

拉曼光谱 近物实验报告

王承鑫、胡博

2023年12月20日

目录

- 1 实验原理
- 2 实验过程
- 3 实验分析
 - 光缝大小影响
 - CCI₄ 拉曼光谱
 - CCl₄ 拉曼散射偏振光特性
 - 不同浓度的甲醇-乙醇溶液的拉曼光谱
- 4 总结

拉曼散射

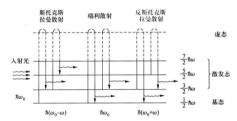
实验原理

- 1 实验原理
- 2 实验过程
- - 光缝大小影响
 - CCI₄ 拉曼光谱
 - CC/4 拉曼散射偏振光特性
 - 不同浓度的甲醇-乙醇溶液的拉曼光谱
- 4 总结

拉曼散射

光通过介质时会产生散射光,散射光按频率可分为2类:

- 瑞利散射,频率与入射光基本相同(变化小于 3×10⁵ Hz).
- 拉曼散射与入射光频率,相差较大(变化大于 3 × 10¹⁰ Hz),属于非弹性散射。 在光谱上频率比瑞利散射小的叫斯托克斯线,反之叫反斯托克线。


经典理论

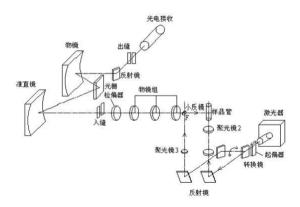
偶极矩理论:

$$P = AE$$

$$\begin{aligned} \boldsymbol{P}_{k} &= \boldsymbol{P}_{0} \cos \omega_{0} t + \boldsymbol{P}_{k0} \cos \left[\left(\omega_{0} - \omega_{k} \right) t + \varphi_{k} \right] + \boldsymbol{P}_{k0} \cos \left[\left(\omega_{0} + \omega_{k} \right) t + \varphi_{k} \right] \\ &= \boldsymbol{P}_{0} \left(\omega_{0} \right) + \boldsymbol{P}_{k} \left(\omega_{0} - \omega_{k} \right) + \boldsymbol{P}_{k} \left(\omega_{0} + \omega_{k} \right) \end{aligned}$$

反斯托克斯线的强度大于斯托克斯线的强度 ×

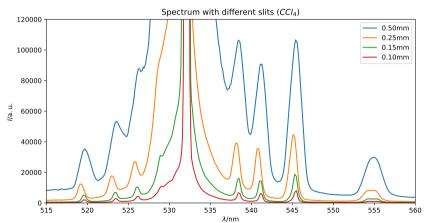
斯托克斯线的强度大于反斯托克斯线的强度


目录

- 1 实验原理
- 2 实验过程
- 3 实验分析
 - 光缝大小影响
 - CCl₄ 拉曼光谱
 - CCl₄ 拉曼散射偏振光特性
 - 不同浓度的甲醇-乙醇溶液的拉曼光谱
- 4 总结

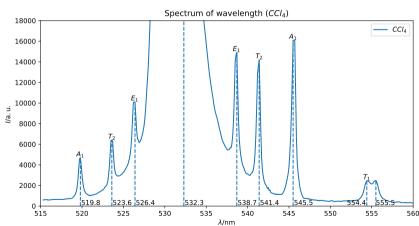
实验装置

实验原理

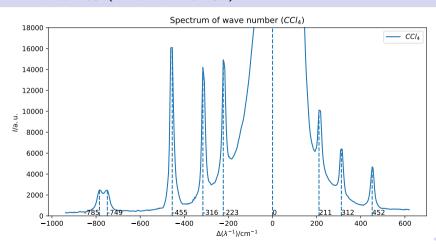


目录

- 1 实验原理
- 2 实验过程
- 3 实验分析
 - 光缝大小影响
 - CCI₄ 拉曼光谱
 - CCl₄ 拉曼散射偏振光特性
 - 不同浓度的甲醇-乙醇溶液的拉曼光谱
- 4 总结


实验原理

CCI4 拉曼光谱 (不同光缝下的数据)


实验原理

CCI4 拉曼光谱 (以波长为横轴)

实验原理

CCI4 拉曼光谱 (以波数为横轴)

CCI4 拉曼光谱

实验原理

数据处理结果

编号	\mathcal{A}_1	\mathcal{T}_1	E_1	E_1	\mathcal{T}_2	\mathcal{A}_1	\mathcal{T}_1
理论波长/nm	519.3	523.3	526.0	538.1	541.0	545.3	554.9
测得波长/nm	519.5	523.2	525.9	538.4	541.1	545.3	554.6
相对误差	0.04%	0.02%	0.02%	0.06%	0.02%	0	0.06%
波数差 $/cm^{-1}$	460	312	214	-213	-313	-458	-776

实验原理

拉曼散射偏振理论

微分极化率张量:

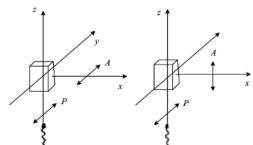
$$\left(egin{array}{c} P_x \ P_y \ P_z \end{array}
ight) = \left(egin{array}{cccc} lpha'_{ixx} & lpha'_{ixy} & lpha'_{ixz} \ lpha'_{iyx} & lpha'_{iyy} & lpha'_{iyz} \ lpha'_{izx} & lpha'_{izy} & lpha'_{izz} \end{array}
ight) \left(egin{array}{c} E_x \ E_y \ E_z \end{array}
ight) \, Q_z$$

不变量:

$$\alpha = \frac{1}{3} \left[\alpha'_{xx} + \alpha'_{yy} + \alpha'_{zz} \right]$$

$$\gamma = \frac{1}{2} \left[(\alpha'_{xx} - \alpha'_{yy})^2 + (\alpha'_{yy} - \alpha'_{zz})^2 + (\alpha'_{zz} - \alpha'_{xx})^2 \right] + 6(\alpha'_{xy}^2 + \alpha'_{yz}^2 + \alpha'_{zx}^2)$$

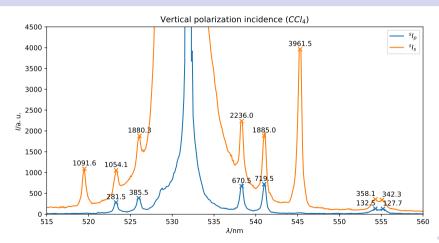
实验分析 ĕ **6**000000


CCl4 拉曼散射偏振光特性

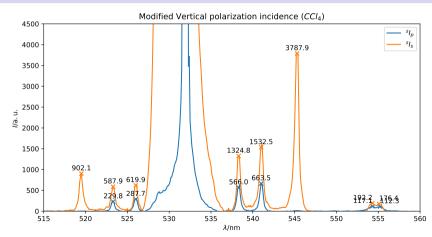
拉曼散射偏振理论

退偏度:

$$\varrho_{\perp}(\theta) = \frac{\perp_{I/\!/}(\theta)}{\perp_{I/\!/}(\theta)}, \quad \varrho_{/\!/}(\theta) = \frac{\#_{I/\!/}(\theta)}{\#_{I/\!/}(\theta)}$$


偏振方向的定义:

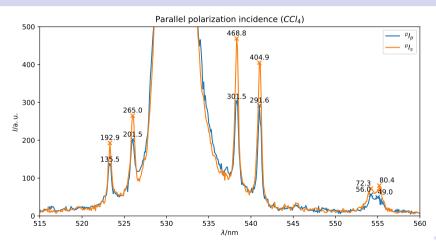
000000


实验原理

CCI₄ 拉曼偏振光谱(垂直偏振光入射)

实验原理

CCI₄ 拉曼偏振光谱(垂直偏振光入射)

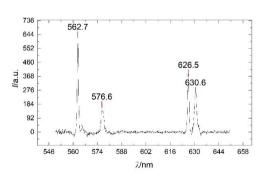

CCI₄ 拉曼偏振光谱(垂直偏振光入射)

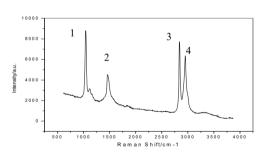
 ho_{\perp} 计算结果

编号	A_1	\mathcal{T}_1	E_1	E_1	\mathcal{T}_2	A_1
$\perp_{I_{//}}$	0	229.8	287.7	566.0	663.5	0
$^{\perp}\dot{I}_{\perp}^{\prime}$	902.1	587.9	619.9	1324.8	1532.5	3787.9
$ ho_{\perp}$	0	0.39	0.46	0.43	0.43	0
理论值	0	3/4	3/4	3/4	3/4	0

实验原理

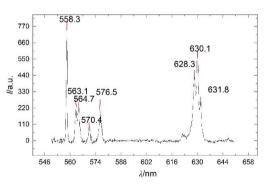
CCI₄ 拉曼偏振光谱(平行偏振光入射)

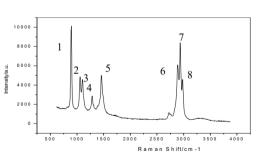

实验原理


消除内部光路影响

 ho_{\perp} 与 $ho_{//}$ 相除消除实验设备对于散射光偏振的影响。

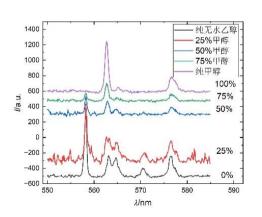
编号	A_1	\mathcal{T}_1	E_1	E_1	\mathcal{T}_2	A_1
$ ho_{\perp}$	0	0.39	0.46	0.43	0.43	0
$ ho_{//}$	/	0.70	0.76	0.64	0.72	/
$ ho_{\perp}/ ho_{//}$	/	0.55	0.60	0.67	0.59	/
理论值	0	3/4	3/4	3/4	3/4	0

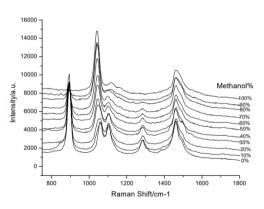

甲醇部分



乙醇部分

实验原理

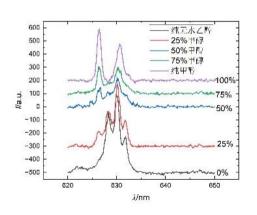


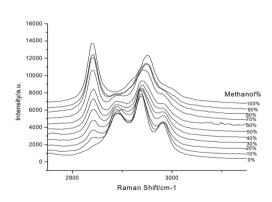

实验分析

0000000

不同浓度的甲醇-乙醇溶液的拉曼光谱

短波长区域





不同浓度的甲醇-乙醇溶液的拉曼光谱

长波长区域

目录

- 1 实验原理
- 2 实验过程
- - 光缝大小影响
 - CCI₄ 拉曼光谱
 - CC/4 拉曼散射偏振光特性
 - 不同浓度的甲醇-乙醇溶液的拉曼光谱
- 4 总结

总结

- CCl₄ 拉曼光谱分析
- 狭缝宽度对实验的影响
- CCl₄ 拉曼光谱散射的退偏度分析
- 甲醇乙醇拉曼散射光谱分析

总结 ○○●

结尾

谢谢!