The study of oxygen concentration in YBa₂Cu₃O_{6+x}

Ma Han 07301010040

Outline

- Introduction of superconductor
- Introduction of YBCO
- Experiment & results
- Conclusion & acknowledgement

Introduction of superconductor

Introduction of superconductor

Elementary properties of superconductors:

1.Zero electrical DC resistance

2. Discontinuous of heat capacity

Figure1: Behavior of heat capacity (cv, blue) and resistivity (p , green) at the superconducting phase transition

Introduction of superconductor

3.Meissner effect

Figure2: Meissner effect

In Type I superconductors,

superconductivity is abruptly destroyed when the strength of the applied field rises above a critical value *Hc*.

In Type || superconductors,

raising the applied field past a critical value Hc_1 leads to a mixed state. At a second critical field strength Hc_2 , superconductivity is destroyed.

Introduction of YBCO

J.D.Jorgensen et al.

Experiment: growth and Meissner effect

Figure5: one of our sample

Figure4: SK2-2-12 Tubular resistance
furnace and Intelligent Thermostat

Standard sample: A	up
Our sample: B	up
Sample with step 2 twice: C	down

Experiment: resistance measurement

At room temperature (about 30°C):
$$R_B > R_A > R_C$$

Antiferromagnetic

insulator

Doping a hole, then electrons can hopping to the site which the hole occupied

Experiment: transition temperature measurement

Figure6: welding sample on device

Figure7: X-Y recorder

Figure8: measurement

Experiment: transition temperature measurement

Figure9: resistance of sample A and B changing with temperature

Experiment: transition temperature measurement

Figure10 : phase diagram of YBCO

Experiment: resistance character of sample A & C

Figure 11: resistance changing with temperature of sample A

Metal?

Figure 12: resistance changing with temperature of sample C

Semiconductor?

Compare with metal and semiconductor

Conclusion:

With the change of oxygen concentration x, the character of YBCO would change dramatically. From 0 to 1, the sc phase appear and disappear , also in the normal state, the electrical property is changing with x.

More work need to do about cuprate !

Acknowledgment:

Lab ,devices and base of the experiment are supported by Hong-Ying Yao. Suggestion of Mr Xu about how to clean the mold and also how to use it. H.M. especially thanks Y.C. for theory assistance.

Thanks!