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Numerical Simulation of Random Close Packings in Particle Deformation from
Spheres to Cubes ∗

ZHAO Jian(ëè), LI Shui-Xiang(oY�)∗∗

State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871

(Received 28 March 2008)

Variation of packing density in particle deforming from spheres to cubes is studied. A new model is presented to
describe particle deformation between different particle shapes. Deformation is simulated by relative motion of
component spheres in the sphere assembly model of a particle. Random close packings of particles in deformation
form spheres to cubes are simulated with an improved relaxation algorithm. Packings in both 2D and 3D cases
are simulated. With the simulations, we find that the packing density increases while the particle sphericity
decreases in the deformation. Spheres and cubes give the minimum (0.6404) and maximum (0.7755) of packing
density in the deformation respectively. In each deforming step, packings starting from a random configuration
and from the final packing of last deforming step are both simulated. The packing density in the latter case is
larger than the former in two dimensions, but is smaller in three dimensions. The deformation model can be
applied to other particle shapes as well.

PACS: 45. 70. Cc, 81. 05.Rm, 05. 10. Ln

Packings in particle deforming from spheres to
polyhedra are closely related to physical phenomena
such as the phase transition of liquid to solid. Sphere
packing has been studied for centuries since Kepler’s
conjecture and the results are well known.[1] Cube
packing is less studied, experimental results can be
found in literature.[2,3] Remarkable distinction exists
in the packing density of random close packing of
spheres (0.64) and cubes (0.74). It is interesting to
see the variation of packing density of particles in the
deforming process form spheres to cubes, and the vari-
ation will lead to a better understanding of relative
physical phenomena. Most studies on particle defor-
mation in random packing concern only the influences
of the aspect ratio of a specified particle shape,[4,5] de-
formations between different particle shapes are rarely
studied. Zou et al.[2] gave a curve of porosity versus
sphericity in random close packings of non-spherical
particles. The curve in Fig. 2(b) of Ref. [2] was built
from the interpolation of isolated experimental results
of cylinders, discs, ellipsoids, spheres and cubes. In
this Letter, particle deforming process between dif-
ferent shapes in random close packings is simulated,
and a more detailed curve of packing density versus
sphericity between sphere and cube is built from the
numerical simulation results.

Packings of deformed particles involve non-
spherical shapes and a uniform model in all deforming
steps is required. In this work, the sphere assembly
model[6] which represents the non-spherical particles
with an assembly of component spheres is constructed.
With this model, the deformation can be simulated
by relative motion of the component spheres, and
the non-spherical packing can be treated with sphere

packing approaches. Figure 1 shows the centre loca-
tions and moving paths of the component spheres of
a particle deforming from sphere to cube in both 2D
and 3D cases. Centres of the component spheres are
marked by small circles (2D) or spheres (3D). In the
initial stage of deformation of spheral particle (step 1
in Figs. 2 and 3), equal component spheres of the par-
ticle are distributed on a circle (2D) or a sphere (3D),
their centre locations can be found in Fig. 1. In the de-
forming process, each component sphere moves along
the arrow direction, and its moving path is shown
(solid lines with arrows) in Fig. 1. The deforming pro-
cess is separated into n steps, the moving distance of
a component sphere in each step is li/(n − 1), where
li is the length of the moving path of ith component
sphere (length of the solid lines with arrows in Fig. 1).
In the final stage of deformation of cubic particle (step
11 in Figs. 2 and 3), centres of the component spheres
finally arrive on a square (2D) or a cube (3D). Ac-
cordingly, particles will gradually expand during the
deformation in this model.

Fig. 1. Centre locations and moving paths of component
spheres of a particle deforming from sphere to cube (left:
2D case, right: 3D case).
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Fig. 2. Deforming steps from circle to square.

Particle deformations in both 2D and 3D cases are
simulated, and the deforming process is separated into
11 steps (n = 11) in this work. In the 2D case, circles
are transformed into squares, and the sphere assem-
bly model of a particle is constructed with 16 overlap-
ping component circles. Figure 2 shows the deforming
steps in the 2D case. In the 3D case, spheres are trans-
formed into cubes, and the sphere assembly model of
a particle is constructed with 64 overlapping compo-
nent spheres. Figure 3 shows the deforming steps in
the 3D case. More component spheres will build a
more accurate model but increase the CPU costs as
well.

Fig. 3. Deforming steps from sphere to cube.

The shape change of a particle is evaluated
by sphericity which is defined as Ssphere/Sparticle,[2]

Ssphere is the surface area of a sphere which has the
same volume as the particle, Sparticle is the surface
area of the particle. In this work, particles are repre-
sented by overlapping spheres in their sphere assembly
models. It is a burdensome task to compute the exact
surface area and volume of the particles since they
have rough surfaces. Fortunately, the surface area
and volume of the particles in Figs. 2 and 3 can be
inquired from an AutoCAD system. Figure 4 gives

the variation of particle sphericity in deforming steps
in both the 2D and 3D cases. The figure shows that
the sphericity decreases in the deformation process in
both the 2D and 3D cases.
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Fig. 4. Particle sphericity in deforming steps in the 2D
and 3D cases.

An improved relaxation algorithm[7] is applied to
generate the random close packings of particles in
the deformation. The original relaxation algorithm[8]

is improved by introducing the torque and rotation
of sphere assembly to simulate the motion of non-
spherical particles. The algorithm begins with ran-
domly placed large overlapping configuration of par-
ticles. Afterwards, iterations of relaxation procedure
are carried out to gradually reduce the overlaps of the
particles. Displacement of each sphere is computed in
terms of the overlaps with nearby spheres. The torque
of the particle is defined as

M =
1
na

na∑
i=1

(V i × P i), (1)

where M is the torque vector of the particle, na is
the number of spheres in the assembly model of the
particle,V i(i = 1, . . ., na) are the vectors from the cen-
tre of the particle to the centre of each component
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sphere, P i(i = 1, . . ., na) are the displacement vectors
of each component sphere. The rotation angle θ of the
particle is computed by

θ = α‖M‖2, (2)

where α is the rotational relaxation coefficient. The
boundary of the packing region is enlarged at the end
of each iteration. The finial packing is achieved when
the maximum overlap rate of spheres is below a prede-
fined value. The improved algorithm has been success-
fully applied to random close packing of tetrahedra.[9]

In each deforming step, packings starting from a
random configuration (separate packing) and from the
final packing of last deforming step (continuous pack-
ing) are both simulated. The separate packing is the
normal way of random packing which has been widely
studied. The continuous packing is less studied, but
it may be employed to simulate some physical phe-

nomena like crystal growth form liquid to solid. In
the separate packing, deformed particles are randomly
placed in the region with large overlaps between par-
ticles at the initial state in each deforming step. The
packing configuration will be randomly redistributed
at the beginning of next deforming step. In the contin-
uous packing, the final packing configuration of par-
ticles of last deforming step will be the initial state
of next deforming step, and the motion of each parti-
cle is continuous in the deforming process. With the
implementation of the improved relaxation algorithm,
overlaps between particles are eliminated at the end
of each deforming step. Although the configurations
at the end of last step and the beginning of next step
are the same in the continuous packing, small overlaps
between particles occur due to particle expansion at
the beginning of each step. The relaxation procedure
should be carried out again to remove these overlaps.

Fig. 5. Final packings of three deforming steps (left: spheres, middle: step 6 in Fig. 3, right: cubes).
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Fig. 6. Packing density vs sphericity in the 2D case.

Random close packings are simulated in this work.
Cubic region and periodic boundary are applied to
all the simulations. There are 500 particles deformed
form circles to squares in the 2D case, and 250 par-
ticles deformed form spheres to cubs in the 3D case.
Each simulation is carried out five times, and the val-
ues obtained are the averages. Figure 5 shows the final
packings of three deforming steps in the 3D case. The

left configuration is the final packing of spheres (step
1 in Fig. 3), the right configuration is the final packing
of cubes (step 11 in Fig. 3), and the middle one is the
final packing of particles at step 6 in Fig. 3.
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Fig. 7. Packing density vs sphericity in the 3D case.

Figure 6 shows the variation of packing density in
the 2D case, and Fig. 7 shows the variation of packing
density in the 3D case. Both separate and continuous
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packing results are given. In the separate packings,
the packing density of random close packing of circles
and squares in the 2D case are 0.8487 and 0.8729, re-
spectively, while the packing density of spheres and
cubes in the 3D case are 0.6404 and 0.7755. The
value of spheres obtained is very close to the well-
known figures (0.64).[1] The value of cubes obtained
is slightly larger than the experimental results [0.75
(Ref. [2]) and 0.74 (Ref. [3])]. Note that the packing
density of cubes obtained exceeds the packing den-
sity of the densest random packing [0.7421 Ref. [10])]
and crystal packing [0.756 Ref. [11])] of ellipsoids. The
packing density increases with the decreases of parti-
cle sphericity in both the 2D and 3D cases. The same
tendency can be found in the work of Zou and Yu,[2] al-
though their curve was obtained by interpolation with
the results of other particle shapes. Spheres and cubes
give the minimum and maximum of packing density in
the deformation respectively. The packing densities of
separate packings are larger than those of continuous
packings in the 3D case (Fig. 7), whereas the opposite
is true in the 2D case (Fig. 6). This result indicates
that the continuous packing may give a loose configu-
ration than the separate packing in the 3D case, while
gives a denser configuration in the 2D case.

In summary, random close packings in particle de-
forming from sphere to cube are simulated. A spheres
assembly model which describes the deformation with
relative motion of component spheres is developed.

Monotonic increasing of packing density in the defor-
mation is observed in the simulations. Spheres and
cubes give the minimum and maximum of packing
density in the deformation respectively. The simu-
lations also show that the continuous packing may
give a loose configuration than the separate packing
in the 3D case, but gives a denser configuration in the
2D case. It should be mentioned that the simulations
in this work involve only geometric packing. Friction
and gravity are not concerned here. The deformation
model in this work can be applied to other particle
shapes as well.
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