## O Rolling 3 dice $\bigcirc$

## New game

- Rolling 3 dice
- Winning
$(B e t) \times$ No. of Sixes rolled
- Result of 100 games

| No. of Sixes | No. of Rolls |
| :---: | :---: |
| 0 | 48 |
| 1 | 35 |
| 2 | 15 |
| 3 | 3 |

## Are the dice FAIR without any trick?

- Null Hypothesis

Probability of Rolling k sixes from 3 dice $=\frac{3!}{k!(3-k)!}\left(\frac{1}{6}\right)^{k}\left(\frac{5}{6}\right)^{3-k}$
$P(k=0)=0.58$
$P(k=1)=0.345$
$P(k=0)=0.07$
$P(k=0)=0.005$

| No. of Sixes | Expected |
| :---: | :---: |
| 0 | 58 |
| 1 | 34.5 |
| 2 | 7 |
| 3 | 0.5 |

- Hypothesis Testing

$\chi^{2}$-statistic: $\frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}$


$$
\chi^{2}=\frac{(48-58)^{2}}{58}+\frac{(35-34.5)^{2}}{34.5}+\frac{(15-7)^{2}}{7}+\frac{(3-0.5)^{2}}{0.5}=23.367
$$

Degree of Freedom $v=4$ (4 possibilities of 0, 1, 2, 3) - 1 (Fixed Total rollings) $=3$

Probability of Getting $\chi^{2}$ less than 7.815 with $v=3$ - $95 \%$

Observed $\chi^{2}=23.367>7.815$
: Very rare results

The casino may ask the gambler to take his dice elsewhere!

