● Rolling 3 dice ●

New game

- Rolling 3 dice
- Winning

(Bet) × No. of Sixes rolled

• Result of 100 games

No. of Sixes	No. of Rolls
0	48
1	35
2	15
3	3

Are the dice FAIR without any trick?

• Null Hypothesis

Probability of Rolling k sixes from 3 dice =
$$\frac{3!}{k!(3-k)!} \left(\frac{1}{6}\right)^k \left(\frac{5}{6}\right)^{3-k}$$

$$P (k = 0) = 0.58$$

 $P (k = 1) = 0.345$
 $P (k = 0) = 0.07$
 $P (k = 0) = 0.005$

No. of Sixes	Expected
0	58
1	34.5
2	7
3	0.5

• Hypothesis Testing

$$\chi^2$$
-statistic:
$$\frac{(Observed - Expected)^2}{Expected}$$

$$\chi^2 = \frac{(48-58)^2}{58} + \frac{(35-34.5)^2}{34.5} + \frac{(15-7)^2}{7} + \frac{(3-0.5)^2}{0.5} = 23.367$$

Degree of Freedom
$$v = 4$$
 (4 possibilities of 0, 1, 2, 3)
- 1 (Fixed Total rollings)
= 3

Probability of Getting χ^2 less than 7.815 with $\nu=3$

Observed
$$\chi^2 = 23.367 > 7.815$$

: Very rare results

The casino may ask the gambler to take his dice elsewhere!