267, 45	1 391, 64	375. 63	1 767. 27	551.07	2 318, 34	855. 61	3 173. 95	1 434. 07	4 608, 02	2 681. 36	7 289, 38	5 940, 91	230.	818.	048.	0, 88
0.86	930. 45	198, 31	1 128. 76	269, 17	1 397. 93	378. 34	1776.27	555.61	2 331. 88	863, 77	3 195, 65	1 450. 38	4 646, 03	2 719, 09	7 365, 12	050.	415.	303.	719.	0.86
0.84	933, 89	199, 46	1 133. 35	d	1 404. 27	381.08	1 785. 35	560. 19	345.	872.03	3 217. 57	1 446. 93	4 684, 50	2757.54	7 442 04	163.	605.	807.	412.	0.84
0. 82	937. 35	200, 62	I 137. 97	272.67	1 410. 64	383, 85	1794, 49	564.82	359.	880, 42	239.	1 483, 73	4 723, 46	2 796, 71	7 520, 17	279.	13 799, 27	329.	33 129, 24	0.82
0.80	940. 82	201.80	1 142, 62	274.44	1 417, 06	386, 64	1 803, 70	569.51	2 373, 21	888, 90	3 262, 11	1 500, 79	4 762, 90	2 836, 64	7 599, 54	6 397, 57	13 997, 11	19 872. 43	33 869, 54	0.80
0.78	944.31	202.99	1 147. 30	276, 23	1 423. 53	389. 46	1 812. 99	574. 24	2 387. 23	897. 49	3 284. 72	1 518, 12	4 802, 84	2 877, 33	7 680, 17	6 519.06	14 199, 23	435.	34 634, 93	0.78
0.76	947. 83	204. 18	1 152. 01	278.02	1 430. 03	392. 32	1 822. 35	579.03	401.	906. 19	3 307, 57	1 535, 72	4.843, 29	2 918, 80	7 762.09	6 643. 67	14 405, 76	020.	35 426, 56	0.76
0.74	951, 36	205. 38	1 156.74		1 436, 59	395, 19	1831.78	583, 87	415.	915.01	3 330, 66	1 553, 59	4 884, 25	2 961, 08	7 845, 33	6 771. 50	14 616. 83	628.	36 245, 64	0.74
0.72	954. 92	206, 59	1 161. 51		1443.18	398, 10	1 841. 28	588. 77	430.	923.94	3 353, 99	1 571. 74	4 925, 73	3 004, 18	7 929, 91	6 902, 66	14 832, 57	22 260, 90	37 093, 47	0.72
0.70	958. 49	207. 81	1 166, 30	283, 53	1 449, 83	401.03	1 850, 86	593, 72	2 444. 58	932. 99	3 377, 57	1 590, 17	4 967, 74	3 048, 13	8 015 87	7 037, 22	15 053, 09	22 918, 30	37 971. 39	0.70
0.68	962.08	209.05	1 171. 13	285, 38	1 456, 51	404.00	1 860, 51	598. 73	2 459. 24	942. 16	3 401. 40	1 608, 89	5 010, 29	3 092, 95	8 103, 24	7 175, 40	15 278, 64	23 602, 21	38 880. 85	0.68
0.66	965, 69	210. 29	1 175. 98		1 463, 25	406, 99	1 870. 24	603.80	2 474. 04	951, 44	3 425, 48	1 627. 91	5 053, 39	3 138, 66	8 192, 05	7 317, 21	15 509, 26	24 314, 12	39 823, 38	0, 66
0.64	969, 33	211.53	1 180, 86	289, 17	1 470, 03	410, 01	1 880. 04	608, 92	2 488, 96	960.86	3 449. 82	1 647, 22	5 097. 04	3 185, 27	8 282, 31	7 462 83	15 745. 14	055, 47	40 800, 61	0.64
0.62	972. 98	212.80	1 185, 78	0	J 476, 86	413, 06	1 889. 92	614, 10	2 504, 02	970.39	3 474. 41	1 666, 86	5 141. 27	3 232 81	8 371. 08	7 612.36	15 986, 44	827, 81	41 814, 25	0.62
0.60	976.66	214.07	1 190, 73		1 483, 74	416.14	1 899, 88	619.34	2 519, 22	980.06	3 499, 28	1 686. 79	5 186. 07	3 281. 32	8 467. 39	7 765, 94	16 233, 33	26 632, 81	42 866. 14	0.60
0.58	980. 35	215, 35	1 195, 70		1.490, 66	419, 26	1 909, 92	624. 64	2 534, 56	989, 85	3 524, 41	1 707. 06	5 231, 47	3 330, 79	8 562, 26	7 923. 72	16 485, 98	27 472. 24	43 958, 22	0.58
0.56	984. 07	216.64	1 200. 71	296, 93	1 497, 64	422, 40	1 920, 04	630.00	2 550.04	999.77	3 549, 81	1 727. 65	5 277. 46	3 381, 27	8 658, 73	8 085. 85	16 744, 58	28 348, 00	45 092, 58	0.56
0.54		217.94	1 205. 75		1 504- 66	425, 58	1 930. 24	635.42	2 565, 66	1 009. 82	3 575, 48	1 748. 58	5 324. 06	3 432.79	8 756, 85	8 252, 47	17 009, 32	29 262, 10	46 271. 42	0.54
0.52	991, 57	219. 25	1 210. 82	300.91	1 511, 73	428. 79	1 940, 52	640.90	2 581. 42	1 020, 02	3 601, 44	1 769. 84	5 371. 28	3 485, 36	8 856. 64	8 423, 74	17 280, 38	30 216, 72	47 497, 10	0.52
0.50	995, 35	220, 58	1 215, 93	302, 93	1 518, 86	432.03	1 950, 89	646, 44	2 579, 33	1 030, 35	3 627, 68	1791.45	5 419, 13	3 539. 02	8 958, 15	8 599, 82	17 557. 97	31 214. 17	48 772.14	0.50
0.48	999.15	221. 91	1 221. 06	304.97	1 526, 03	435.30	1 961. 33	652.06	2 613. 39	1 040. 82	3 654, 21	1813.41	5 467. 62	3 593, 79	9 061, 41	8 780. 89	17 842. 30	32 256. 91	50 099, 21	0.48
0.46	1 002. 98	223. 25	1 226. 23	307.02	1 533. 25	438, 61	1971. 86	657.74	2 629. 60	1 051, 43	3 681, 03	1 835, 74	5 516, 77	3 649, 70	9 166, 47	8 967, 13	18 133, 60	33 347, 59	51 481. 19	0.46
0.44	1 006. 82	224.61	1 231, 43	309.10	1 540, 53	441.95		663, 48	2 645, 96	1 062, 18	3 708, 14	1 858, 44	5 566, 58	3 706, 79	9 273, 37	9 158, 72	18 432, 09	34 489, 07	53 921. 16	0.44
0.42	1 010, 69	225.98	1 236. 67	311.18	1 547. 85	445.33		669. 29	2 662, 47	1 073. 09	3 735, 56	1 881. 51	5 617. 07	3 765, 07	9 382, 14	9 355, 87	18 738, 01	35 684. 38	54 422. 39	0.42
0.40	1 014. 58	227. 35	1 241. 93	313, 30	1 555, 23	448. 74	2 003, 97	675, 16	2 679, 13	1 084, 15	3 763, 28	1 904. 97	5 668, 25	3 824. 60	9 492. 85	9 558, 77	19 051, 62	36 936, 80	55 988. 42	0.40
0.38	1 018. 50		1 247. 24	315. 43	1 562, 67	452.17			2 695, 96	1 095. 35	3 791. 31	1 928. 82	5 720, 13	3 885, 39	9 605, 52	9 767. 64	19 373. 16	38 249. 88	57 623. 04	0.38
0.36			1 252. 57	317, 58	1 570. 15	455, 66			2 712. 94	1 106, 72	3 819. 66	1 953, 07	5 772. 73	3 947, 48	9 720. 21	9 982, 70	19 702. 91	39 627. 38	59 330, 29	0.36
0.34			1 257. 94	319, 75	1 577, 60	459, 17		22	2 730. 08	1 118. 25	3 848, 33	1 977. 73	5 826, 06	4 010. 91	9 836, 97	10 204. 18	20 041. 15	073, 41	61 114, 56	0.34
0.32	1 030, 37		1 263, 35	321.94	1 585, 29	432.72	2 048, 01	40	2 747. 39	1 129. 92	3 877, 31	2 002. 82	5 880, 13	4 075, 72	9 955. 85	10 432. 32	20 388, 17	38	62 980, 55	0.32
0.30	1 034. 38	234, 41	1 268, 79	324. 15	1 592, 94	466. 31		705.61	2 764. 86	1 141. 77	3 906, 63	2 028. 32	5 934. 95	4 141.94	10 076. 89	667.	20 744, 29	189.03	64 933, 32	
0.28	1 038. 41		1 274. 26		1 600. 64	469.94	55		2 782. 50	1 153, 78	3 936, 28	2 054. 27	5 990, 55	4 209. 60	10 200. 15	10 909, 67	500	868, 52	66 978. 34	0.28
0.26	1 042. 46		1 279, 77		1 608, 40	473.60			2 800, 31	1 165, 96	3 966. 27	2 080, 66	6 046, 93	4 278, 76	10 325, 69	11 159.41		636, 41	69 121, 51	0.26
0. 24	1 046. 54		1 285. 32	330.90	1 616, 22	477. 30			2 818. 29	1 178. 32	3 996. 61	2 107. 50	6 104, 11	4 349, 45	10 453, 56	416.	870	74	71 369, 22	0. 24
0 22	1 050 64		1 290 90	333 10	1 694 00	481 04	2 105 13		9 836 44	1 190 85	4 027, 29	134	6 162, 11	4 421. 71	10 583, 82	11 682 49	22 266, 31	51 462 06	73 728 37	
0.20	1 054 76	241.76	1 296, 52	335, 50	1 632 02	484. 83			2.854.77	1 203, 56	4 058, 33	2 162. 61	6 220, 94	4 495, 59	10 716, 53	11 956, 47	673.00	6	76 206. 46	0.20
0.18	1 058. 91		1 302, 17	337.84	1 640, 01	488, 65	66		2 873, 28	1 216, 45	4 089, 73	2 190, 88	6 280, 61	4 571. 15	10 851. 76	12 239. 16	090, 92	71	78 811. 63	0.18
0.16	1 063. 08		1 307. 87	340, 19	1 648, 06	492, 50	140. 56	6	2 891, 96	1 229, 54	4 121. 50	2 219. 64	6 341. 14	4 648, 41	10 989, 55	12 530. 96	520, 51		81 552, 70	0.16
0.14	1 067. 28		1 313. 60		1 656, 17	496, 40	152. 57	26	2 910, 83	1 242. 80	4 153, 63	2 248. 93	6 402, 56	4 727, 41	11 130, 00	12 832, 20		10	84 439, 30	0.14
0.12	1 071. 50		1 319, 36		1 664. 34	500, 34	164.	21	2 929, 89	1 256, 26	4 186, 15	2 278, 72	6.464.87	4 808, 27	11 273, 14	13 143, 31	416, 45	065.46	87 481, 91	0, 12
0.10		249. 42	1 325. 17	347.40	1 672, 57	504, 33	2 176, 90	772, 23	2 949, 13	1 269, 91	4 219. 04	2 309, 06	6 528. 10	4 890, 97	11 419. 07	13 464, 67	24 883, 74	65 808, 25	90 691, 99	0, 10
0.08	-	99	1 331. 01	349.85	1 680, 86	508. 35	189, 21	36	968,	1 283, 76	4 252. 33	2 339, 92	6 592, 25	4 975, 61	11 567, 86		25 364, 58	717.48	94 082. 06	0.08
0.06	1 084. 32		1 336. 90	352. 31	1 689, 21	512.42	63	786. 57	2 988, 20	1 297. 81	4 286, 01	2 371. 35	6 657. 36	5 062. 20	11 719. 56	14 139, 92	25 859. 48		97 665. 81	0.06
0.40			1 342, 82	354. 81	1 697, 63	516. 53	214.		008	1 312, 07	4 320, 09	2 403, 35	6 723, 44	150.84	11 874. 28	14 494. 74	369.02	089, 29	101 458. 31	0.04
0. 20	1 093. 00		1 348. 78	357. 32	1 706, 10	520. 69	226.		3 028. 04	1 326, 55	4 354, 59	2 435. 92	6 790. 51	5 241. 56	12 032 07	14 861. 69	893, 76	582. 32	105 476, 08	0.02
000	1 097 27	57	1 354 78	359 87	1714.65	524 89	2 239, 54	72	3 048, 26	1 341. 23	4 389, 49	2 469, 09	6 858 58	5 334, 45	12 193, 03	15 241, 30	27 434, 33	98	109 737, 31	0.00
a	10	9 10 11	9	89	00	78	7	67	6	56	(S)	45	4	34	s:	23	63	12	1 m	a
								100	1/(m+a)	109 737. 31/(m+a)	里德伯表	表 1.2.1								