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Performance Analysis of a Shaded-Pole Linear
Induction Motor Using Symmetrical Components,

Field Analysis, and Finite Element Method
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Abstract—The performance analysis of a shaded-pole linear in-
duction motor using symmetrical components, field analysis and
finite element methods is presented. Calculated results and mea-
surements are compared and discussed.

Index Terms—Field analysis, finite elements, linear induction
motors, shaded-pole motors, symmetrical components.

I. SHADED-POLE MOTOR

SHADED-POLE motors are recognized to be among one of
the most robust and simple-to-design machines but difficult

to analyze when compared to other induction motors [1].
The single-phase single-sided shaded-pole LIM with a ro-

tating disc [2], and a stationary primary stack has salient poles
with a main multiturn winding (phasea) with concentrated
parameters and slots accommodating an auxiliary winding
(shaded-pole) which is a single-turn shorted coil (phaseb).
Fig. 1 shows the construction of the shaded-pole LIM. It has a
secondary consisting of a double-layer disc made of aluminum
and back-iron plates. Table I shows the design data for the
experimental machine.

Since the currents in the main and auxiliary windings are
shifted by an angle less than90� and the space angle between the
two windings is also less than90�, an elliptical traveling mag-
netic field is produced in the airgap. The normal component of
the magnetic flux density distribution in the airgap can be de-
scribed by the following equation:
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m� are the peak values of the�th space har-
monic waves traveling in thex-direction (along the pole pitch),
� = 1; 3; 5 � � � are the higher space harmonics,!+s� is the an-
gular frequency of thes�th harmonic of the forward~traveling
field, !�s� is the angular frequency of thes�th harmonic for the
backward traveling field,�� = ��=� , and� is the pole pitch.
The peak values of magnetic flux densities in (1) are:
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Fig. 1. Shaded-pole single-sided LIM: (a) general view and (b) longitudinal
cross section. 1—secondary back iron, 2—aluminum cap, 3—airgap,
4—short-circuited coil, 5—main winding, and 6—primary stack.

whereBa is the normal component of the magnetic flux density
(rectangular distribution) in the symmetry axis of the phasea
andBb is the normal components of the magnetic flux density
(rectangular distribution) in the symmetry axis of the phaseb,
b�a; b�b are Fourier’s coefficients,� < 90� is the phase angle
between the currents in phasea andb, and� is the angle between
symmetry axes of phasea andb.

For � = 1 the angular frequencies with respect to the rotor
are:!+s�=1 = 2�fs, !�s�=1 = 2�f (2 � s) wheres is the slip
for fundamental harmonic. For further analysis, the fundamental
space harmonic� = 1 will be assumed.

II. SYMMETRICAL COMPONENTS

In the circuital approach to the analysis of such a single-phase
shaded-pole motor, symmetrical components for a 2-phase
system are usually used. The rotating magnetic field remains
circular under the following conditions:

a) The stator windings are spaced apart through an angle� =
90 electrical degrees.

b) The currents through the stator windings are shifted in
time by an angle� = 90�.
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TABLE I
LIM D ESIGN DATA

c) The main and auxiliary windings are of equal MMF

IbNbkw; b = IaNaKw; a (2)

whereN is number of turns of the respective windings
andkw is winding factor. A shaded-pole induction motor
does not meet the conditions a), b) and c).

Refer auxiliary winding to main stator winding side,I 0b =
Ib=ktr, where,ktr = Nakw;a=Nbkw; b, i.e., the transformation
ratio of windingsa andb, kw;a, kw; b are winding factors, and
Na is the number of turns of the main winding.

From [2], the two-phase asymmetric system of vectors of cur-
rents_IIIa and _IIIb having unequal magnitudes and spaced apart by
an arbitrary angle can be resolved into two symmetrical systems
each composed of two vectors equal in magnitude and spaced
90� apart. The forward-sequence system of vectors is,_III+a and
_III
0+
b . It has the same phase sequence as the original system. The

backward-sequence system of vectors is_III
�

a and _III
0
�

b .

Thus, for� = 90�, _III
0+
b = �j _III

+

a and _III
0
�

b = j _III
�

a . For an
anglealpha 6= 90�, the original and derived systems are equiv-
alent hence,_III

+

a + _III
�

a = Ia and _III
0+

b + _III
0
�

b = III 0b. Since the con-
ditions a), b) and c) are not satisfied in the shaded-pole LIM, as
spacing betweena andb is not90�, (� < 90�), III 0b 6= IIIa, hence
the magnetic flux vector describes an ellipse.

The equation for current in the auxiliary winding (short-cir-
cuited coil) is:

Ib = j
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�
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�
: (3)

The input current in the main phase is
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�
: (4)

III. EQUIVALENT CIRCUIT ANALYSIS

Separate equivalent circuits for two phases and for forward
and backward sequences are set up to determine currents in the
stator and rotor windings. The+ve and�ve sequence fields
revolve at a different speed with respect to the rotor. This deter-
mines the expression for slip and impedances of the equivalent
circuit. The equations for the main and auxiliary phases are:

• for the main winding

Va = IaZ1a + I+a Z
+ + I�a Z

� + (Ia + Ib)Zab (5)

• for the auxiliary winding

Vb = 0 = IbZ1b + I+b Z
+ + I�b Z

� + (Ia + Ib)Zab (6)

whereZ+ , Z� are the+ve and�ve sequence imped-
ances of the magnetization branch and secondary being
in parallel.

For the positive sequence (forward traveling field), slips+ =
s, and for the negative sequence (backward traveling field), slip
s� = 2 � s. The primary impedances in the equivalent circuit
are:

Z1a = R1a + jX1a Z1b = R1b+ jX1b (7)

for the main and auxiliary windings, respectively. In the above
equations,R1a; X1a is the resistance and leakage reactance of
the main phase of stator winding. For the magnetization branch
of the equivalent circuit,

Zo = Ro + jXo =
RFeX
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whereRFe is the resistance representing core losses andXm

is the mutual reactance between primary and secondary circuit.
There is also an additional impedance in series with the primary
impedance, i.e.,

Zab = jXab = j!Mab (9)

whereXab is mutual reactance between main phasea and aux-
iliary phaseb. In practical calculations,

Xab �
�b

�a

Zo

2p

where�b is the angle corresponding to the width of shading ring
and�a is the angle corresponding to the width of the main pole.
The secondary impedanceZ0

2 is discussed in Section IV. Fig. 2
shows the equivalent circuit of the shaded-pole motor for the
positive and negative sequences for phasesa andb.

IV. ROTOR (SECONDARY) IMPEDANCE

The impedances of the aluminum cap and the solid back iron
the fundamental space harmonic� = 1 are [3],
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Fig. 2. Equivalent circuits of a shaded pole induction motor: (a) phase
a, positive sequence, (b) phasea, negative sequence, (c) phaseb, positive
sequence, and (d) phaseb, negative sequence.

where the propagation constant for aluminum is
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and the propagation constant for iron is
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The coefficient including transverse edge effect in aluminum
layer,krn for fundamental, is [5]
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where� = �=� , the effective width of the secondary ferromag-
netic corew = � + Li, Li is the effective width of the primary
core, andhov is the secondary winding overhang.

Equivalent conductivity of aluminum cap including the trans-
verse edge effect is

�0Al = krn � �Al

where�Al is the conductivity of aluminum.
The transverse edge effect coefficient for the back iron is

given by the equation [5],
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Equations (10) and (11) apply to the forward sequence slips.
For the backward sequence slip2 � s,
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Thus, the secondary impedances referred to the primary
system of a single-sided LIM for the fundamental harmonic
and the induced voltage across the magnetization branch
independent of the slip is,

Z0+
2 =Z0

2(s) =
Z0

Al(s)Z
0

Fe(s)

Z0

Al(s) + Z0

Fe(s)

1

s
=

R0

2(s)

s
+ j

X0

2(s)

s

(20)

Z0�

2 =Z0

2(2� s) =
Z0

Al(2� s)Z0

Fe(2� s)

Z0

Al(2� s) + Z0

Fe(2� s)

1

2� s
: (21)

Total impedance as seen from the input terminals of the equiv-
alent circuit,
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t = j
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The impedances of the magnetization and secondary branch in
parallel are
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If the core losses are negligible(RFe = 0), then
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V. CALCULATION OF CURRENTS

To obtain expressions for the positive and negative sequence
main phase currents in terms ofV; �; Z1a,Z1b; Z+; Z�, recall
(3) and (4) forIa andIb, and substituting in (5) and (6), respec-
tively, gives;

I+a =
Va
�
Z1b + Zab(1� e�j�) + jZ�e�j� sin�

�
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(26)

and
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where

G1 = (Z1a + Z1b) (Z
+ + Z� + 2Zab)

G2 =2
�
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+Zab(Z
+ + Z�) (1� cos�)

�
:

The symmetrical components of the secondary currents referred
to the main winding as obtained from the equivalent circuits are

I0+2 = I+a
jZoj

jZo + Z0+2 j
(28)

I0�2 = I�a
jZoj

jZo + Z0�2 j
(29)

whereZ0+2 and Z0�2 are forward and backward impedances
of the secondary referred to the main stator winding turns
according to (20) and (21).

VI. ELECTROMAGNETIC TORQUE

The electromagnetic torque components for the forward and
backward sequence are,

T+ =
2(I0+2 )

2R02(s)

!1s
(30)

T� =
2(I0�2 )

2R02(2� s)

!1(2� s)
(31)

whereI0+2 , I0�2 are the secondary currents referred to the stator
main winding, andR0+2 , R0�2 are the referred rotor resistances.
These components are referred to the secondary side by the
transformation factor between the stator and rotor of motor,
k = 2m(Nakw; a)2=p. The difference between the positive and
negative sequence torques is the resultant torqueT = T+�T�.

VII. A NALYSIS OF ELECTROMAGNETICFIELD

The general solutions of equations for electromagnetic field
distribution in a salient pole induction machine, gives the fol-
lowing recurrence relations [6], [7]. For0 � z � dk,
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For the fundamental harmonic,� = 1, equations were obtained
for the respective layers fori = 1, 2, 3 and 4, where 1—air
halfspace, 2—back iron, 3—aluminum, and 4—airgap. For the
shaded-pole LIM, these equations were used to solve forBBB, and
to calculate the normal and tangential forces, and hence torque
using the field approach. The forces acting on the secondary are
given by:
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where�0 is the magnetic permeability of free space,BBBy; BBBx are
the normal and tangential components of magnetic flux density
in the airgap, andLi is the effective length of the primary stack
(in the z-direction). The shaft torque is obtained from the ex-
pression,T = Fxr, wherer is the radius of disc.

VIII. F INITE ELEMENT ANALYSIS

The 2-D electrodynamic field distribution is described by the
following differential equations:

• for the primary windings:
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• for the disc rotor:
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whereAAA is the magnetic vector potential,JJJ is the current
density,� is the electric conductivity,v is the linear speed
of rotor, and� = �0�r is the magnetic permeability. The
x-coordinate is in the direction of motion, they-coordinate
is perpendicular to the active surfaces, and thez-coordi-
nate is in the radial direction. The following assumptions
have been made in the FEM analysis:

a) LIM has finite dimensions along thex (pole pitch)
andy (normal) directions but infinitely long in the
z-direction (end effects are neglected).

b) The relative motion of the LIM secondary is as-
sumed to be in thex-direction only, and all currents
are constrained to flow in thez-direction only.

c) The magnetic permeability of the primary stack and
secondary back iron is a nonlinear function of the
magnetic field intensity.

The magnetic field distribution in the longitudinal section of
the LIM using Infolytica Magnet 5 FEM package is shown in
Fig. 3. The force in thex-direction acting on the rotating disc
has been calculated using the FEM and Maxwell’s stress tensor
method. The forces acting on the secondary are given by the
following equations:

Fx =
Li
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Z
ByBx dl (39)
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where�0 is the magnetic permeability of free space,BBBy; BBBx

are the normal and tangential components of magnetic flux den-
sity in the airgap, andLi is the effective length of the primary
stack (in thez-direction). The normal and tangential force com-
ponents are thus calculated and shaft torque obtained from the
expression,T = Fxr, wherer is the radius of disc.

IX. COMPARISON OFRESULTS

The steady-state load characteristics, i.e., thrust and normal
force versus speed at different power frequencies have been
calculated using the symmetrical components, field theory
approach, and FEM. These calculated results were compared
with experimental tests performed on the shaded-pole LIM
using sinusoidal excitation at varying power frequencies from
50–75 Hz. Symmetrical components gave the best performance
prediction. The 2-D FEM is versatile in the computation of
field parameters especially for magnetostatic analysis. The field
approach is not flexible in modeling the LIM, hence results
show much deviation with varying frequency.

Figs. 4–6 show the shaft torqueT = Fxr against velocity at
constant frequency. The variation of measured efficiency with
increasing frequency is shown in Fig. 7. With a large airgap
of 1.5 mm, the magnetizing current in the LIM increases sig-
nificantly and consequently the input rms current and stator
I2R loss in the shading coil, thereby reducing the efficiency
and power factorcos '. The efficiency of the investigated LIM

Fig. 3. Magnetic field distribution in the longitudinal section of the LIM.

Fig. 4. Torque against linear velocity atf = 75 Hz.

is low. The influence of edge effects is minimal in low speed
LIM’s. However, saturation effects and the presence of third
time harmonics in the voltage and current waveforms contribute
to errors in calculations, so that the error in calculations are
higher than in high performance machines. From tests, it was
observed that increasing frequency of supply gives better me-
chanical performance such as: less vibrations, improved torque
and efficiency.

X. CONCLUSIONS

The application of symmetrical components of two-phase
asymmetric systems, field theory, and FEM to the performance
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Fig. 5. Torque against linear velocity atf = 60 Hz.

Fig. 6. Torque against linear velocity atf = 50 Hz.

calculation of the shaded-pole LIM has been presented. The re-
sults compared with measurements are satisfactory though the
performance of the shaded-pole single-phase LIM is poor when
compared to three-phase LIM’s. LIM’s generally have low
efficiencies due to their open airgap. The maximum efficiency
of rotary shaded-pole induction motors with cage-rotors rated

Fig. 7. Efficiency versus input frequency.

at 100 W usually does not exceed 20%. The efficiency of the
shaded-pole LIM is very low at power frequency. However, it
has been found that the efficiency can be improved by reducing
voltage and increasing the input frequency.

The shaded-pole LIM can find applications in turntables used
in industry or in small mechanisms where a three-phase power
supply is not available and low torque is acceptable or where the
price and simplicity of the drive is important.
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