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0.1 Preface

This monograph is the second volume of a series in which topological methods
are applied to the study of diverse Non Equilibrium Systems and Irreversible
Processes. The three topics considered in this monograph are "Falaco Soli-
tons, Cosmology and the Arrow of Time". These topics, although seemingly
unrelated in terms of geometric properties of size, shape and continuous geo-
metric dynamics, appear to have an extraordinary universal equivalence from
the perspective of Continuous Topological Evolution (See Vol 1 of this Series,
"Non-equilibrium Thermodynamics"). Non-equilibrium systems undergoing
irreversible processes most often consist of a collection of diverse, but syner-
getic and topologically coherent, components of more than one species. The
components can consist of atoms, or they may consist of galaxies. The topol-
ogy of interest in this monograph does not depend upon geometric properties
such as size or shape. If the number of components change then topological
evolution has taken place. Condensation or merging together is one form of
topological evolution, where the number of components changes; such evolu-
tionary changes can be described by continuous processes. These dynamical
systems often "self organize" by irreversibly evolving to collective long-lived
states, far from equilibrium. They then sustain themselves by "feeding" and
delivering "waste" to their environments, but (apparently) will ultimately
decay to an equilibrium state of inactivity or death. From a topological
point of view, these non-equilibrium thermodynamic systems have an under-
lying (topological, not geometrical in the sense of size and shape) dynamical
theory that makes them appear to be universally equivalent.

Classic equilibrium thermodynamics utilizes statistical methods in-
fluenced by the predictable and observable properties of continuous geometric
evolution. Historically, the theory of continuous geometric evolution can be
used to describe the evolutionary dynamics of particles and fluids. There
exist categories of continuous geometric processes of translation and rota-
tion whereby geometric invariant properties of size and shape can be used
to encode the "particles". There also exist other categories of continuous
geometric processes of deformation (which do not preserve size and shape)
but where by topological (deformation) invariant properties can be used to
encode the "fluid". Continuous geometric evolution implies that the process
can be described by a diffeomorphism (a C1 differentiable map, with a C1
inverse), a constraint which permits the deduction of a unique final state
neighborhood from given initial data.

For Non Equilibrium Systems and Irreversible Processes, the concept
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of continuous geometric evolution must be replaced by the concept of contin-
uous topological evolution (See chapter 5 of Vol. 1). Topological change is a
necessary feature of continuous irreversible processes. Irreversible processes
can not be described by diffeomorphisms. Hence, the concept of tensor fields
(which are defined with respect to diffeomorphisms) must be replaced by
other mathematical objects which are functionally well behaved with respect
to processes which are not diffeomorphisms and which can be used to describe
topological change. In this series of monographs the objects which are used
to encode the physical system are taken to be "exterior differential forms" as
developed and exploited by E. Cartan. Exterior differential forms behave as
scalars (or scalar densities) with respect to tensor diffeomorphisms, so they
work well when the domain of interest is restricted to the equivalence class
of diffeomorphisms and geometrical evolution. More importantly, exterior
differential forms are well behaved, in a functional neighborhood sense, with
respect to C1 mappings that are not homeomorphic. Recall that most ten-
sor fields are not well behaved in a predictive functional neighborhood sense,
relative to non-homeomorphic maps. In this monograph it is demonstrated
that fundamental thermodynamic principles can be extended to describe Non
Equilibrium Systems and Irreversible Processes - when physical systems are
encoded in terms of exterior differential forms, and subjected to continuous
topological, not geometrical, evolution.

The historical use of a geometric diffeomorphic approach (tensor
analysis), with emphasis on uniqueness, symmetries and conservation laws,
to solve problems in physics has heretofore constrained, if not eliminated, the
stated objective of understanding Non Equilibrium Systems and Irreversible
Processes. However, geometric methods, borrowing the words of Eugene
Wigner, have been "unreasonably effective" in understanding physical phe-
nomena - at least for phenomena that can be approximated by isolated-
equilibrium systems and statistical averages. The geometric methods de-
veloped historically (and based upon geometry) are time reversal invariant.
Although the geometric dimension of such "isolated" systems can be much
larger than 2, Caratheodory has demonstrated that the Pfaff Topological di-
mension is not greater than 2, However, non equilibrium thermodynamic
systems undergoing irreversible continuous processes require that the Pfaff
Topological dimension must be greater than 2. The topology of the initial
state and the topology of the final state are not the same if the process is
irreversible.

Paraphrasing Eddington, and due to the insistence of predictive
uniqueness (Pfaff topological dimension equal to 2 or less):
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The concepts of aging and the arrow of time have slipped through
the net of geometric analysis.

Most of the references to my earlier publications have been compiled
for convenience in Vol 7 "Selected Publications", which is available in paper
back form, or in PDF file download format. See www.cartan.pair.com.

0.2 Points of Departure

From the outset, it is assumed that the presence of a physical system induces
a topology on a set of base variables (say space time). The dynamics of the
system refines the topology. This idea is similar to, but different from, the
assumption that the presence of matter establishes a metric on a set of base
variables.

In this monograph certain physical systems and processes will be
studied in terms of a top down topological method, rather than a bottom
up method. That is, the physical system will be presumed to have started
as a non-equilibrium fluidic system in a turbulent state and subjected to
irreversible processes. The Pfaff Topological dimension (See Vol. 1) of the
initial state for such systems must be an even number equal to 4 or more.
The turbulent system will irreversibly decay to produce topological defects,
which are collective, observable, long lived states far from equilibrium (often
with an odd Pfaff Topological dimension of 3 or more). In the sense of the
Cartan topology, such long lived objects are represented by closed exterior
differential forms, which are deformable integral invariants (hence topological
properties independent from geometrical properties of size and shape. As
the exterior derivative of such closed objects vanishes, they do not have limit
points with respect to the Cartan topology. This method is the opposite of
the bottom up technique, which assumes the system is in equilibrium (Pfaff
Topological dimension of 2 or less), and then examines the possibility that
observables are generated by perturbations of the equilibrium state to create
defect structures.

The major difference is that the bottom up method starts with a
connected topology (Pfaff Topological dimension of 2 or less), while the top
down method starts with a disconnected topology (Pfaff Topological dimen-
sion of 4 or more). It is possible by continuous maps to evolve from a
disconnected topology to a connected topology, but it is impossible to evolve
from a connected topology to a disconnected topology in a continuous man-
ner. It is here, via the axiom of topological continuity, where the arrow of
time becomes well defined. From a cosmological point of view, the universe
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will be presumed to be a dilute non-equilibrium turbulent gas (deformably
equivalent to of the van der Waals gas and of Pfaff Topological dimension
4) near its critical point. Hence large fluctuations in density are to be ex-
pected. These fluctuations in density are presumed to be stars and galaxies
that cause the night sky to be inhomogeneous. Certain universal classes of
topological defects of odd Pfaff topological dimension will be investigated.
One universal class of such objects, Falaco Solitons, can be easily created
in a swimming pool. The Falaco Solitons are topologically coherent, but
deformable structures, which appear to self organize themselves during ther-
modynamically irreversible processes of topological change into long lived
states far from equilibrium.

As developed in Vol 1, the Cartan topology for such non-equilibrium
systems, of Pfaff topological dimension greater than 2, is a disconnected
topology, which can support many components (mixed phases). Another
way of describing such a topologically disconnected system (of topological
defects) is that if solutions exist, there may be more than one solution (non
uniqueness) at any geometric point, leading to the notion of envelopes, Huy-
gen wavelets, tangential discontinuities, and edges of regression representing
stability limits and the possibility of thermodynamic phase change. Indeed,
an important topological property is the number of disconnected parts, which
in the treatment of non-equilibrium thermodynamics will be related to the
mole number n.

0.3 Results

It is remarkable that by using a topological perspective and the axioms for
continuous processes (given in detail in Vol 1. and summarized in the fol-
lowing chapters) non-equilibrium systems and irreversible processes can be
studied without the use of probability or statistical methods, and without the
use of geometric metric constraints and linear connections. The topological
method, constructed on a Cartan system of exterior differential forms which
are inherently anti-symmetric, emphasizes the anti-symmetric properties of
a physical system, where the more geometric and statistical methods, based
upon quadratic metric forms and symmetric averages, tend to obscure the
anti-symmetry properties.

It is further remarkable that the Jacobian matrix of the coefficients
of the 1-form of Action - for those non equilibrium turbulent physical systems
of Pfaff topological dimension 4 - leads to a universal thermodynamic phase
function represented by a polynomial equation of 4th degree. The universal-
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ity is related to the singularity theory of non degenerate systems which are
equivalent under (small) deformations. The Phase function is constructed
in terms of the symmetric similarity invariants of the Jacobian matrix of the
component functions that encode the 1-form of Action, A. The envelope of
the universal Phase function is deformably equivalent to a van der Waals gas.
This universal resultant Phase function brings attention to thermodynamic
phases that have equivalent (symmetry) structures other than those depend-
ing upon size and shape. In general, the exterior differential form method
focuses attention on thermodynamic phases that have equivalent deformable
topological structures (equivalent Pfaff topological dimension), and which
are the result of continuous topological evolution.

Indeed, this resultant universal fourth order Phase function result
matches the concepts of Landau Ψ4 mean field theory and phase transitions
on one hand , and on the other hand makes contact with the non equilibrium
expansion of the universe described by "inflation", and dark matter and dark
energy concepts due to a "Higgs" quartic potential below the critical point
of a deformable van der Waals gas. The concepts of surface tension (or
string theory) can be related to the mean curvature (induced by the mo-
lar density) of the universal phase surface, the concepts of temperature and
entropy are related to the quadratic or Gauss curvature (induced by the mo-
lar density), while the concepts of pressure (of either sign) and interactions
are related to the cubic curvatures (induced by the molar density). The
theory as presented herein is far from being complete, yet the methods of-
fer a new perspective for analyzing thermodynamic problems. Moreover,
the techniques appear to solve the problem of making a marriage between
mechanical dynamics and thermodynamics; the methods can be quite use-
ful in the design of new applications previous excluded by assumptions of
equilibrium and uniqueness.

The historical limitations of geometric (metric-size-and-shape) and
topological (deformation) invariance usually imposed upon theoretical de-
scriptions of nature (especially in relativity theories) are abandoned herein
in favor of studying those properties that are homeomorphic invariants, and
yet permit description of topological, as well as geometric, change relative to
continuous transformations. The methods which are presented herein are
based upon Cartan’s calculus of exterior differential forms [64], [35]. Exterior
differential forms are objects, which, in contrast to tensors, are well behaved
with respect to differentiable (continuous) mappings that do not have an in-
verse (and therefor do not preserve topological properties), and are also well
behaved with respect to diffeomorphisms, which are differentiable invertible
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continuous mappings (and which preserve topological properties). Evolu-
tionary processes will be defined in terms of the action of the Lie differential
with respect to vector direction fields acting on differential forms [133]. The
Lie differential acting on differential forms is not confined by the diffeomor-
phic constraints of tensor analysis, and can treat problems of topological
change. The method goes beyond the more standard "extremal" techniques
based upon the calculus of variations. In most of that which follows, the
functions used to define the physical systems will be assumed to be C2 differ-
entiable. The functions that describe processes most often will be assumed
to be C2 differentiable as well, but certain C1 processes (inducing tangential
discontinuities and wakes) and C0 processes(inducing shocks and first order
phase transitions) are of physical interest.

A fundamental result of non equilibrium thermodynamics can be
expressed by the statement:

Topological change is a necessary condition for a continuous ther-
modynamic process to be irreversible. .

Irreversible processes, related to the arrow of time and the biological
aging process, require topological evolution and topological change. Current
physical theories that describe evolutionary processes (for example, Hamil-
tonian or Unitary dynamics) usually are formulated in terms of homeomor-
phisms that emphasize geometrical properties, but do not permit topological
change. Hence all such homeomorphic continuous processes are thermo-
dynamically reversible and are inappropriate for the study of continuous
topological evolution.

0.4 Monograph Site Map

The monograph starts with an experimental observation that highly moti-
vated and sustained the author’s research interest in Non Equilibrium Sys-
tems and Irreversible Processes. The experiment is easily performed (and
has won prizes at state fairs for science projects conducted by high school
students in the USA). Chapter 1 goes directly to a discussion of the extraor-
dinary topological defects (known as Falaco Solitons) that can be (and have
been) created and studied in a swimming pool. The ability to create Falaco
Solitons gives a high level of credence to the fundamental theory of contin-
uous topological evolution. These Falaco Solitons turn out to be locally
unstable, but globally stabilized, long lived objects, that are far from equi-
librium. Both the experiment and the theory are developed in Chapter 1,
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where it becomes evident that the Falaco Solitons appear universally among
the dynamical system governed by equations of the Navier-Stokes type.

Several challenges were thrown to the "String Theorists" to solve
the problem using their methods. There were no replies. Yet it appears
now that the solutions given in Chapter 1, without use of String Theory,
seem to give an understanding of the problem in terms of non equilibrium
thermodynamics.

Chapter 2 begins with a top down model for the universe. The
initial motivation came from an argument presented by Landau, in terms of
correlations of fluctuations. Herein, the statistical method is overwritten in
terms of a cosmology that presumes the universe is deformably equivalent
to a non equilibrium van der Waals gas near its critical point. Most of the
mathematical development is detailed in chapter 2. Certain mathematical
terms and a few useful theorems may be new to some readers. They are
introduced without apology or tutorial description, but are sufficiently de-
tailed in Vol 1. For those who need to be brought up to speed with Cartan’s
concepts of exterior differential forms, a number of textbooks are available
[64], [12], [124], [6].

Chapter 3 describes how the concept of (topological) continuity can
be used to formulate what has been called the arrow of time. It is demon-
strated that homeomorphic physical theories, with evolutionary results that
preserve topology, can not describe the details of the arrow of time. No
such orientational structure exists for Hamiltonian systems. Recall that
non-diffeomorphic maps cannot be used predict functional forms for neigh-
borhood of tensor fields. However exterior differential forms are functionally
well defined with respect to continuous, but non-homeomorphic maps, in a
retrodictive manner. There is a logical difference in continuously evolu-
tionary processes. When topology changes continuously, tensor fields and
exterior differential forms are not uniquely predictable in a functional neigh-
borhood sense. However, differential forms are retrodictable in a functional
neighborhood sense with respect to such non-homeomorphic processes.

Chapter 4 gives a summary of the basic ideas used to describe non-
equilibrium thermodynamics (details appear in Vol 1.).
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Chapter 1
FALACO SOLITONS

1.1 Cosmic Strings in a Swimming Pool

During March of 1986, while visiting an old friend in Rio de Janeiro, Brazil,
the present author became aware of a significant topological event involving
solitons that can be replicated experimentally by almost everyone with access
to a swimming pool. Study the photo on the next page which was taken
by David Radabaugh, in the late afternoon, Houston, TX 1986.

The extraordinary photo is an image of the 3 pairs of what are now
called Falaco Solitons. The Falaco Soliton consists of a pair of globally sta-
bilized rotational indentations in the free water-air surface of the swimming
pool, and an (unseen in the photograph) interconnecting thread from the ver-
tex of one dimple to the vertex of the other dimple that forms the rotational
pair. The fluid motion is a local (non-rigid body) rotation motion about
the interconnecting thread. In the photo the actual indentations of the free
surface are of a few millimeters at most. The lighting and contrast optics
enables the dimpled surface structures to be seen (although highly distorted)
above and to the left of the black spots on the bottom of the pool. The
experimental details of creating these objects are described below. From a
mathematical point of view, the Falaco Soliton is a connected pair of two
dimensional topological defects connected by a one dimensional topological
defect or thread.

The Falaco soliton is easily observed in terms of the black spots
associated with the surface indentations. The black circular discs on the
bottom of the pool are created by Snell refraction of sunlight on the dimpled
surfaces of negative Gauss curvature. Also the vestiges of mushroom spirals
in the surface structures around each pair can be seen. The surface spiral
arms can be visually enhanced by spreading chalk dust on the free surface of
the pool.
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Figure 1. Three pairs of FALACO SOLITONS, a
few minutes after creation. The kinetic energy and the angu-
lar momentum of each pair of vortex structures created in the
free surface of water quickly decay into dimpled, locally unsta-
ble, singular surfaces that have an extraordinary lifetime of many
minutes in a still pool. These singular surfaces are connected by
means of a stabilizing invisible singular thread, or string, which if
abruptly severed will cause the endcaps to disappear in a rapid,
non-diffusive manner. The black discs are formed on the bottom
of the pool by Snell refraction of a rotationally induced dimpled
surface. Careful examination of contrast in the photo will indi-
cate the region of the dimpled surface as deformed artifacts to the
left of each black spot at a distance about equal to the separation
distance of the top right pair and elevated above the horizon by
about 25 degrees. The photo was taken in late afternoon. The
fact that the projections are circular and not ellipses indicates
that the dimpled surface is a minimal surface.

The 1986 photo ( by David Radabaugh, Schlumberger, Houston)
demonstrates the existence of Falaco Solitons, a few minutes after creation,
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by a mechanism to be described below. The kinetic energy and the angular
momentum initially given to a pair of vortex structures created in the free
surface of water quickly decay into dimpled, locally unstable, singular sur-
faces of negative Gauss curvature that can have an extraordinary lifetime of
more than 15 minutes in a still pool. These "solitons" are extraordinary
for they are examples of solitons that can be created easily in a macroscopic
environment. Very few examples of such long-lived topological structures
can be so easily created in dynamical systems. Note that if the initial vortex
structures were Rankine vortices, the air water interface surfaces would have
central regions of positive Gauss curvature. Prior to the dynamic stimula-
tion, the Gauss curvature of the water surface is zero. During the formation
phase, the Gauss curvature of the surface may have a positive component,
but the vortex structures are definitely not perfect Rankine vortices of pos-
itive Gauss curvature (indicating solid body rotation). After the first few
seconds of creation, the stabilized surface definitely has negative Gauss cur-
vature, with a Mean curvature of zero. The resulting dimple is a minimal
surface.

A more recent photo (2004) indicates vividly the compact nature of
the surface defects, and the circular appearance of the black spots refracted
to the bottom of the pool. Note that the refractions projected on the bottom
of the pool are circular, not ellipsoidal

Experimentally, it is apparent that the "bulk" vortex structures are
induced initially by tangential discontinuities of the Kelvin-Helmholtz type
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in the bulk fluid [195] [197], implying the existence of topological torsion at
the discontinuity. The surface phenomena has the characteristic shape of
the Rayleigh-Taylor mushroom.

The surface defects of the Falaco Soliton are observed dramatically
due the formation of circular black discs on the bottom of the swimming
pool. The very dark black discs are emphasized in contrast by a bright
ring or halo of focused light surrounding the black disc. All of these visual
effects can be explained by means of the unique optics of Snell refraction
from a surface of negative Gauss curvature. (This explanation was reached
on the day, and about 30 minutes after, the present author became aware of
the Falaco effect, while standing under a brilliant Brazilian sun and in the
white marble swimming pool of his friend in Rio de Janeiro. An anecdotal
history of the discovery is described below.) The dimpled surface created
appears to be (almost) a minimal surface with negative Gauss curvature and
mean curvature XM = 0. This conclusion is justified by the fact that the
Snell projection to the floor of the pool is almost conformal, preserving the
circular appearance of the black disc, independent from the angle of solar
incidence. (Notice that the black spots on the bottom of the pool in the
photo are circular and not distorted ellipses, even though the solar elevation
is less than 30 degrees.) The conformal projection property is a property of
normal projection from minimal surfaces [229].
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Figure 2. Optics of the Falaco Soliton

The effect is easily observed, for in strong sunlight the convex
hyperbolic indentation will cause an intensely black circular disk
(or absence of light) to be imaged on the bottom of the pool. In
addition a bright ring of focused light will surround the black disk,
emphasizing the contrast. During the initial few seconds of decay
to the metastable soliton state, the large black disk is decorated
with spiral arm caustics, remindful of spiral arm galaxies. The
spiral arm caustics contract around the large black disk during the
stabilization process, and ultimately disappear when the soliton
state is achieved. It should be noted that if chalk dust is sprinkled
on the surface of the pool during the formative stages of the Falaco
soliton, then the topological signature of the familiar Mushroom
Spiral pattern is exposed. The black disk optics are completely
described by Snell refraction from a surface of revolution that has
negative Gauss curvature.
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Figure 3. Falaco Topological Defects.

Dye injection near an axis of rotation during the forma-
tive stages of the Falaco Soliton indicates that there is a unseen
thread, or 1-dimensional string singularity, in the form of a circu-
lar arc that connects the two 2-dimensional surface singularities
or dimples. Transverse Torsional waves of dye streaks can be ob-
served to propagate, back and forth, from one dimple vertex to
the other dimple vertex, guided by the "string" singularity. The
effect is remindful of the whistler propagation of electrons along
the guiding center of the earth’s magnetic field lines.

A feature of the Falaco Soliton [178] that is not immediately obvious
is that it consists of a pair of two dimensional topological defects, in a surface
of fluid discontinuity, which are connected by means of a topological singular
thread. It is conjectured that the tension in the singular connecting thread
provides the force that maintains the global stability of the pair of locally
unstable, dimpled surface structures. The equilibrium mode for the free
surface requires that the surface be flat, of zero Gauss curvature, without
dimples. If dye drops are injected into the water near the rotational axis, and
during formative stages of the Falaco Soliton, the dye particles will execute
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a torsional wave motion that oscillates up and down, back and forth, until
the dye maps out the thread singularity (a circular arc!) that connects the
two vertices of the Falaco Soliton. The singular thread acts as a guiding
center for the torsion waves. If the thread is severed, the endcap singularities
disappear almost immediately, and not diffusively.

However, as a soliton, the topological system retains its coherence for
remarkably long time - more than 15 minutes in a still pool. The long lifetime
of the Falaco Soliton is due to this global stabilization of the connecting
string singularity, even though the surface of negative Gauss curvature is
locally unstable. The long life of the soliton state in the presence of a
viscous media indicates that the flow vector field describing the dynamics is
probably harmonic. This result is in agreement with the assumption that
the fluid can be represented by a Navier-Stokes equation with a dissipation
that is represented by the product of a viscosity and the vector Laplacian
of the velocity field. If the velocity field is harmonic, the vector Laplacian
vanishes, and the dissipation goes to zero no matter what the magnitude
is of the viscosity term. Hence a palatable argument is offered for the
long lifetime. More over it is known that minimal surfaces are generated
by harmonic vector fields, hence the minimal surface endcaps give further
credence to the idea of a harmonic velocity field.

The bottom line is that it is possible to produce, hydrodynamically,
in a viscous fluid with a surface of discontinuity, a long lived coherent struc-
ture that consists of a set of macroscopic topological defects. The Falaco
Solitons are representative of non-equilibrium long lived structures, or "sta-
tionary states", far from equilibrium. These observation were first reported
at the 1987 Dynamics Days conference in Austin, Texas [178], [179], and
subsequently in many other places, mostly in the hydrodynamic literature
[186], [187], [197], [194], [199], as well as at several APS meetings.

These, long-lived topologically coherent objects, dubbed the Falaco
Solitons (for reasons explained below), have several features equivalent to
those reported for models of the sub-microscopic hadron. String theorists
take note, for the structure consists of a pair of topological 2-dimensional
locally unstable rotational defects in a surface of discontinuity, globally con-
nected and globally stabilized in the fluid by a 1 dimensional topological
defect or string with tension. (The surface defects are of negative Gauss
curvature, and are therefor locally unstable.) As mentioned above the ex-
perimental equilibrium state is a surface of zero Gauss curvature. However,
the local instability is overcome globally by a string whose tension globally
stabilizes the locally unstable endcaps. These observational conjectures have
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now been explained theoretically in terms of a bifurcation process, which is
explained in detail below. Note that like hadrons, the endcaps represent
the quarks which suffer a confinement problem, for when the confining string
is severed, the hadrons (endcaps) disappear.

The reader must remember that the Falaco Soliton is a topologi-
cal object that can and will appear at all scales, from the microscopic, to
the macroscopic, from the sub-submicroscopic world of strings connecting
branes, to the cosmological level of spiral arm galaxies connected by cosmic
strings. At the microscopic level, the method offers a view of forming spin
pairs that is different from Cooper pairs and could offer insight into Super-
conductivity. At the level of Cosmology, the concept of Falaco Solitons
could lead to explanations of the formation of flat spiral arm galaxies. At
the submicroscopic level, the Falaco Solitons mimic quarks on a string. At
the macroscopic level, the topological features of the Falaco Solitons can be
found in solutions to the Navier-Stokes equations in a rotating frame of ref-
erence. Under deformation of the discontinuity surface to a flattened ball,
the visual correspondence to hurricane structures between the earth surface
and the tropopause is remarkable. In short, the concept of Falaco Solitons
appears to be a universal phenomena.
1.1.1 The Experiment

The Falaco Soliton phenomena is easily reproduced by placing a large circu-
lar disc with a sharp edge, such as dinner plate, vertically into the swimming
pool until the plate is half submerged and it oblate axis resides in the water-
air free surface. Then move the plate slowly in the direction of its oblate
axis. At the end of the stroke, smoothly extract the plate (with reasonable
speed) from the water, imparting kinetic energy and distributed angular mo-
mentum to the fluid. Initially, the dynamical motion of the edges of the
plate will create a pair of vortex structures in the free surface of the water
(a density discontinuity which can also be mimicked by salt concentrations).
If these vortex structures were Rankine vortices of opposite rotation, they
would cause the initially flat surface of discontinuity to form a pair of par-
abolic concave indentations of positive Gauss curvature, indicative of the
"rigid body" rotation of a pair of contra-rotating vortex cores of uniform
vorticity. Observations have not confirmed that the initial vortex structures
are Rankine. In any case, in a few seconds the vortex surface depressions
will decay into a pair of convex dimples of negative Gauss curvature. As-
sociated with the evolution is a visible set of spiral arm caustics, As the
convex dimples form, the surface effects can be observed in bright sunlight
via their Snell projections as large black spots on the bottom of the pool. In
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a few tries you will become an expert experimentalist, for the drifting spots
are easily created and, surprisingly, will persist for many minutes in a still
pool. The dimpled depressions are typically of the order of a few millimeters
in depth, but the zone of circulation typically extends over a disc of some
10 to 30 centimeters or more, depending on the plate diameter. This con-
figuration, or coherent topological defect structure, has been defined as the
Falaco Soliton. For purposes of illustration , the vertical depression has been
greatly exaggerated in Figures 2 and 3.

If a thin broom handle or a rod is placed vertically in the pool, and
the Falaco soliton pair is directed in its translation motion to intercept the
rod symmetrically, as the soliton pair comes within range of the scattering
center, or rod, (the range is approximately the separation distance of the two
rotation centers) the large black spots at first shimmer and then disappear.
Then a short time later, after the soliton has passed beyond the interaction
range of the scattering center, the large black spots coherently reappear,
mimicking the numerical simulations of soliton coherent scattering. For
hydrodynamics, this observation firmly cements the idea that these objects
are truly coherent "Soliton" structures. This is the only (known to this
author) macroscopic visual experiment that replicates the coherence features
of soliton scattering as seen in numerical studies.

If the string connecting the two endcaps is sharply "severed", the
confined, two dimensional endcap singularities do not diffuse away, but in-
stead disappear almost explosively. It is this observation that leads to the
statement that the Falaco soliton is the macroscopic topological equivalent
of the illusive hadron in elementary particle theory. The two 2-dimensional
surface defects (the quarks) are bound together by a string of confinement,
and cannot be isolated. The dynamics of such a coherent structure is ex-
traordinary, for it is a system that is globally stabilized by the presence of
the connecting 1-dimensional string. For almost twenty years, challenges
to the theoretical string community to devise an explanation for the Falaco
Solitons remained unanswered. Now it appears that the method of contin-
uous topological evolution and non-equilibrium thermodynamics is able to
demonstrate the generation of Falaco Solitons as solutions to the Navier -
Stokes equations.

1.2 Falaco Solitons and Dynamical Systems

The objective is to find the proper format for the functional form of the
1-form of Action A that represents a physical system which supports the ex-
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perimentally long-lived, non-equilibrium topological defects defined as Falaco
Solitons. Once the Action 1-form, A, is formulated, then the theory of Pfaff
Topological dimension can be used to extract topological information and
the possibility of irreversible topological evolution.

From the Jacobian matrix of the functional coefficients of the 1-form
of Action, similarity invariants can be determined that lead to universal
thermodynamic phase properties of the physical system. In this specific
case a solution (a 1-form of Action) is desired that replicates the topological
properties of the Falaco Soliton. The observable properties are:

1. Two rotational 2D structures that appear to be catenoidal minimal
surface defects at the density discontinuity interface.

2. A 1D structure, or thread, that appears to be connected to the vertices
of the two dimples of the two surface defects.

3. A relatively long lived state created by irreversible processes, and which
appears to be globally stabilized by the connecting string tension.

In classical theories, a model of a physical system is often made in
terms of a dynamical system of ordinary differential equations. The question
then arises: if given a dynamical system, what is the corresponding 1-form
of Action? Unfortunately, a procedure for extracting the 1-form of Action
from a dynamical system is not unique. In that which follows, two different
methods will be discussed, both of which yield interesting facts about the
properties of Falaco Solitons.

1.2.1 Bifurcations

From the observational evidence it is apparent that the Falaco Solitons are
not locally stable. The endcaps are of negative Gauss curvature which
immediately implies that they are close to, if not exactly equal to, minimal
surfaces. Any solution that models the Falaco Solitons must replicate such
structures. All real minimal surfaces are locally unstable, as the Jacobian
matrix has both positive and negative real roots. However, like a soap film
between two rings (the Catenoid minimal surface) boundary conditions can
stabilize the system, globally. This global stabilization may exist only for a
limited range. As a homework problem [112] p.235, Landau demonstrates
that the minimal soap film between two rings of equal diameter is globally
stabilized as long as the separation of the rings is less that ~1.33 times the
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ring diameter. This effect has been demonstrated in a solution to the Navier-
Stokes equation [187]. If the boundary conditions (the rings) are not too
far apart the catenoid soap film of zero mean curvature and negative Gauss
curvature has a long persistent lifetime. The catenoid minimal surface has
one component. If the boundary conditions are too far apart, the catenoid
bifurcates into two components, where both the Gauss curvature and the
Mean curvature are zero.

For soap films it is should be remembered that the actual thin mem-
brane consists of two superposed surfaces, containing an interior media. Mo-
tion pictures (with a fast frame rate) of the bifurcation dynamics of a soap
film between two rings indicate that as the rings are slowly separated the bi-
furcation condition is reached and subsequently the catenoid double surface
contracts to a conical "focus" shape, and then separates into two cones. The
two cones continue to contract ultimately becoming the flat films across each
ring. This process has been demonstrated in exact solutions to the Navier-
Stokes equations which undergo a Saddle-Node Hopf bifurcation [187]. The
"catenoid" in the fluid is defined by the implicit surface where the function
of fluid helicity density vanishes, Φ = v · curl v⇒ 0.

1.2.2 Projective Fluctuations and dynamical systems

The first method of deducing a 1-form of Action from a dynamical system
will be based upon the dualism of projective geometry. The second method
(detailed below) will be to utilize the Hopf map, which is a non-linear time
dependent projection. To repeat some of the experimental observation, recall
that apparently the Falaco Solitons are globally stabilized by a "thread of
surface tension", or string, that connects the two dimples. If this "thread"
is severed, the endcaps do not diffuse away but decay immediately. It will
be demonstrated that the dynamical system that mimics the production of
the Falaco Solitons is a solution to the Navier-Stokes equations for a swirling
fluid. In effect, the Falaco Soliton is a bifurcation to a long lived topological
defect in a dissipative medium.

In this section the Falaco Solitons will be considered to be produced
by a dynamical system extended to include topological fluctuations. The
vector field V is an evolutionary field, but need not be a "kinematically per-
fect" velocity field. In short, consider the Falaco Solitons to be represented
by an "extended" dynamical system, topologically equivalent to an exterior
differential system of 1-forms,
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ωx = dx − Vx(x, y, z, t)dt⇒ 0, (1.1)

ωy = dy − Vy(x, y, z, t)dt⇒ 0, (1.2)

ωz = dz − Vz(x, y, z, t)dt⇒ 0. (1.3)

When all three 1-forms vanish, imposing the existence of a topological limit
structure on the base manifold of 4 dimensions, {x, y, z, t}, the result is equiv-
alent to a 1D solution manifold defined as a (perfect) kinematic system. The
solution manifold to the dynamical system is in effect a parametrization of
the parameter t to the space curve Cparametric in 4D space, where for kine-
matic perfection, [Vk, 1] is a tangent vector to the curve Cparametric. Off
the kinematic solution submanifold, the non-zero values for the 1-forms, ωk,
can be interpreted as topological fluctuations from "kinematic perfection".

If "kinematic perfection" is not exact, then the three 1-forms ωk

are not precisely zero, and have a finite non-zero triple exterior product
that defines a N − 1 = 3 form in the 4 D space. From the theory of
exterior differential forms it is the intersection of the zero sets of these three
hypersurfaces ωk that creates an implicit curve Cimplicit in 4D space.

Cimplicit = ωxˆωyˆωz (1.4)

= dxˆdyˆdz −Vxdyˆdzˆdt+Vydxˆdzˆdt−Vzdxˆdyˆdt

= −i([V, 1])Ω4. (1.5)

The discussion brings to mind the dualism between points (rays) and hy-
persurfaces (hyperplanes) in projective geometry.

If a ray (a "point" in a the projective 3 space of 4 dimensions) is
specified by the 4 components of a the 4D vector [V, 1] multiplied by any
non-zero factor, κ, (such that [V, 1] ≈ κ[V, 1]), then the equation of a dual
(or adjoint) projective hyperplane is given by the expression [A,−φ] such
that

hγ[A,−φ]| ◦ |κ[V, 1]i = 0. (1.6)

The principle of projective duality [149] implies that (independent from the
factors γ and κ)

φ = A ◦V. (1.7)
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A particularly easy choice is to assume that (to within a factor)

Ak = Vk, and φ = V ◦V, (1.8)

A = Vkdx
k − VkV

kdt. (1.9)

Vk(x, y, z, t) ≡ V k(x, y, z, t), (1.10)

where V k(x, y, z, t) are the 3 functions of the dynamical system.
Consider a dynamical system that has an adjoint projection that can

be encoded (to within a factor, 1/λ) on the variety of independent variables
{x, y, z, t} in terms of a 1-form of Action:

A = {Ak(x, y, z, t)dx
k − φ(x, y, z, t)dt}/λ(x, y, z, t). (1.11)

Note that it is presumed that this 1-form of Action has terms which have
the same physical dimension. In the general case, the coefficient functions
are canonical conjugates of the differentials of the independent variables. In
thermodynamics, the coefficients are presumed to be homogeneous of de-
gree 0, and are called intensive variables, while the differential functions, are
presumed to be homogeneous of degree 1, and are call extensive variables.
In special cases (of interest herein) the coefficients, Ak, are "dimensionless"
functions of the independent variables. For these special cases, it is possible
to first renormalize the coefficient functions by a choice of λ, then construct
the Jacobian matrix of the (renormalized covariant) coefficient functions:

[Jjk(A)] =
£
∂(Aj/λ)/∂x

k
¤
. (1.12)

This Jacobian matrix can be interpreted as a projective correlation mapping
of "points" (contravariant vectors) into "hyperplanes" (covariant vectors).
The correlation mapping is the dual of a collineation mapping,

£
J(Vk)

¤
,

which takes points into points. Linear (local) stability occurs at points where
the (possibly complex) eigenvalues of the Jacobian matrix, [Jjk(A)] , are such
that the real parts are not positive. The eigenvalues, ξk, are determined by
solutions to the Cayley-Hamilton characteristic polynomial of the Jacobian
matrix, [J(A)]:

Θ(x, y, z, t; ξ) = ξ4 −XMξ3 + YGξ
2 − ZAξ + TK ⇒ 0. (1.13)

As the elements of the Jacobian matrix are presumed to be real, then the sim-
ilarity coefficients are real. In such cases, the Cayley-Hamilton polynomial
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equation defines a family of implicit functions in the space of real variables,
XM (x, y, z, t), YG(x, y, z, t), ZA(x, y, z, t), TK(x, y, z, t). The functions XM ,
YG, ZA, TK are defined as the similarity invariants of the Jacobian matrix.
If the eigenvalues, ξk, are distinct, then the similarity invariants are given by
the expressions:

Linear

XM = ξ1 + ξ2 + ξ3 + ξ4 = Trace [Jjk] , (1.14)

Quadratic

YG = ξ1ξ2 + ξ2ξ3 + ξ3ξ1 + ξ4ξ1 + ξ4ξ2 + ξ4ξ3, (1.15)

Cubic

ZA = ξ1ξ2ξ3 + ξ4ξ1ξ2 + ξ4ξ2ξ3 + ξ4ξ3ξ1, (1.16)

Quartic

TK = ξ1ξ2ξ3ξ4 = det [Jjk] . (1.17)

Note that if the vector field Vk(x, y, z, t) is independent from time
(autonomous) then the Quartic similarity invariant is always zero, when λ =
1.

When the coefficients of the 1-form of action are homogeneous in
the sense that they have the same physical dimension to within a constant
factor, and when the independent variables (in this case x, y, z, s = ct) are
physical lengths, then eigenvalues are of "reciprocal length" and are defined
as "Curvatures". The Similarity Invariants then become linear, quadratic,
cubic and quartic compositions of curvatures. For example, the quadratic
curvature is then equivalent to the well known Gauss curvature of an implicit
hypersurface. If the renormalization (or "expansion") factor, λ, is the Gauss
map:

λ = (A2x +A2y +A2z + φ2)1/2. (1.18)

then Jacobian matrix of the "normalized" vector field becomes the Shape
matrix of differential geometry when λ is the the Gauss map. The renor-
malized components of the 1-form of Action are homogeneous of degree 0.
It is remarkable that the determinant of the Jacobian matrix constructed
from the renormalized vector field is always zero. For a 4 dimensional sys-
tem, this result implies that one eigenvector of the Jacobian has a zero eigen
value. This result does not imply that the Pfaff topological dimension of the
Action 1-form is less than 4. The similarity invariant vanishes TK = 0, but
the topological parity does not, K = dAˆdA 6= 0 . However, the Jacobian
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matrix of the normalized Action generated the shaped matrix of differential
geometry, and the eigenvalues have dimensions of curvature, or inverse extent
(like 1/r).

Cayley Hamilton Similarity Invariants (1.19)

of a Normalized Action 1-form

Linear Term

XM ⇒ Mean Curvature = Trace [Jjk] , (1.20)

Quadratic Term

YG ⇒ Gauss Curvature, (1.21)

Cubic Term

ZA ⇒ Adjoint Curvature (1.22)

Quartic Term

TK ⇒ 0 = det [Jjk] . (1.23)

Note that the 4th similarity invariant is zero for the Gauss map scaling. The
Gauss map scaling coefficient is chosen to be the quadratic isotropic Holder
norm of index 1. The choice of the Gauss map may be viewed as a projection
of the N dimensional variety to an implicit hypersurface of dimension N-1.
The similarity invariants can be related to curvatures under the projection,
but the choice of the Gauss map is special, for it is a topological constraint
forcing the similarity invariant of highest degree, TK , to vanish∗. Physical
significance can be associated with TK 6= 0, hence herein the objects of
interest are the similarity invariants, not the curvatures.

Bifurcation and singularity theory involve the zero sets of the simi-
larity invariants, and the algebraic intersections of the implicit hypersurfaces
so generated by these zero sets. Recall that the theory of linear (local)
stability requires that the eigenvalues of the Jacobian matrix have real parts
which are not greater than zero. For a 4th order polynomial, either all 4
eigenvalues are real; or, two eigenvalues are real, and two eigenvalues are
complex conjugate pairs; or there are two distinct complex conjugate pairs.
Local stability therefor requires:

∗A non-zero term TK will be related to the Higgs potential, and the Landau-Ginsberg
Ψ4 theory.
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Local Stability

XM ≤ 0, (1.24)

YG ≥ 0, (1.25)

ZA ≤ 0, (1.26)

TK ≥ 0. (1.27)

It should be remembered that the Cayley-Hamilton characteristic
polynomial in terms of similarity coordinates is a representation of a family
of implicit hypersurfaces in a 4D space. The function is

In that which follows, the similarity coefficients of the thermody-
namic 1-form, A, will be studied for physical systems of various Pfaff topo-
logical dimensions. In the next chapter, 1-forms representing turbulent non-
equilibrium systems will be studied as candidates for cosmological models.
At present, the focus will be directed to interpretations of 1-forms that can
be put into correspondence with dynamical systems, and their relationship
to Falaco Solitons.

1.2.3 Clues from the Hopf Map and Hopf vectors.

The Hopf Map and its Adjoint field of Pfaff dimension 4.

The second method of extracting a 1-form of Action from a given dynamical
system (vector field or a system of Pfaffian 1-forms) can be studied using
the Hopf map (with modifications) as an example. Again, the Hopf map
may be viewed as a projection from a domain of 4 variables to a domain
of three variables. If the three variables are interpreted as a velocity field,
then the method can define a dynamical system. The Hopf map is a rather
remarkable projective map from 4 to 3 (real or complex) dimensions that has
interesting and useful topological properties related to links and braids and
other forms of entanglement. In this sense, the range of the Hopf map can
be viewed as special example of constructing a dynamical system when the
three range functions are interpreted as a "velocity" vector field, [u, v, w], or
the components of a Pfaffian system {ωx, ωy, ωz}, As will be demonstrated,
the adjoint 1-form to the Hopf map satisfies the criteria of Local Stability,
and yet is not an integrable system. The 1-form deduced from the Hopf
map is of Pfaff Topological dimension 4, and admits irreversible dissipation
for processes in the direction of the Topological Torsion vector (See Vol 1.)

Consider the map from R4[X,Y,Z,S] to R3[u,v,w] given by the for-
mulas
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H1 = [u1, v1, w1] = [2(XZ + Y S), 2(XS − Y Z), (X2 + Y 2)− (Z2 + S2)].
(1.28)

The components [u1, v1, w1] can be considered as the velocity components of
a dynamical system. These formulas define the format of a Hopf map. The
3 component Hopf vector H1 is real and has the property that

H1 ·H1 = (u1)2 + (v1)2 + (w1)2 = (X2 + Y 2 + Z2 + S2)2. (1.29)

Hence a real (and imaginary) 4 dimensional sphere maps to a real 3 dimen-
sional sphere. If the functions [u1, v1, w1] are defined as [x/ct, y/ct, z/ct],
then the 4D sphere (X2 + Y 2 + Z2 + S2)2 = 1, implies that the Hopf map
formulas are equivalent to the 4D light cone. Other selections for the ordered
pairs of (X,Y,Z, S) (along with permutations of the 3 vector components)
give distinctly different Hopf vectors. For example,

H2 = [2(Y X − SZ),X2 + Z2 − Y 2 − S2,−2(ZY + SX)], (1.30)

is another Hopf vector, a map from R4 to R3, but with the property that
H2 is orthogonal to H1 :

H2 ·H1 = 0. (1.31)

Similarly, a third linearly independent orthogonal Hopf vector H3 can be
found

H3 = [X2 + Y 2 − Z2 − S2,−2(Y X + SZ), 2(−ZX + SY )] (1.32)

such that

H2 ·H1 = H3 ·H2 = H2 ·H3 = 0, (1.33)

H1 ·H1 = H2 ·H2 = H3 ·H3 = (X2 + Y 2 + Z2 + S2)2. (1.34)

The three linearly independent Hopf vectors can be used as a basis
of R3 excluding those points where the quartic form vanishes. The mapping
functions (u, v, w) of the Hopf vector can be differentiated with respect to
(X,Y,Z, S) to produce a set of three exact 1- form whose coefficients form 3
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independent 4 component vectors on R4. A 4th linearly independent vector
can be created algebraically by constructing the adjoint matrix to the matrix
of 3 independent 4 component vectors. The components of the 4 component
adjoint vector can be used to define the Hopf 1-form, AHopf . For H1, the 4
independent 1-forms are given by the expressions (where λ(X,Y,Z, S) is an
arbitrary scaling function):

d(u1) = 2Zd(X) + 2Sd(Y ) + 2Xd(Z) + 2Y d(S) (1.35)

d(v1) = 2Sd(X)− 2Zd(Y )− 2Y d(Z) + 2Xd(S) (1.36)

d(w1) = 2Xd(X) + 2Y d(Y )− 2Zd(Z)− Sd(S) (1.37)

AHopf = {−Y d(X) +Xd(Y )− Sd(Z) + Zd(S)}/λ (1.38)

This direction field can be used to construct a non-integrable 1-form,
A, of Pfaff dimension 4. It is some interest to examine the properties of the
adjoint 1-form, AHopf , defined hereafter as the Hopf 1-form. For λ = 1, it
follows that the Hopf 1-form is of Pfaff dimension 4. The exterior derivatives
of the basis frame produce the usual Cartan connection which is not affine-
torsion free in its subspaces. By this mechanism the differential structure of
R4 as induced by the Hopf map is determined.

The Hopf map can be viewed as a dynamical system with velocity
components [X,Y,Z, S]⇒ [U, V,W ], or the map can be viewed as a projective
non-linear map from a position vector in 4D to a position vector in 3D,
[X,Y,Z, S]⇒ [x, y, z]. In the position vector interpretation, the differentials
of the components of the position vector, [dX, dY, dZ] can be used to define
an affine mapping and topological fluctuations of kinematic perfection.

Properties of the Hopf map include:

1. The Hopf map is a map from 4 to 3 (real or complex) dimensions that
has interesting and useful topological properties related to links and
braids and other forms of entanglement.

2. The Hopf map is a projection which can be used to determine a global
basis frame for the variety in terms of 3 exact 1-forms and 1 adjoint
1-form which is of Pfaff dimension 4. The Frame field so defined has
non-zero affine torsion.
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3. The Hopf adjoint field can be used to represent, within a factor, the
1-form of Action (potentials) for a certain class of electromagnetic
fields that exhibit propagating non-zero topological torsion and non-
zero topological spin.

4. The Hopf map yields two pairs of orthogonal 3 vectors, one which is left-
handed and the other which is right handed. The 4 form of topological
parity, dAˆdA constructed from the respective adjoint fields is either
negative or positive.

5. The complex sum of two Hopf vectors generates a Cartan spinor.

Visualization of the Hopf Map created by Ken Shoemake

One of the interesting features of the unscaled Hopf 1-form is that it
is of Pfaff topological dimension 4, and satisfies the criteria of Local Stability.
Of particular interest is that the unscaled Hopf Map, and the unit normalized
(Gauss) Hopf map are locally stable
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The Chirality clue

The formula for the Hopf 1-form, A, (given in eq. (??)) can be generalized
to include two constant coefficients of chirality, Ω and Γ, to read

AHopf = {Ω · (−Y d(X) +Xd(Y )) + Γ · (−Sd(Z) + Zd(S))}/λ. (1.39)

The chiral coefficients, at first, will be presumed to be constants, but can have
any finite value, positive or negative. Each chiral pair, (−Y d(X) +Xd(Y )
and (−Sd(Z)+Zd(S)), can have the same or opposite chirality sense depend-
ing on the signs of Ω and Γ. The combination has the 4D appearance of
linked rinks. A 3D projected image of the linkages is given in the preceeding
figure.

For λ = 1, it follows that the Hopf 1-form is of Pfaff dimension 4
with the topological torsion 4 vector,

T4 = 2 · Ω · Γ · [X,Y,Z, S]. (1.40)

and with a "dissipation" coefficient,

Hopf Topological Parity (1.41)

K = dAHopfˆdAHopf (1.42)

= 8 · Ω · Γ · {dXˆdY ˆdZˆdS} ≶ 0. (1.43)

As the sign of the Topological Parity 4-form determines whether or not the
4D volume element is expanding or contracting, it follows that the relative
chirality sense of the two links is physically measurable.

The Jacobian matrix of the coefficients of the Hopf 1-form (for λ = 1)
becomes

JACHopf :=

⎡⎢⎢⎣
0 −Ω 0 0
Ω 0 0 0
0 0 0 −Γ
0 0 Γ 0

⎤⎥⎥⎦ , (1.44)

with eigenvalues e1 =
√−1Ω, e2 = −√−1Ω, e3 = √−1Γ, e4 = −√−1Γ, and
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with similarity invariants,

Hopf : Similarity Invariants

XM = 0 ≤ 0, (1.45)

YG = Ω2 + Γ2 ≥ 0, (1.46)

ZA = 0 ≤ 0, (1.47)

TK = Ω2Γ2 ≥ 0. (1.48)

Hence, from the theory of dynamical systems, the canonical Hopf 1-form is
locally stable. Note that both the Hopf Topological Parity, K, and the
Topological Torsion vector, T4, depend upon the sense of the two chirality
coefficients, Ω and Γ, but the similarity invariants do not. The topological
properties are chiral sensitive to antisymmetries, where the similarity coef-
ficients are not. If the chirality coefficients of the two Hopf rings are of
the same sense, then the dissipation coefficient is related to a contraction of
the 4D volume. If the chirality coefficients are of opposite sign, then the
dissipation coefficient corresponds to a 4D expansion.

As mentioned earlier, it is also of interest to consider factors λ that
are of the format of the Holder norm, where n and p are integers, and
(a, b, k,m) are arbitrary constants:

λ = (aXp + bY p + kZp +mSp)n/p. (1.49)

The exponents n and p determine the homogeneity of the resulting 1-form,
which is given below with an ambiguous format (R,L) depending on the
relative chirality of the two Hopf links:

ARL = A/λ = {Ω(Y d(X)−Xd(Y )) + Γ(−Sd(Z) + Zd(S))}/λ. (1.50)

For example, for n = 1, p = 2, and arbitrary constants, (a, b, k,m), the deter-
minant of the Jacobian matrix vanishes, implying that at least one eigenvalue
is zero. It follows that TK = 0, but remarkably the Pfaff Topological di-
mension of AHopf/λ remains equal to 4. If the coefficients (a, b, k,m) are
all equal to unity, then λ is in effect the Gauss map, and the Jacobian of
the normalized Hopf 1-form is the implicit form of the Shape Matrix. The
result demonstrates that TK = 0 does not imply that K = div T4 = 0.

For arbitrary n, p, and (a, b, k,m), the 3-form of topological (Hopf)
torsion becomes:

Topological Torsion = (A)ˆd(A) = i(T4)d(X)ˆd(Y )ˆd(Z)ˆd(S), (1.51)
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where the topological torsion 4 vector is equal to:.

T4 = 2 · Ω · Γ · [X,Y,Z, S]/λ2. (1.52)

The Torsion vector, T4, for the Hopf map is proportional to the position
vector from the four dimensional origin and represents an expansion or a
contraction process. The factor Λ depends upon the integers n and p as well
as the constants ( a,b,k,m).

The Topological Parity 4-form, whose coefficient is the 4 divergence
of the Torsion vector, T4,becomes

Topological Parity (1.53)

= d(A)ˆ(d(A) (1.54)

= 4(2− n) · Ω · Γ · d(X)ˆd(Y )ˆd(Z)ˆd(S)/λ2. (1.55)

It is most remarkable that for n=2, any p and any (a,b,k,m), and any relative
chirality, the topological parity of the rescaled 1-form vanishes; the resulting
scaled Hopf 1-form is of Pfaff Topological dimension 3, not 4. In such cases
the ratios of the integrals of the topological torsion 3 form over various closed
manifolds are rational, and the closed integrals of the 3-form are topological
deformation invariants (coherent structures). The topological torsion and
the topological parity are sensitive to the relative senses of Ω and Γ.

Next, for simplicity of expression consider the isotropic case, a =
1, b = 1, k = 1, m = 1, p = 2 and compute the similarity invariants. These
special choices, especially for the quadratic exponent p = 2 cause both XM

and ZA to vanish. (Other non-isotropic choices and other values for p can
force the linear and cubic similarity invariants to be positive.) Note that
the similarity invariants do not depend upon the relative senses of Ω and Γ.

λ = (Ω2(X2 + Y 2) + Γ2(Z2 + S2))n/2 (1.56)

XM = 0 ≤ 0, (1.57)

n = 0 YG = Ω
2 + Γ2 ≥ 0,

n = 1 YG = 1/λ
2 ≥ 0

n = 2 YG = 0
(1.58)

ZA = 0 ≤ 0, (1.59)

n = 0 TK = Ω
2 · Γ2/λ4 ≥ 0

n = 1 TK = 0 ≥ 0
n = 2 TK = −Ω2 · Γ2/λ4 ≤ 0.

(1.60)
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Note that for n=2, the Pfaff topological dimension of the renormal-
ized Hopf Action 1-form is 3, not for, as the d(AˆdA) = 0. However, the
quartic similarity invariant TK is not zero and is negative, but the quadratic
similarity invariant YG = 0. For n = 1, d(AˆdA) is not zero (and is positive).
The quartic similarity invariant TK = 0, but the quadratic similarity invari-
ant is positive and not zero. The odd similarity invariants vanish in both
cases. For n = 0 and n = 1, the conditions of local stability are satisfied.
For n = 2, the system is not locally stable.

The clues obtained from this study of Hopf maps focuses attention
on the concept of chirality components which cannot be ignored in the gen-
eral solution for a 1-form of Action, A. Moreover, the concept of chirality
sense is not contained in the similarity invariants (the coefficients enter as
squares) but is contained in the expressions for the Topological Torsion and
Topological Parity components of the non-equilibrium system. The moral
of the story is that not all physical properties are included in symmetries.

Spinors as linear combinations of Hopf Maps

It is also important at this point to realize that complex combinations of
Hopf vectors can be combined to form a 3D isotropic (null) complex position
vector, [z1, z2, z3]. The resulting real and an imaginary components have
the same magnitude and are orthogonal. In short, the Cartan Spinor [39]
can be represented as the complex sum of two Hopf vectors. The spinors
come in two triples of the form:

|σ12i = |H1i+ i |H2i with hσ12| ◦ |σ12i = 0 (1.61)

|σ23i = |H2i+ i |H3i with hσ23| ◦ |σ23i = 0 (1.62)

|σ31i = |H3i+ i |H1i with hσ31| ◦ |σ31i = 0. (1.63)

These complex combinations of Hopf vectors can be used to generate
solutions for which the Topological Torsion vanishes, and yet the Topological
Spin† is finite and quantized [164] [250]. The spinor combinations also can
be used to generate conjugate minimal surfaces, as will be demonstrated in
the next chapter.

It should be remembered that not all dynamic features are captured
by the similarity invariants of a dynamic system . The antisymmetric fea-
tures of the dynamics is better encoded in terms of Cartan’s magic formula.

†Topological Spin is another 3-form distinct from the concept of Topological Torsion.



38 Falaco Solitons

Cartan’s formula expresses the evolution of a 1-form of Action, A, in terms
of the Lie differential with respect to a vector field, V, acting on the 1-form
that encodes the properties of the physical system. For example, consider
the 1-form of Action (the canonical form of a Hopf system) given by the
equation (with a change of notation)

A = Ω · (−ydx+ xdy) + Γ · (−tdz + zdt). (1.64)

The Jacobian matrix of this Action 1-form has eigenvalues which are solutions
of the characteristic equation,

Θ(x, y, z, t; ξ)Hopf = (ξ
2 +Ω2)(ξ2 + Γ2)⇒ 0. (1.65)

The eigenvalues are two conjugate pairs of pure imaginary numbers, {iΩ,−iΩ}
and {iΓ,−iΓ} and are interpreted as "oscillation" frequencies. The similar-
ity invariants are XM = 0, YG = Ω2 + Γ2 > 0, ZA = 0, TK = Ω2Γ2 > 0.
The Hopf eigenvalues have no real parts that are positive, and so the Ja-
cobian matrix is locally stable. The criteria for a double Hopf oscillation
frequency requires that the algebraically odd similarity invariants vanish and
the algebraically even similarity invariants are positive definite. The stabil-
ity critical point of the Hopf bifurcation occurs when all similarity invariants
vanish. In such a case the oscillation frequencies are zero. This Hopf critical
point is NOT necessarily the same as the thermodynamic critical point, as
exhibited by a van der Waals gas. The oscillation frequencies have led the
Hopf solution to be described as a "breather". The Hopf system is a locally
stable system in four dimensions. Each of the pure imaginary frequencies
can be associated with a "minimal" hypersurface.

Suppose that Γ⇒ 0 such that ZA = 0, TK = 0 . Then the resulting
characteristic equation represents a "strange minimal surface" in the sense
that XM = 0, but with a Gauss curvature which is positive definite, YG =
Ω2 > 0. The curvatures of the implicit surface are imaginary. In differential
geometry, where the eigenfunctions can be put into correspondence with
curvatures, the Hopf condition, XM = 0, for a single Hopf frequency would
be interpreted as "strange" minimal surface (attractor ?). The surface would
be strange for the condition YG(hopf) = Ω

2 > 0 implies that the Gauss
curvature for such a minimal surface is positive. A real minimal surface has
curvatures which are real and opposite in sign, such that the Gauss curvature
is negative.

As a real minimal surface has eigenvalues with one positive and one
negative real number, the criteria for local stability is not satisfied for real
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minimal surfaces. Yet experience indicates that soap films can occur as
"stationary states". The implication is that soap films can be globally
stabilized, even though they are locally unstable.

As developed in the next section, the Falaco critical point and the
Hopf critical point are the same: all similarity invariants vanish. For the
autonomous examples it is possible to find an implicit surface, YG(hopf) =
YG(falaco) = 0, in terms of the variables {x, y, z; A,B,C...} where A,B,C...
are the parameters of the dynamical system.

Recall that the classic (real) minimal surface has real curvatures
with a sum equal to zero, but with a Gauss curvature which is negative
(XM = 0, YG < 0). Such a system is not locally stable, for there exist eigen-
values of the Jacobian matrix with positive real parts. Yet persistent soap
films exist under such conditions and are apparently stable macroscopically
(globally). This experimental evidence can be interpreted as an example of
global stability overcoming local instability.
1.2.4 The bifurcation to Falaco Solitons

Similar to and guided by experience with the Hopf bifurcation, the bifurca-
tion that leads to Falaco Solitons must agree with the experimental obser-
vation that the endcaps have negative Gauss curvature, and are in rotation.
The stability of the Falaco Soliton is global, experimentally, for if the singu-
lar thread connecting the vertices is cut, the system decays non-diffusively.
Hence the bifurcation to the Falaco Soliton can not imply local stability.
This experimental result is related to the theoretical confinement problem
in the theory of quarks. To analyze the problem consider the case where
the TK term in the Cayley-Hamilton polynomial vanishes (implying that one
eigenvalue of the 4D Jacobian matrix is zero). Experience with the Hopf
bifurcation suggests that Falaco Soliton may be related to another form of
the characteristic polynomial, where XM = 0, ZA = 0, YG < 0. This bi-
furcation is not equivalent to the Hopf bifurcation, but has the same critical
point, in the sense that all similarity invariants vanish at the critical point.
Similar to the Hopf bifurcation this new bifurcation scheme can be of Pfaff
topological dimension 4, which implies that the abstract thermodynamic sys-
tem generated by the 1-form (which is the projective dual to the dynamical
system) is an open, non-equilibrium thermodynamic system. The odd sim-
ilarity invariants of the 4D Jacobian matrix must vanish. However there
are substantial differences between the bifurcation that lead to Hopf solitons
(breathers) and Falaco solitons. Experimentally, the Falaco soliton appears
to have a projective cusp at the critical point (the vertex of the dimple) and
that differs from the Hopf bifurcation which would be expected to have a
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projective parabola at the critical point.
When TK = 0, the resulting cubic factor of the characteristic poly-

nomial can have 1 real eigenvalue, b, and 1 pair of complex conjugate eigen-
values, (σ + iΩ), (σ − iΩ). To be stable globally it is presumed that

Global Stability XM = b+ 2σ ≤ 0, (1.66)

ZA = b(σ2 +Ω2) ≤ 0, (1.67)

with YG = σ2 +Ω2 + 2bσ undetermined. (1.68)

If all real coefficients are negative then YG > 0, and the system is locally
stable. Such is the situation for the Hopf bifurcation. However, the Falaco
Soliton experimentally requires that YG < 0.

By choosing b ≤ 0, in order to satisfy ZA ≤ 0, leads to the constraint
that σ = −b/2 > 0, such that the real part of the complex solution is
positive, and represents an expansion, not a contraction. Substitution into
the formula for YG leads to the condition for generation of a Falaco Soliton:

YG(falaco) = Ω
2 − 3b2/4 < 0. (1.69)

It is apparent that local stability is lost for the complex eigenvalues of the
Jacobian matrix can have positive real parts, σ > 0. Furthermore it fol-
lows that YG < 0 (leading to negative Gauss curvature) if the square of the
rotation speed, Ω, is smaller than 3/4 of the square of the real (negative)
eigen value, b. This result implies that the "forces" of tension overcomes
the inertial forces of rotation. In such a situation, a real minimal surface is
produced (as visually required by the Falaco soliton). The result is extraor-
dinary for it demonstrates a global stabilization is possible for a system with
one contracting direction, and two expanding directions coupled with rota-
tion. The contracting coefficient b (similar to a spring constant) is related
to the surface tension in the "string" that connects the two global endcaps of
negative Gaussian curvature. The critical point occurs when Ω2 = 3b2/4.

It is conjectured that if the coefficient b is in some sense a measure of
of a reciprocal length (such that b ˜ 1/R, a curvature), then there are three
interesting formulas comparing angular velocity (orbital period) and length
(orbital radius).

Falaco : Ω2R2 = constant (1.70)

Kepler : Ω2R3 = constant (1.71)

Planck : Ω2R4 = constant. (1.72)
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The bifurcations to Hopf Solitons suggest oscillations of expansions and con-
tractions of imaginary minimal surfaces (or Soliton concentration breathers)
and have been exhibited in the certain chemical reactions such as the Besa-
louv - Zhabotinski system. On the other hand, the bifurcations to Falaco
Solitons suggest the creation of spiral concentrations, or density waves, on
real rotating minimal surfaces. The molal density distributions (or order
parameters) are complex. The visual bifurcation structures of the Falaco
Solitons in the swimming pool would appear to offer an explanation as to
the origin of (~flat) spiral arm galaxies at a cosmological level, and would
suggest that the spiral arm galaxies come in pairs connected by a topological
string. Moreover, the kinetic energy of the stars far from the galactic center
would not vary as the radius of the "orbit" became very large. This result
is counter to the Keplerian result that the kinetic energy of the stars should
decrease as 1/R.

If is assumed that the density distribution of star mass is more or
less constant over the central region of the spiral arm flat disc-like structures,
then over this region, the Newtonian gravitation force would lead to a "rigid
body" result, Ω2R2 = R. If it is assumed that the density distribution then
decreases dramatically in the outer regions of the spiral arms, then it has been
assumed that Keplerian formula holds. The following Figure demonstrates
the various options:

This result will be mentioned again in the next chapter, where a Cos-
mological theory is developed in terms of non-equilibrium defect structures
embedded in a turbulent dissipative very dilute non-equilibrium extension of
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a van der Waals gas.

1.3 Falaco Solitons in exact solutions to the Navier-Stokes equa-
tions.

The idea that multiple parameter Dynamical Systems can produce tertiary
bifurcations was studied by Langford [117]. His developments were orga-
nized about certain non-linear equations in polar coordinates, with multiple
parameters (r, θ, z, t;A,B, , ..).

dr/dt = rg(r, z,A,G,C) (1.73)

dθ/dt = 1 (1.74)

dz/dt = f(r, z,A,B,D) (1.75)

It is remarkable that these tertiary bifurcations can be demonstrated to be
solutions of the Navier-Stokes equations in a rotating frame of reference [191].
Langford was interested in how these "normal" forms of dynamical systems
could cause bifurcations to Hopf breather-solitons. Herein, it is also of
interest to determine how and where these dynamical systems can cause
bifurcations to Falaco rotational solitons.

It is of some pedagogical utility to transform the Langford equations
to {x, y, z} coordinates with parameters, A,B, .... In polar coordinates, a
map between the variables {x, y, z}⇒ {r, θ, z} leads to the following expres-
sions:

r =
p
x2 + y2, dr = (xdx+ ydy)/

p
x2 + y2, (1.76)

θ = tan(y/x), dθ = ±(ydx− xdy)/(x2 + y2) (1.77)

z = z, dz = dz (1.78)

Substitution of the differentiable map into the polar equations yields the
system of 1-forms

ω1 = dr − rg(r, z,A,B...)dt (1.79)

= (xdx+ ydy)/
p
x2 + y2 − rg(r, z,A,B...)dt (1.80)

ω2 = dθ − Ωdt = ±(ydx− xdy)/(x2 + y2)− ωdt (1.81)

ω3 = dz − f(r, z,A,B)dt. (1.82)

The 3-form C composed from the three 1-forms becomes to within an arbi-
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trary factor,

ω1ˆω2ˆω3 = i(ρV4)Ω4 = i(ρV4)dxˆdyˆdzˆdt, (1.83)

= −{Vxdyˆdzˆdt−Vydxˆdzˆdt+Vzdxˆdyˆdt− dxˆdyˆdt},
where V4 = [V3, 1]. (1.84)

with

Vx = {∓Ωy + (xg(r, z,A,B...} (1.85)

Vy = {±Ωx+ (yg(r, z,A,B...)} (1.86)

Vz = f(r, z,λ, α) (1.87)

The rotation speed (angular velocity) is represented by Ω. The Langford ex-
amples are specializations of the functions f(r, z,A,B...) and g(r, z,A,B...).
The following examples yield solutions to the similarity invariants for three
of the Langford examples that he described as the Saddle Node Hopf bifurca-
tion, the Hysteresis Hopf bifurcation, and the Transcritical Hopf bifurcation.

The similarity invariants are computed for the projective dual 1-
form,

Projective dual 1-form A = Vkdx
k − VkV

kdt. (1.88)

It can be shown that the Pfaff topological dimension of the projective dual
1-form of each of the examples below is 4. This fact implies that the abstract
thermodynamic system is an open system far from thermodynamic equilib-
rium [247]. Thermodynamic systems of Pfaff dimension 4 are inherently
dissipative, and admit processes which are thermodynamically irreversible.
Such irreversible processes are easily computable, and are proportional to
the 3-form of Topological Torsion, AˆdA. If

for i(T4)Ω4 = AˆdA, (1.89)

such that hT4| ◦ |V4i = 0, (1.90)

then the dynamical system is not representative of an irreversible process.
For a physical system represented by the projective dual 1-form, and a process
defined by the direction field of the dynamical system, the process is irre-
versible only if it has a component in the direction of the Topological Torsion
vector. Direct computation indicates that for the projective dual 1-form
composed of the components of an autonomous dynamical system, then a
necessary condition for reversibility in an abstract thermodynamic sense is
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that the helicity density must vanish. Hence a sufficient condition for irre-
versibility is

Theorem 1 Autonomous processesV (such that ∂V/∂t = 0) are irreversible
if V ◦ curl V 6= 0
1.3.1 Saddle-Node: Hopf and Falaco bifurcations

The dynamical system

f = A+Bz2 +D(x2 + y2) (1.91)

g = (G+ Cz) (1.92)

dx/dt = Vx = x(G+ Cz)∓ Ωy (1.93)

dy/dt = Vy = y(G+ Cz)±Ωx (1.94)

dz/dt = Vz = A+Bz2 +D(x2 + y2) (1.95)

Similarity Invariants for A = Vkdx
k − V kVkdt

XM = 2(G+ Cz +Bz) (1.96)

YG = +Ω2 − 2CD(x2 + y2) +G2 + 2G(C + 2B)z

+C2(1 + 4B)z2 (1.97)

ZA = +{2Bz}Ω2 + 2(G+ Cz)(GBz + CBz2

−DC(x2 + y2) (1.98)

TK = 0 (1.99)

The similarity invariants are also chiral invariants with respect to
the sign of the rotation parameter, Ω. The criteria for Hopf oscillations
requires that XM = 0, and ZA = 0. When these constraints are inserted
into the formula for YG they yield YG(hopf). The criteria for oscillations is
that YG(hopf) > 0.

Hopf Constraint YG(hopf) = +3Ω2 −B2z2 > 0, (1.100)

Oscillation frequencies : ω = ±
q
YG(hopf) (1.101)

Note that YG(hopf) is a quadratic form in terms of the rotation parameter.
When YG(hopf) < 0, it is defined as YG(falaco). It is therefor easy to identify
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the tension parameter, b, for the Falaco Soliton by evaluating the Falaco
formula

YG(falaco) = Ω2 − 3b2/4 < 0. (1.102)

Falaco tension b2 = 4B2z2/9. (1.103)

The coefficient b can be interpreted as the Hooke’s law force (tension) associ-
ated with a linear spring extended in the z direction, with a spring constant
equal to 2/3B. Indeed, computer solutions to the Saddle node Hopf sys-
tem indicate the trajectories can be confined internally to a sphere, and that
Falaco surfaces of negative Gauss curvature are formed at the North and
South poles by the solution trajectories.

Helicity = V ◦ curl V (1.104)

Helicity = −(C(x2 + y2) + 2A+ 2Bz2)Ω

If the process described by the dynamical system is to be reversible in a
thermodynamic sense, then the Helicity must vanish. This constraint fixes
the value of the rotation frequency Ω in the autonomous system for reversible
bifurcations.

The Hopf-Falaco critical point in similarity coordinates can be mapped
to an implicit surface in xyz coordinates, eliminating the rotation parameter,
Ω.

YG(hopf−critical) = YG(falaco−critical) = −(3DC(x2 + y2) + 4B2z2)⇒ 0.
(1.105)

Depending on the values assigned to the parameters, and especially the signs
of C and D, the critical surface is either open or closed. When the critical
surface function is positive, the Hopf-Falaco bifurcation leads to Hopf Solitons
(breathers), and if the critical surface function is negative, the bifurcation
leads to Falaco Solitons.
1.3.2 Hysteresis-Hopf and Falaco bifurcations

f = A+Bz +Ez3 +D(x2 + y2) (1.106)

g = (−G+ Cz) (1.107)

dx/dt = Vx = x(−G+ Cz)∓ Ωy (1.108)

dy/dt = Vy = y(−G+ Cz)±Ωx (1.109)

dz/dt = Vz = A+Bz +Ez3 +D(x2 + y2) (1.110)
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Similarity Invariants for A = Vkdx
k − V kVkdt

XM = 2(Cz +G) + (B + 3Ez2) (1.111)

Y g = Ω2 + {G2 − 2GB − 2DC(x2 + y2)}+ {2G(B − C)}z
+{C2 − 6GE}z2 + {6CE}z3 (1.112)

ZA = {B + 3Ez2}Ω2 + {2GCD(x2 + y2) +G2B}+
{−2C2D(x2 + y2)− 2GCB}z + {3G2E + C2B}z2
+{−6GCE}z3 + {3C2E}z4 (1.113)

TK = 0 (1.114)

The criteria for Hopf oscillations requires that XM = 0, and ZA = 0. When
these constraints are inserted into the formula for YG they yield YG(hopf).
The criteria for oscillations is that YG(hopf) > 0.

Hopf Condition YG(hopf) = 3Ω2 − 3/2(Ez2)(3/2(Ez2) +B)− 1/4B > 0.(1.115)

Oscillation frequency ω = ±
q
YG(hopf). (1.116)

Note that (like the Saddle Node Hopf case) YG(hopf) is a quadratic form in
terms of the rotation parameter. It is therefor easy to identify the tension
parameter for the Falaco Soliton by evaluating the Falaco formula

YG(falaco) = Ω2 − 3b2/4 < 0, (1.117)

Falaco tension b2 = (9E2z4 + 6BEz2 +B2)/9. (1.118)

In this case the tension is not that of a linear spring, but instead can be
interpreted as a non-linear spring constant for extensions in the z direction.
Indeed, computer solutions to the Hysteresis - Hopf - Falaco system indicate
the trajectories can be confined internally to a sphere-like surface, and that
Falaco minimal surfaces are visually formed at the North and South poles
[117].

Helicity = V ◦ curl V
Helicity = −{C(x2 + y2) + 2A+ 2z(B +Ez2)}Ω.

If the process described by the dynamical system is to be reversible in a
thermodynamic sense, then the Helicity must vanish. This constraint fixes
the value of the rotation frequency Ω in the autonomous system for reversible
bifurcations.
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The Hopf-Falaco critical point in similarity coordinates can be mapped
to an implicit surface in xyz coordinates, eliminating the rotation parameter,
Ω.

YG(hopf−critical) = YG(falaco−critical) = −(3DC(x2+y2)+(3EZ2+B)2)⇒ 0.
(1.119)

Depending on the values assigned to the parameters, and especially the signs
of C and D, the critical surface is either open or closed. When the critical
surface function is positive, the Hopf-Falaco bifurcation leads to Hopf Solitons
(breathers), and if the critical surface function is negative, the bifurcation
leads to Falaco Solitons. Note that if E = 0, DC < 0, then there is a circular
limit cycle in the x,y plane. Direct integration of the differential equations
demonstrates the decay to this attractor.

1.3.3 Transcritical Hopf and Falaco Bifurcations

The dynamical system

f = Az +Bz2 +D(x2 + y2)) (1.120)

g = A−G+ Cz (1.121)

dx/dt = Vx = x(A−G+ Cz)∓ Ωy (1.122)

dy/dt = Vy = y(A−G+ Cz)±Ωx (1.123)

dz/dt = Vz = Az +Bz2 +D(x2 + y2) (1.124)

Similarity Invariants for A = Vkdx
k − V kVkdt

XM = 3A− 2G+ 2(C +B)z (1.125)

Y g = +Ω2 − 2CD(x2 + y2) + (4CB + C2)z2 + 2z(2B(A−G)

+C(2C −G) + (G2 + 3A2 − 4GA) (1.126)

ZA = +{A+ 2Bz}Ω2 +A3 + 2A2Bz − 2GA2 − 4AGBz + 2CzA2
+4ACz2B − 2ACy2D +G2A+ 2G2Bz − 2GCzA− 4GCz2B
+2GCy2D + C2z2A+ 2C2z3B − 2C2zy2D
+2Dx2C(G−A− Cz) (1.127)

TK = 0 (1.128)

The similarity invariants are chiral invariants relative to the rotation para-
meter Ω. The criteria for Hopf oscillations requires that XM = 0, and
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ZA = 0. When these constraints are inserted into the formula for YG they
yield YG(hopf). The criteria for (breather) oscillations is that YG(hopf) > 0.

Hopf Condition YG(hopf) = 3Ω2ABz −B2z2 − 1/4A2 > 0 (1.129)
Oscillation frequency ω = ±

q
−YG(hopf) (1.130)

Note that (again) YG(hopf) is a quadratic form in terms of the rotation pa-
rameter. It is therefor easy to identify the tension parameter for the Falaco
Soliton by evaluating the Falaco formula

YG(falaco) = Ω2 − 3b2/4. (1.131)

Falaco tension b2 = (4B2z2 +A2)/9ABz). (1.132)

In this case the tension is again to be associated with a non-linear spring
with extensions in the z direction.

Helicity = V ◦ curl V

Hbifurcation = −{C(x2 + y2) + 2z(A+Bz)}Ω.
If the process described by the dynamical system is to be reversible in a
thermodynamic sense, then the Helicity must vanish. This constraint fixes
the value of the rotation frequency Ω in the autonomous system for reversible
bifurcations.

The Hopf-Falaco critical point in similarity coordinates can be mapped
to an implicit surface in xyz coordinates, eliminating the rotation parameter,
Ω.

YG(hopf−critical) = YG(falaco−critical) = −(3DC(x2 + y2) + (2Bz +A)2)⇒ 0.
(1.133)

Depending on the values assigned to the parameters, and especially the signs
of C and D, the critical surface is either open or closed. When the critical
surface function is positive, the Hopf-Falaco bifurcation leads to Hopf Solitons
(breathers), and if the critical surface function is negative, the bifurcation
leads to Falaco Solitons. Note that if B = 0, DC < 0, then there is a circular
limit cycle in the x,y plane. Direct integration of the differential equations
demonstrates the decay to this attractor.
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1.3.4 Minimal Surface Hopf and Falaco Bifurcations

The utility of Maple becomes evident when generalizations of the Langford
systems can be studied.

The dynamical system

f = A+Bz + Fz2 +Ez3 +D(x2 + y2)) (1.134)

g = G+ Cz (1.135)

dx/dt = Vx = x(G+ Cz)∓ Ωy (1.136)

dy/dt = Vy = y(G+ Cz)±Ωx (1.137)

dz/dt = Vz = A+Bz + Fz2 +Ez3 +D(x2 + y2)) (1.138)

can be studied with about as much ease as all of the preceding examples.
An especially interesting case is given by the system

f = A+ P sinh(αz) +D(x2 + y2)) (1.139)

g = G+ Cz (1.140)

dx/dt = Vx = x(G+ Cz)∓ Ωy (1.141)

dy/dt = Vy = y(G+ Cz)±Ωx (1.142)

dz/dt = Vz = a+ P sinh(αz) +D(x2 + y2)) (1.143)

Similarity Invariants for A = Vkdx
k − V kVkdt

XM = 2(G+ Cz) + αP cosh(αz) (1.144)

Y g = +Ω2 − 2CD(x2 + y2) + (G+ Cz)2

+2(G+ Cz)Pα cosh(αz) (1.145)

ZA = (+Ω2 + (G+ Cz)2)Pα cosh(αz)

−2CD(G+ Cz)(x2 + y2) (1.146)

TK = 0 (1.147)

The similarity invariants are chiral invariants relative to the rotation para-
meter Ω. The criteria for Hopf oscillations requires that XM = 0, and
ZA = 0. When these constraints are inserted into the formula for YG they
yield YG(hopf). The criteria for (breather) oscillations is that YG(hopf) > 0.
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Hopf Condition YG(hopf) = 3Ω2 − 1/4α2P 2(cosh(αz))2 > 0(1.148)
Oscillation frequency : ω = ±

q
−YG(hopf) (1.149)

Note that (again) YG(hopf) is a quadratic form in terms of the rotation pa-
rameter. It is therefor easy to identify the tension parameter for the Falaco
Soliton by evaluating the Falaco formula

YG(falaco) = Ω2 − 3b2/4. (1.150)

Falaco tension b2 = (α2P 2(cosh(αz))2)/3). (1.151)

In this case the tension is again to be associated with a non-linear spring
with extensions in the z direction.

Helicity = V ◦ curl V

Hbifurcation = −{C(x2 + y2) + 2(A+ P sinh(αz))}Ω.
If the process described by the dynamical system is to be reversible in a
thermodynamic sense, then the Helicity must vanish. This constraint fixes
the value of the rotation frequency Ω in the autonomous system for reversible
bifurcations.

The Hopf-Falaco critical point in similarity coordinates can be mapped
to an implicit surface in xyz coordinates, eliminating the rotation parameter,
Ω.

YG(hopf_critical) = YG(falaco_critical) (1.152)

= −{3DC(x2 + y2) + α2P 2(cosh(αz))2}⇒ 0.(1.153)

When the parameters DC have a product which is negative, then the critical
surface is the catenoid — A Minimal Surface. That is the Hopf critical surface
is an implicit surface of given by the equation,

(x2 + y2) = {(α2P 2)/(3|DC|)}(cosh(αz))2 (1.154)

The throat diameter of the catenoid is proportional to the coefficient

Diam = 2
p
(α2P 2)/(3|DC|). (1.155)
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The dissipation coefficient due to a non-zero divergence of the Topo-
logical Torsion 3-form is

K = 8 · Ω{(x2 + y2) · (C2z +GC + PDcosh(αz)α) (1.156)

+Pcosh(αz)α(a+ Psinh(αz))} (1.157)

This minimal surface solution to the Navier-Stokes equations mimics some
of the minimal surface features of Falaco Solitons. By adding a singularity
to the dynamical system the extent of the minimal surfaces can be made
compact.

1.4 Falaco Solitons as Landau Ginsburg structures in micro and
mesoscopic systems

The Falaco experiments lead to the idea that such topological defects are
available at all scales. Consider the possibility in the microphysical domain
that is governed by the Landau - Ginsburg theory. With a change of
notation (ξ ⇒ Ψ), the Universal Phase function, eq(1.13 ), can be solved for
the similarity invariant TK ,

TK = −{Ψ4 −XMΨ
3 + YGΨ

2 − ZAΨ}. (1.158)

The similarity invariant TK represents the determinant of the Jacobian ma-
trix. All determinants are, in effect, N - forms on the domain of independent
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variables. All N-forms can be related to the exterior derivative of some N-1
form or current, J. Hence

dJ = TKΩ4 = (divJ+∂ρ/∂t)Ω4 = −(Ψ4−XMΨ
3+YGΨ

2−ZAΨ)Ω4. (1.159)

For currents of the form

J = grad Ψ, (1.160)

ρ = Ψ, (1.161)

the Universal Phase function generates the universal Ginsburg Landau equa-
tions

∇2Ψ+ ∂Ψ/∂t = −(Ψ4 −XMΨ
3 + YGΨ

2 − ZAΨ). (1.162)

The work of the previous chapter which applied the concepts of the universal
phase function to the study of Falaco Solitons suggests a strong connection
between Falaco Solitons and Landau-Ginsburg theory. The Falaco Solitons
consist of spiral "vortex defect" structures (analogous to CGL theory) on a
two dimensional minimal surface, one at each end of a 1-dimensional "vortex
line" or thread (analogous to GPG theory). Remarkably the topological
defect surface structure is locally unstable, as the surface is of negative Gauss
curvature. Yet the pair of locally unstable 2-D surfaces is globally stabilized
by the 1-D line defect attached to the "vertex" points of the minimal surfaces.

For some specific physical systems it can be demonstrated that period
(circulation) integrals of the 1-form of Action potentials, A, lead to the

concept of "vortex defect lines". The idea is extendable to "twisted vortex
defect lines" in three dimensions. The "twisted vortex defects" become the
spiral vortices of a Complex Ginsburg Landau (CGL) theory , while the
"untwisted vortex lines" become the defects of Ginzburg-Pitaevskii-Gross

(GPG) theory [236].
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For super cold Bose Einstein condensates, the rotation defect struc-
tures have been described as U-shaped vortex singularities with dimples on
the ends of the vortex "lines". the rotational minimal surfaces of nega-
tive Gauss curvature which form the two endcaps of the Falaco soliton, like
quarks, apparently are confined by the string. If the string (whose "tension"
induces global stability of the unstable endcaps) is severed, the endcaps (like
unconfined quarks in the elementary particle domain) disappear (in a non-
diffusive manner). In the microscopic electromagnetic domain, the Falaco
soliton structure offers an alternate, topological, pairing mechanism on a
Fermi surface, that could serve as an alternate to the Cooper pairing in
superconductors.

In the macroscopic domain, the experiments visually indicate "al-
most flat" spiral arm structures during the formative stages of the Falaco
solitons. In the cosmological domain, it is suggested that these universal
topological defects represent the ubiquitous "almost flat" spiral arm galax-
ies. In the next chapter, the conjecture is made that the cosmological uni-
verse is indeed a configuration of topological defects associated with the mass
fluctuations of a universal (deformable) van der Waals gas near its critical
point.
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1.5 Summary

As the Falaco phenomena appears to be the result of a topological defect, it
follows that as a topological property of hydrodynamic evolution, it could ap-
pear in any density discontinuity, at any scale. This rotational pairing mech-
anism, as a topological phenomenon, is independent from size and shape,
and could occur at both the microscopic and the cosmic scales. In fact, as
mentioned above, during the formative stages of the Falaco Soliton pair, the
decaying vortex structures exhibit spiral arms easily visible as caustics ema-
nating from the boundary of each vortex core. The observation is so striking
that it leads to the conjecture: Can the nucleus of M31 be connected to the
nucleus of our Milky way galaxy by a tubular cosmic thread? Can material
be ejected from one galaxy to another along this comic thread? Can barred
spirals be Spiral Arm galaxies at an early stage of formation - the bar be-
ing and exhibition of material circulating about the stabilizing thread? At
smaller scales, the concept also permits the development of another mecha-
nism for producing spin-pairing of electrons in the discontinuity of the Fermi
surface, or in two dimensional charge distributions. Could this spin pairing
mechanism, depending on transverse wave, not longitudinal wave, coupling
be another mechanism for explaining superconductivity? As the defect is
inherently 3-dimensional, it must be associated with a 3-form of Topological
Torsion, A^dA, introduced by the author in 1976 [170] [186] [187] [194], but
now more commonly called a Chern Simons term, when applied to prop-
erties of a linear connection. These ideas were exploited in an attempt to
explain high TC superconductivity [189]. To this author the importance of
the Falaco Solitons is that they offer the first clean experimental evidence of
topological defects taking place in a dynamical system. Moreover, the exper-
iments are fascinating, easily replicated by anyone with access to a swimming
pool, and stimulate thinking in almost everyone that observes them, no mat-
ter what his field of expertise. They certainly are among the most easily
produced solitons.

1.6 Some Anecdotal History

Just at the end of WW II, one of my first contacts at MIT was a Brazilian
young man named Jose Haraldo Hiberu FALCAO. He was in metallurgy
and I was in physics. We became close friends and roommates during the
period 1946-1950. He spent much of his time chasing the girls and playing
soccer for MIT. Now MIT is not known for its athletic achievements, and
when one weekend Haraldo scored two goals - giving MIT one of its few wins
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(ever) - the sports section of one of the Boston papers, misspelled his name
with the headline ~

"FALACO SCORES TWO GOALS - MIT WINS"

Frankly I do not remember the exact headline from more than 55
years ago, but one thing is sure: Haraldo FALCAO was known as FALACO
ever since.

Haraldo moved back to Brazil and our ways parted. I became inter-
ested in many things, the most pertinent to this story included topological
defects and topological evolution in physical systems. In 1986 I thought it
would be great fun to go to Rio to see my old college friend, and then go to
Machu Pichu to watch Haley’s comet go by. My son was an AA pilot, so as
parents we got a free Airline Ticket ticket to Brazil. Haraldo had married
into a very wealthy family and had constructed a superb house that his wife
had designed, hanging onto a cliff-side above Sao Coronado beach south of
Rio. Haraldo had a white marble swimming pool next to the house fed by a
pristine stream of clear water.

The morning after my wife and I arrived in Rio (Haraldo’s chauffeur
met us at the airport in a big limo) I got up, after sleeping a bit late, and
went to the pool for a morning dip. Haraldo and his family had gone to
work, and no one was about. I sat in the pool, wondering about the fortunes
of life, and how Haraldo - who I had help tutor to get through MIT - was
now so very wealthy, and here I was - just a pauvre university professor. I
climbed out of the pool, and was met by two servants who had been waiting
in the wings. One handed me a towel and a terry cloth robe, and the other
poured coffee and set out some breakfast fruit, croissants, etc.

I put a lot of sugar into the strong Brazilian coffee, as Haraldo had
taught me to do long ago, and was stirring the coffee when I turned toward
the pool (about 5-10 minutes after climbing out of the pool). In the otherwise
brilliant sunshine, two black disks (about 15 cm in diameter ) with bright
halo rings were slowing translating along the pool floor. The optics caught
my attention. Is there something about the southern hemisphere that is
different? Does the water go down the drain with a different rotation?
What was the cause of these Black Discs?

I went over to the pool, jumped in to investigate what was going
on, and Voila!!!, the black discs disappeared. I thought: Here was my first
encounter of the third kind and I blew it.

I climbed out of the pool, again, and then noticed that a pair of
what I initially thought to be Rankine vortices was formed as my hips left the
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water, and that these rotational surfaces (which would be surface depressions
of positive Gauss curvature if they were Rankine vortex structures) decayed
within a few seconds into a pair of rotational surfaces of negative Gauss
curvature. Each of the ultimate rotational surfaces were as if someone had
depressed slightly a rubber sheet with a pencil point, forming a dimple. As
the negative Gauss curvature surfaces stabilized, the optical black disks were
formed on the bottom of the pool. The extraordinary thing was that the
surface deformations, and the black spots, lasted for some 15 minutes !!!.
They were obviously rotational solitons.

The rest is history, and is described on my website and in several
published articles in some detail. The first formal presentation was at the
1987 Austin Dynamic Days get together, where my presentation and photos
cause quite a stir. The Black Discs were quickly determined to be just
an artifact of Snell’s law of refraction of the solar rays interacting with the
dimpled surfaces of negative Gauss curvature. I conjectured that this Soliton
was a topological defect, which caused the mathematicians to take note.
It was then that I met Dennis Sullivan, who many years later, along with
Bobenko, would influence me again with the concept that minimal surfaces
and spinors were related ideas.

What was not at first apparent in the swimming pool experiment
was that there is a circular "string" — a 1D topological defect — that con-
nects the two 2D topological defects of negative Gauss curvature. The string
extends from one dimple to the other. The string becomes evident if you
add a few drops of dye to the water near the rotation axis of one of the
"dimples". Moreover, experimentation indicated that the long term soliton
stability was due to the global effect of the "string" connecting the two dim-
pled rotational surfaces. If the arc is sharply severed, the dimples do not
"ooze" away, as you would expect from a diffusive process; instead they dis-
appear quite abruptly. It startled me to realize that the Falaco Solitons
have the confinement properties (and problems) of two quarks on the end of
a string.

I called the objects FALACO SOLITONS, for they came to my at-
tention in Haraldo’s pool in Rio. Haraldo will get his place in history. I knew
that finally I had found a visual, easily reproduced, experiment that could
be used to show people the importance and utility of Topological Defects in
the physical sciences, and could be used to promote my ideas of Continuous
Topological Evolution.

The observations were highly motivating. The experimental obser-
vation of the Falaco Solitons greatly stimulated me to continue research in
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applied topology, involving topological defects, and the topological evolution
of such defects which can be associated with phase changes and thermody-
namically irreversible and turbulent phenomena. When colleagues in the
physical and engineering sciences would ask “What is a topological defect?”
it was possible for me to point to something that they could replicate and
understand visually at a macroscopic level.

The topological ideas have led ultimately to

1. A non-statistical method of describing processes that are thermody-
namically irreversible.

2. Applications of Topological Spin and Topological Torsion in classical
and quantum field theories.

3. Another way of forming Fermion pairs

4. A suggestion that spiral galaxies may be stabilized by a connecting
"thread", and an explanation of the fact that stars in the far reaches
of galactic spiral arms do not obey the Kepler formula.

5. A number of patentable ideas in fluids, electromagnetism, and chem-
istry.

The original observation was first described at a Dynamics Days con-
ference (1987) in Austin, TX, [178] and has been reported, as parts of other
research, in various hydrodynamic publications, but it is apparent that these
concepts have not penetrated into other areas of research. As the phenom-
ena is a topological defect, and can happen at all scales, the Falaco Soliton
should be a natural artifact of both the sub-atomic and the cosmological
worlds. The reason d’etre for this chapter is to bring the idea to the at-
tention of other researchers who might find the concept of Falaco Solitons
interesting and stimulating to their own research.
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Chapter 2
COSMOLOGY AND THE NON EQUILIBRIUM VAN DER

WAALS GAS

2.1 Cosmic Strings and Wheeler Wormholes

In the previous chapter is was mentioned that during the early stages of
formation of the Falaco Solitons, caustics could be observed on the surface of
density discontinuity that mimic the spiral arms so often observed in paper
thin, almost "flat", galaxies such as our own Milky Way. The observation is
enhanced if chalk dust (or dirt) is deposited on the surface of the pool during
the first few seconds of Soliton formation. The observation is so stimulating
that it leads to the conjecture that perhaps the spiral arm galaxies of the
cosmos come in connected pairs. Could it be true that the Milky Way
galaxy and its spiral arm companion, M31 are Falaco Solitons connected by
some stabilizing thread? Only recently has photographic evidence appeared
suggesting that galaxies may be connected by strings.
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Indeed, the visual exhibition at the macroscopic level of dynamic
topological coherent structures in a swimming pool, connected by a string,
gives a level of credence to esoteric constructions of string theory. It is
strange that the string theorists have ignored the experimental observations
of Falaco Solitons where the "string" is neither microscopically small, nor
folded into another dimension.

It is also extraordinary that the Falaco Solitons appear to be macro-
scopic realizations of a deformed Wheeler wormhole. The wormhole struc-
ture was presented early on by Wheeler (1955), but was considered to be
unattainable in a practical sense. To quote Zeldovich p. 126 [267]

"The throat or "wormhole" (in a Kruskal metric) as Wheeler
calls it, connects regions of the same physical space which are ex-
tremely remote from each other. (Zeldovich then gives a sketch
that topologically is equivalent to the Falaco Soliton). Such a
topology implies the existence of ’truly geometrodynamic objects’
which are unknown to physics. Wheeler suggests that such ob-
jects have a bearing on the nature of elementary particles and anti
particles and the relationships between them. However, this idea
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has not yet borne fruit; and there are no macroscopic "geometro-
dynamic objects" in nature that we know of. Thus we shall not
consider such a possibility."

This quotation dates back to the period 1967-1971. Now the exper-
imental evidence (of Falaco Solitons) justifies Wheeler’s intuition, which has
so often been correct. Falaco Solitons are ’truly geometrodynamic objects’.

The minimal surface solution to the Navier - Stokes equations given
in the preceding chapter suggests a connection between Falaco Soliton topo-
logical defect structures and Wheeler worm holes. The Falaco Soliton end-
caps can be made to be compact by adding a closed component to the 1-form
of Action. In particular, the additional component gives a circulation (with-
out vorticity) that can be adjusted to compensate for the vorticity induced
circulation (due to bulk rotation of the fluid) at a fixed radius, r.

The picture describes the minimal surface structure of a Falaco Soliton
Pair.

By adding a singular vortex thread the topological structure can be made
compact.

2.2 A Cosmological Conjecture based on Continuous Topological
Evolution

The generation of almost flat spiral arm structures during the formation of
the Falaco Solitons, and the idea that these structures could be macroscopic
realizations of the Wheeler wormhole, suggests the possibility that topolog-
ical defects are the fundamental causes of inhomogeneities in the night sky.
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Recall, that size and shape have no crucial significance in a topological theory.
Therefor, topological things and effects that appear at the microscopic and
macroscopic scale should also appear at a cosmological scale. The objective
of this chapter is to examine topological aspects and defects of thermody-
namic physical systems - especially non-equilibrium thermodynamic systems
- and their possible continuous topological evolution, creation, and destruc-
tion on a cosmological scale. There are two ways of utilizing the concepts of
continuous topological evolution; both are based upon the assumption that
the universe can be modeled in terms of an exterior differential 1-form of
Action, A. The first method examines the features of the Pfaff topologi-
cal dimension and its evolution producing long-lived topological defects and
topologically coherent structures. The second method exploits the properties
that the Jacobian matrix of the coefficients of the 1-form of Action creates a
universal thermodynamic phase function, Θ, in terms of the Cayley-Hamilton
characteristic polynomial. That universal thermodynamic function contains
a realization of the Universe as a universal, deformable van der Waals gas.

The cosmological creation and evolution of stars and galaxies will
be interpreted herein in terms of a non equilibrium thermodynamic system
of Pfaff Topological dimension 4 subjected to irreversible processes. As ex-
plained below, based upon this single assumption it is possible to devise a
model of the universe which can be approximated in terms of the non equi-
librium states of a very dilute van der Waals gas near its critical point. The
stars and the galaxies are the topological defects, or coherent - but not equi-
librium - structures of Pfaff topological dimension 3 formed by irreversible
dissipative processes in this non equilibrium turbulent system of Pfaff topo-
logical dimension 4. The cosmology so constructed is opposite in viewpoint
to those efforts which hope to describe the universe in terms of properties
inherent in the quantum world of Bose-Einstein condensates, super conduc-
tors, and superfluids [246]. Both approaches utilize the ideas of topological
defects, but thermodynamically the approaches are opposite. The quan-
tum method involves, essentially, equilibrium systems, while the approach
presented herein is based upon non equilibrium systems.

The topological theory of the ubiquitous van der Waals gas leads
to a more mundane explanation of negative pressure (dark energy), string
tension (dark matter), irreversible dissipation due to expansion ("volume vis-
cosity"), and a Higgs potential (space time conformal inertial interaction).
All of these concepts appear as natural consequences of a non equilibrium
thermodynamics and a deformable version of a van der Waals gas near its
critical point. These ideas arise without invoking quantum mechanics per se,
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and without assuming microscopic quantum vacuum fluctuations. Fluctua-
tions are important, but in the sense that they are topological fluctuations
about a guiding fiber of kinematic perfection. Perhaps of more importance
is the fact that these thermodynamic consequences explicitly do not depend
upon the geometric constraints of metric or connection, and indeed impose a
different perspective on the concept of gravitational interaction as a possible
topological effect, rather than a geometrical idea.

For example, the concept of a fixed point can be identified with a
null eigenvector of a Jacobian matrix. The Jacobian matrix of a 1-form has
both symmetric and anti-symmetric parts.

J(∂Ak/∂x
m] = S+A. (2.1)

The components of the anti-symmetric part can be put into correspondence
with the exterior derivative of the 1-form of Action, dA. If the Pfaff topo-
logical dimension of dA is 4, such that K = dAˆdA 6= 0, then there does
not exist a null eigen vector such that i(Vnull)dA = 0. Written in matrix
language,

"Electromagnetic" Work i(Vnull)dA = A ◦ |Vnulli⇒ 0, (2.2)

on a symplectic manifold of Pfaff topological dimension 4 cannot be true.
However the concept of a fixed point implies that the similarity invariant of
the fourth order Cayley Hamilton polynomial must vanish, TK = 0. Hence:

J |Vnulli = S |Vnulli+A |Vnulli = 0. (2.3)

It follows that in such circumstances the symmetries must be balanced by
the anti-symmetries in the sense that

S |Vnulli = −A |Vnulli . (2.4)

The moral is that null vector constraints imply that symmetrical deforma-
tions S |Vnulli must be compensated by "electromagnetic" work A |Vnulli in
the turbulent non-equilibrium domain of Pfaff topological dimension 4. The
separation of "charge" is a possible remnant of "electromagnetic" work and
occurs via irreversible processes in domains of Pfaff topological dimension 4.

If the domain is of Pfaff dimension 3, then there exist null eigen
vectors of the 2-form dA and symmetrical deformations are not necessarily
linked to "electromagnetic" work.
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2.2.1 Landau’s argument for interactions of fluctuations

The original motivation for the conjecture that the universe is a turbulent
deformable van der Waals gas near its critical point is based on the classical
theory of correlations of fluctuations presented in the Landau-Lifshitz volume
on statistical mechanics [113]. When first reading Landau’s ideas (about
1965), the present author made a written note in the textbook margin that
Landau’s ideas might be a method of explaining the fact that the night sky is
not homogenous∗, and instead is filled with objects (called stars) that appear
to obey Newtonian gravitational attaction. However, the methods used in
this chapter to describe cosmology of the universe are not statistical, not
quantum mechanical, but instead are based on Cartan’s methods of exterior
differential forms and their application to the topology of thermodynamic
systems and their continuous topological evolution (see Vol. 1, or [188]).
Landau and Lifshitz emphasized that real thermodynamic substances, near
the thermodynamic critical point, exhibit extraordinary large fluctuations
of density and entropy. In fact, these authors demonstrate that for an
almost perfect gas near the critical point, the correlations of the fluctuations
can be interpreted as a 1/r potential giving a 1/r2 force law of attraction.
Hence, as a cosmological model, the almost, but not, perfect gas - such as
a very dilute van der Waals gas - near the critical point yields a reason
for both the apparent granularity of the night sky and for the 1/r2 force
law ascribed to gravitational forces between for massive aggregates. The
stars are topological defects in the otherwise homogeneous cosmos. Landau
also offers an argument for an inverse fourth power potential related to BE
attraction or FD repulsion (p. 373 [113]). It is remarkable that the law of
force is essentially the famous Maxwell 1/r5 law for non-equilibrium gases (p
238 [89])

2.2.2 The Universe as a Turbulent van der Waals Gas near the Critical
Point.

A topological (and non statistical) thermodynamic approach can be used to
demonstrate how a four dimensional variety can support a turbulent, non
equilibrium, physical system with universal properties that are homeomor-
phic (deformable) to a van der Waals gas [208]. The method leads to the
necessary conditions required for the existence, creation or destruction of
topological defect structures in such a non equilibrium system. For those
non-equilibrium physical systems that admit description in terms of an ex-
terior differential 1-form of Action potentials of maximal rank, a Jacobian

∗Counter to the then classic theory of a homogeneous cosmological universe
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matrix can be generated in terms of the partial derivatives of the coefficient
functions that define the 1-form of Action. When expressed in terms of
intrinsic variables, known as the similarity invariants, the Cayley-Hamilton
4 dimensional characteristic polynomial of the Jacobian matrix generates a
universal phase equation as a 4th order polynomial in the (complex) eigen
functions of the matrix. Certain topological defect structures can be put
into correspondence with constraints placed upon those (curvature) similar-
ity invariants generated by the Cayley-Hamilton 4 dimensional characteristic
polynomial. These constraints define equivalence classes of topological prop-
erties. It is assumed that the universe can be represented by such a 1-form
of Action of Pfaff Topological dimension 4.

The characteristic polynomial, or Phase function, can be viewed as
representing a family of implicit hypersurfaces. The hypersurface has an en-
velope which is related to a swallowtail bifurcation set of dynamical system
theory when the hypersurface is constrained such that the linear similarity
invariant vanishes (this constraint corresponds to the idea that the trace of
the Jacobian matrix vanishes). The swallowtail defect structure is homeo-
morphic (can be deformed) to the Gibbs surface of a van der Waals gas.

Another possible defect structure corresponds to the implicit hyper-
surface surface constrained such that the quartic similarity invariant vanishes
(this constraint corresponds to the idea that the determinant of the Jaco-
bian matrix vanishes). The constraint implies that at least one eigenvalue
is zero. On 4 dimensional variety (space-time) , this non degenerate hyper-
surface constraint leads to a cubic polynomial that always can be put into
correspondence with a set of non equilibrium thermodynamic states whose
kernel represents the equation of state of a van der Waals gas.

Hence the universal topological method for creating a universal phase
function in terms of the Cayley-Hamilton theorem for the Jacobian matrix of
a 1-form of Action, leads to a thermodynamic system that can be deformed
into a van der Waals gas. Near the critical point, a low density turbulent
non equilibrium media leads to the setting examined statistically by Landau
and Lifshitz in terms of classical fluctuations about the critical point.

The conjecture presented herein is that non equilibrium topologi-
cal defects in a non equilibrium 4 dimensional medium represent the stars
and galaxies, which are gravitationally attracted singularities (correlations of
fluctuations of density fluctuations) of a real gas near its critical point. Note
that the Cartan methods (in contrast to metrical theories) do not impose
(a priori) a constraint of a metric, connection, or gauge, but do utilize the
topological properties associated with constraints placed on the similarity
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invariants of the universal phase function.

2.2.3 Results

Based upon the single assumption that the universe is a non-equilibrium
thermodynamic system of Pfaff topological dimension 4 leads to a cosmology
where the universe, at present, can be approximated in terms of the non-
equilibrium states of a very dilute van der Waals gas near its critical point.
The stars and the galaxies are the topological defects and coherent (but
not equilibrium) self-organizing structures of Pfaff topological dimension 3
formed by irreversible topological evolution in this non-equilibrium system
of Pfaff topological dimension 4.

The turbulent non-equilibrium thermodynamic cosmology of a real
gas near its critical point yields an explanation for:

1. The granularity of the night sky as exhibited by stars and galaxies.

2. The Newtonian law of gravitational attraction proportional to 1/r2

[113].

3. The conformal expansion of the universe as an irreversible phenom-
enon associated with Quartic similarity invariants in the thermody-
namic phase function, and conformally related to dissipative effects
[169].

4. The possibility of domains of negative pressure (explaining what has
recently been called dark energy) due to a classical "Higgs" mecha-
nism for aggregates below the critical temperature (Cubic similarity
invariants or 3rd order curvature effects).

5. The possibility of domains where gravitational effects (quadratic sim-
ilarity invariants, or 2nd order Gauss curvature effects) appear to be
related to entropy and temperature properties of the thermodynamic
system.

6. The possibility of cohesion properties (explaining what has recently
been called dark matter) due to string or surface tension (linear simi-
larity invariants or 1st order Mean curvature effects).

7. Black Holes (generated by Petrov Type D solutions in gravitational the-
ory [42]) are to be related to Minimal Surface solutions to the Universal
thermodynamic 4th order Phase function.
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In this chapter, a review of the thermodynamic properties of the
Phase function will be made for the van der Waals gas. Then it will be
demonstrated that the results for the van der Waals gas are deformable rep-
resentations for any thermodynamic system that can be encoded by a 1-form
of Action on a symplectic domain of Pfaff topological dimension 4. The
theory is not complete, but a number of conjectures that offer explanations
of current cosmology are made. These ideas do not depend a priori upon
metric or connection of current gravity theories, nor do the depend upon
the zoo of quantum virtual particles and quanta that currently are used to
describe the cosmological vacuum,

2.3 The Ubiquitous Universal van der Waals Gas

In this section, the algebraic and thermodynamic features of both an equi-
librium and non-equilibrium van der Waals gas are reviewed. Then, the
general universal method for generating the thermodynamic phase function
for a non-equilibrium thermodynamic system of Pfaff Topological dimension
4 is carried out in some detail. The concept and physical importance of the
Pfaff Topological dimension is summarized in this chapter, but is expressed
in much more detail in Vol. 1.

The simplistic equation of state for an ideal (perfect) gas consisting
of "parts" that do not interact is given by the equation,

Ideal Gas: P/RT = ρ = n/V. (2.5)

The "perfect" gas does not encode certain thermodynamic features (phase
transitions and critical point behavior) which are observable in "real" gases.
It has been argued that the "real" gas consists of n geometric "parts" that in-
teract with one another, in contrast to an ideal gas, where geometric features
(size and shape) of such "parts" and their interactions had been ignored. The
classic interpretation is that n represents the number of moles, where moles
is interpreted in terms of microscopic "molecules". Motivated by such ideas,
van der Waals created, phenomenologically, an equation of state for "real"
gases in terms of two parameters, a and b, which were introduced to encode
the interaction and geometric size features of the "molecular" components.
The resulting formula for an equation of state was cubic in the molar density,
ρ = n/V.

Van der Waals: P =
ρRT

1− bρ
− aρ2, (2.6)

or: abρ3 − aρ2 + {RT + bP}ρ− P = 0. (2.7)
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The formula has enjoyed remarkable success for qualitatively explaining the
thermodynamic features of real gases. The formula represents an implicit
surface in the space of variables, {P, T, ρ}. However, the development was
phenomenological, and although motivated by the concept of microscopic
"molecules", the fundamental properties were independent from the geomet-
ric size of its parts. From a topological point of view, size is not of primary
concern. Topological properties of interest to this monograph are indepen-
dent from size and shape. What is important is the number of parts, the
number of holes, the limit points, the orientation, and other homeomorphic
properties that can change under continuous topological evolution. As Som-
merfeld has said (without explicit reference to topology, but inferring that
microscopic molecules are not of thermodynamic importance):

"The atomistic, microscopic point of view is alien to thermo-
dynamics. Consequently, as suggested by Ostwald, it is better
to use moles rather than molecules." p. 11 [224].

The ideal gas approximation has been found to be of utility to the
study of agglomerates of parts that range from the geometric size of nuclei
to the geometric size of stars. A major purpose of this section is to demon-
strate the universality of the topological van der Waals gas to the study of
condensates of all types of "parts" in non equilibrium configurations based
upon topological issues.

By differentiating the Van der Waals equation of state with respect
to the molar density, it can be determined that there exists a "critical point"
on the hypersurface at which the values of the Pressure, Temperature and
molar density take on values such that

at the critical point, Pc/Tcρc = constant. (2.8)

When the thermodynamic variables are expressed in terms of dimensionless
(reduced) variables, scaled in terms of their values at the critical point, the
values of those parameters, a and b, which were used to model the geometric
- interaction - shape and geometric size features cancel out. In this sense,
the "renormalized" or "reduced" van der Waals equation of state becomes an
element of topological equivalent class with universal topological properties
(independent from scales). The reduced van der Waals equation is indepen-
dent from the size and interaction magnitudes of its component parts. In
terms of these dimensionless variables,eP = P/Pc, eV = V/Vc, eT = T/Tc, ρ = n/V, (2.9)
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the classic van der Waals equation may be considered as a cubic constraint
on the space of variables {n; eP, eT ,eρ} where eρ = n/eV is defined as the di-
mensionless molar density. The reduced universal van der Waals equation
of state is given by the classic cubic expression,

Classic Van der Waals equation

(in reduced variables)

0 = eρ3 − 3eρ2 + {(8eT + eP )/3}eρ− eP. (2.10)

It is this scale independent polynomial equation that promotes a correspon-
dence between topological ideas and thermodynamics. This formula should
be memorized, for it yields a direct connection of the van der Waals gas and
a cubic polynomial.

In the development that follows the formula will be related to the
Cayley-Hamilton equation for a non degenerate 4x4 real matrix. The Cayley-
Hamilton formula is of the type

Cayley-Hamilton polynomial = ξ4 −XMξ3 + YGξ
2 −ZAξ + TK = 0. (2.11)

The eigenvalues of the real matrix can be complex numbers, but as the
similarity coefficients, {XM , YG, ZA, TK} are all real, classic analysis yields
the result that eigenvalues form three equivalence classes:

1. 4 real eigenvalues.

2. 2 real eigenvalues, and 1 complex eigenvalue and its 1 complex conju-
gate.

3. 2 complex eigenvalues, and their 2 complex conjugates.

If TK = 0, then the Cayley-Hamiltonian equation becomes,

Cayley-Hamilton polynomial = (ξ3 −XMξ2 + YGξ
1 − ZA)ξ = 0, (2.12)

and the similarity coefficients are related to the "Curvatures" of the implicit
surface induced by the molar density. The first (cubic) factor can be put
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into direct correspondence with the Classic van der Waals equation

Van der Waals ξ = eρ, (2.13)

Linear :

ξ1+ξ2+ξ3+ξ4 = XM ⇒ 3, (2.14)

Quadratic :

ξ1ξ2+ξ2ξ3+ξ3ξ1+ξ1ξ4+ξ2ξ4+ξ3ξ4 = YG ⇒ (8eT + eP )/3 (2.15)

Cubic :

ξ1ξ2ξ3+ξ1ξ2ξ4+ξ2ξ3ξ4+ξ3ξ1ξ4 = ZA ⇒ eP (2.16)

Quartic :

ξ1ξ2ξ3ξ4 = TK . (2.17)

In the above formulas the ξ1, ξ2, ξ3, ξ4 are the local eigenvalues of the Jaco-
bian matrix.

Forces and energies associated with the Linear curvature are typi-
cal of surface tension effects. It becomes apparent that forces and ener-
gies associated with the Cubic similarity invariant represent the Pressures
of interactions. The Gauss quadratic similarity invariant is dominated by
temperature, with a pressure contribution.

A eP,eρ projection of the implicit universal van der Waals surface
is given in the next figure. The diagram displays a critical isotherm that
separates a single phase (the gas) from the different topological domains that
can be interpreted as liquids and vapor. The shape of the critical isotherm
should be remembered, for above the critical isotherm, there exists a unique
value for the pressure, and below the critical isotherm there is more than one
value for the pressure. This feature represents a topological property of the
van der Waals gas, and will have importance in the study of non equilibrium
systems. Of interest to cosmologists, the Pressure for the van der Waals
gas, for values below the critical isotherm, can take on negative values. As
will be shown below, the Phase function below the critical isotherm has the
shape of a Higgs (quartic) potential.
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Note the regions of Negative Pressure

There exists a dual surface to the equation of state as defined by
a Legendre transformation to the Gibbs function, g = u − Ts + Pv. The
implicit surface defined by the Gibbs function (for a van der Waals gas) is
not single valued, and appears as a deformation of a swallow tail bifurcation
set. The actual Gibbs surface for the van der Waals gas can be numerically
computed and is presented in the next Figure. An accurate drawing of the
3D Gibbs surface appears only occasionally in thermodynamic text books.
Most presentations, if in 3D, are given by sketches, and not by actual com-
putations. For example, in [2] p.196, the Gibbs surface misses the fact that
the Spinodal line forms a cusp at the critical point. In the figure below, the
salient features are displayed by numeric computation of the Gibbs surface
for the van der Waals gas. Remarkably, the dual Gibbs surface displays the
envelope features of the Universal Phase function. Recall that the envelope
is an element of the Renormalization Group[108]. The cuspoidal critical
point singularity, the winged cusp representing the Spinodal line, and the
Binodal self intersection are universal topological features of the discrimi-
nant (envelope) hypersurface. In the figure below, the white region is where
the temperature is above the critical isotherm and represents the pure gas.
The other sectors are below the critical isotherm, and are influenced by the
"Higgs" features of the Phase potential. The dark gray sector represents the
fluid phase, and the light gray sector represents the vapor phase. The light
"blue" sector represents the unstable mixed phase region.

Conjecture The topological features of the van der Waals gas
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are universal features (deformation invariants for all physical sys-
tems that admit a realization over 4D space-time variety. The
van der Walls gas is one element of a topological equivalence class.

Historically the two implicit surfaces defined by the reduced van der
Waals equation became quite useful to chemical engineers and led to the
law of corresponding states. If properties of a gas near its critical point
could be measured, then the law of corresponding states permitted estimates
to be made for the properties of the gas by comparison to the universal
van der Waals model. The topological results were independent of the
geometric parameters of size, b, and interaction, a. In this and following
sections, the universal topological features of the Phase function and the
Gibbs surface of the generalized† van der Waals gas will be developed and
applied to non equilibrium systems. The "generalization" consists of adding
a contribution to the reciprocal volume use in the interaction term. Recall
that non equilibrium requires that the Pfaff topological dimension of the
Action 1-form is 3 or greater in certain regions. Non equilibrium systems

†The "generalization" consists of adding a contribution to the reciprocal volume use in
the interaction term.
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can exist in "stationary" states where there topological coherence properties
are evolutionary invariants.

The principle (universal) topological defect structure of a van der
Waals gas is the existence of a critical point. When expressed in terms of
reduced coordinates, { eP, eT ,eρ}, the critical point of the implicit surface repre-
senting the equation of state, is where the reduced (dimensionless) functions
all have the common value unity. The topological significance of the critical
isotherm, which passes through the critical point, has already been mentioned
above.

Another important topological defect structure is the existence of a
Spinodal line, of ultimate phase stability, consisting of two parts that meet
in a cusp at the critical point. The Spinodal line will be established by an
edge of regression in the Gibbs surface.

Yet another topological defect structure is exhibited by the Binodal
line, defining portions of a ruled surface representing the region of mixed
phases. The Binodal line can be described by a deformation of a pitchfork
bifurcation emanating from the critical point, and line which outlines the
domain of mixed phases. The domain of mixed phase is related to regions
where the Pfaff topological dimension of the encoded physical system (the
1-form of Action) is at least 3. The domains of isolated single phase are
related to regions where the Pfaff topological dimension is 2 or less.

A lot can be learned from the van der Waals example, for its features
are experimentally verifiable. The universal qualities are obtained in terms of
variables that represent deformations and non equilibrium extensions of the
van der Waals properties. The van der Waals internal energy is a Lagrangian
(phase) function in terms of extensive variables. In the language of classical
mechanics, the Lagrange function is a function of the base variables, qk, and
their first derivatives, vk, or velocity "extensive" functions. A Legendre
transformation leads to a Hamiltonian function in terms of intensive vari-
ables, the momenta, pk. The classic van der Waals phase function defines
a hypersurface in the space of extensive variables of entropy, S, volume, V,
and energy, U . A Legendre transformation produces a "Gibbs-Hamiltonian"
function of intensive variables, temperature T, pressure, P, and Gibbs free
energy, Gibbs.

The zero sets of certain algebraic combinations of the similarity cur-
vature invariants of these hypersurfaces define universal topological features
of the physical system, which are of value to the study of both equilibrium and
non equilibrium systems. Rather that formulating the non equilibrium uni-
versal phase equation in a phenomenological manner, it will be demonstrated
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that such a universal phase function can be generated as the Cayley-Hamilton
polynomial equation of the Jacobian matrix for the 1-form of Action, A, that
represents the physical system. The topological Pfaff dimension of A permits
the delineation between those phase functions that represent non equilibrium
systems and those that do not.

The following subsections first will discuss the ideas associated with
Extensive and Intensive variables. Then the classic van der Waals expression
for a Phase equation will be used to define an internal energy surface in terms
of intensive variables. A dual construction will be used to create the Gibbs
energy in terms of intensive variables. The Gibbs surface is deformably
(topologically) equivalent to the swallow-tail discriminant, or envelope of the
classic phase equation. After this review of classical theory in the language of
topological evolution, the theory will be extended to include non equilibrium
systems of the closed and open types.

2.3.1 The Phase function for a van der Waals Gas

In the classical development of thermodynamics, the van der Waals gas is
often used as a cornerstone example. However, the phase function, Θ, given
in many textbook treatments is not explicitly homogeneous of degree 1 in
the extensive variables. A homogeneously correct formulation, to within a
constant, is given by the relation:

Θ{...S, V, n;U} = n[e
S

nCv (
V

n
− b)−

R
Cv − a

(Vn + cb)
− U

n
]⇒ 0. (2.18)

The constant b is a representative size of the "particles" that make up molar
quantities of the gas. Currently, it is usual to consider the "molar" quanti-
ties to be microscopic molecules, but the molar quantities from a topological
perspective can be any size, ranging from nuclei to stars. To repeat Som-
merfeld’s statement:

"The atomistic, microscopic point of view is alien to thermo-
dynamics. Consequently, as suggested by Ostwald, it is better
to use moles rather than molecules." p. 11 [224].

The constant a is representative of the interaction forces between
the molar quantities. The term a/(Vn )

2 has been described by Sommerfeld
as representing the "forces (or energy) of cohesion" p. 58 [224] . Note
that a correction factor, cb, has been added to the historical collision term
a/(V/n)→ a/(V/n+cb) in order to account for the finite interaction size (or
an effective scattering wavelength, or coherence length, cb) of the interacting
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molar particles. The coefficient c can be adjusted to give a better fit of the
van der Waals gas equation to the experimental data of Ωc = (nRTc/PcVc)
at the critical point.

This equation for Θ{S, V, n;U} satisfies the Euler condition for ho-
mogeneity of degree 1, with respect to the extensive variables {S, V, n;U} :

U∂Θ/∂U + V ∂Θ/∂V + S∂Θ/∂S + n∂Θ/∂n−Θ = 0. (2.19)

The partial derivatives the phase function, Θ, with respect to the extensive
variables may be used to define intensive variables, (P, T, µ, β),

(P = −∂Θ/∂V, T = ∂Θ/∂S, µ = −∂Θ/∂n, β = −∂Θ/∂U). (2.20)

From the phase function ( 2.18 ), partial differentiation yields:

T =
∂

∂S
(Θ) = (e

S
nCv (

V

n
− b)−

R
Cv )/Cv, (2.21)

P = − ∂

∂V
(Θ) =

nRT

V − bn
− a

n2

(V + cbn)2
. (2.22)

Differentiating P with with respect to V yields

∂P/∂V = − nRT

(−V + bn)2
+ 2a

n2

(V + cbn)3
, (2.23)

and differentiation again leads to

∂2P/∂V 2 = −2 nRT

(−V + bn)3
− 6a n2

(V + cbn)4
. (2.24)

The classic argument to determine the critical point sets these dif-
ferential relations to zero. The values of the thermodynamic variables at the
critical point are:

Vc = bn(2c+ 3), Tc =
8a/27

bR(c+ 1)
, Pc =

a/27

b2(c+ 1)2
. (2.25)

Note that if the critical molar density is defined as ρc = n/Vc, the previous
equations which leads to the universal constant, Ωc, independent from the
geometrical parameters {a, b}:

Ωc = R(ρcTc/Pc) = nRTc/PcVc = 8
c+ 1

2c+ 3
. (2.26)
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The reciprocal of Ωc is often defined as the compressibility, Z = 1/Ωc. For
the van der Waals gas (c = 0), Ωc=1/.375, but for many real gases, the
experimental value is closer to Ωc=1/.27. This result is in good agreement
with the value of c = 4.

For the classic van der Waals gas (c = 0), a rescaled equation of
state can be obtained in terms of the dimensionless variables, scaled by their
values at the critical point.

eρ = ρ/ρc eT = T/Tc eP = P/Pc (2.27)

0 = eρ3 − 3eρ2 + {(8eT + eP )/3}eρ− eP. (2.28)

At the critical point, eρ = 1, eT = 1, eP = 1. What is remarkable is that
the coefficients a and b introduced to better account for the properties of the
"particles" cancel out in the rescaled formulas. It is this feature that makes
the van der Waals gas formulas have a universal appeal, and leads to the idea
of "corresponding states".

The classic rescaled van der Waals formula leads to a critical isotherm
that topologically separates the pure gas phase from those regions that admit
liquid, or vapor, coexistent mixed phases. The "universal shape of the critical
isotherm is given in the figure below. It is a topological invariant and is to
be recognized by its distinctive shape.

For arbitrary coefficient c, the cubic formula for the reduced equa-
tion of state is also independent from the van der Waals parameters a and



The Ubiquitous Universal van der Waals Gas 77

b, but is of a somewhat more complicated format:

Θ = (8eTc3 + (27 + 8eT + eP )c2 + 54c+ 27)ρ3c
+((−27− eP + 16eT )c2 + (−54 + 16eT + 2 eP )c− 27)ρ2c
+((−2 eP + 8eT )c+ 8eT + eP )ρc)− eP ⇒ 0. (2.29)

ρc = eρ/(2c+ 3) (2.30)

2.3.2 The Jacobian Matrix of the Action 1-form.

The Cartan topological methods of exterior differential forms emphasize the
antisymmetric features of a physical system, especially through the anti-
symmetric matrix that encodes the 2-form dA. The more geometric formu-
lation of the van der Waals gas, as described in the previous section, can also
be obtained from the symmetrical differential properties of the coefficients of
1-form of Action, A. It will be assumed that the 1-form of Action, A, that
encodes the physical system, is of Pfaff topological dimension 4, except on
certain subspaces of the 4 independent variables.

It should be noted that from the point of view of dimensional analy-
sis each term in the Action 1-form is presumed to of the same "physical"
dimension. The coefficients are conjugate to the differentials. For projec-
tive realizations, the next step assumes that the coefficients are all of the
same physical dimension, and the differentials are all of the same "physi-
cal" dimension. This latter assumption is stronger than the idea that the
coefficients are intensive and the differentials are extensive.

The idea to be exploited in that which follows is that the Jacobian
matrix J =

£
∂Ak/∂x

j
¤
of partial derivative functions, created from the coeffi-

cients of the 1-form of Action, satisfies a Cayley-Hamilton matrix polynomial
equation, and a complex algebraic polynomial equation in terms of the eigen-
values, ξ, of the Jacobian matrix.

Cayley Hamilton polynomial = ξ4−XMξ3+YGξ
2−ZAξ1+TK = 0. (2.31)

The coefficients of the polynomials {XM , YG, ZA, TK} are invariant with re-
spect to similarity transformation of the Jacobian matrix, and in this (re-
stricted) sense the method is universal. The Jacobian matrix contains both
symmetric and anti-symmetric components, where the 2-form, dA, empha-
sizes the anti-symmetric features of the partial derivatives of the 1-form co-
efficients. The symmetric similarity properties are more related to euclid-
ean geometric properties of the physical system, but it should be realized
that congruence (size) and distance are additional requirements necessary
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for a euclidean geometry. Similarity transformations are special projective
transformations that preserve parallelism and orthogonality (or better said,
preserve points at infinity and the special point that defines the origin.)

It is assumed that this characteristic equation, as a polynomial of 4th
degree, is in effect a Universal Thermodynamic Phase function, Θ(x, y, z, t; ξ) :

Cayley-Hamilton polynomial = Θ(x, y, z, t; ξ) = 0. (2.32)

The Phase function is distinct for different categories of coefficient functions
that make up the 1-form of Action, A, but all such Phase functions are
related to the deformation equivalence classes that include the classic van
der Waals gas. The Universal Phase function defines a family of implicit
hypersurfaces in the space of "universal" coordinates defined in terms of the
similarity invariants, {XM , YG, ZA, TK}. It will be demonstrated how and
when the similarity invariants can be related to "curvatures" of the universal
implicit hypersurface. However, no metric is used explicitly to define the
"curvatures".

The non equilibrium extensions of the van der Waals gas (of Pfaff
topological dimension 4) are to a certain extent encoded in the third and
fourth order similarity invariants, ZA and TK , and the possibilities that the
polynomial can have complex roots. In order to describe topologically iso-
lated or equilibrium systems it is necessary (but not sufficient) these third
and fourth order similarity invariants vanish. The similarity invariants are
in effect symmetric averages of eigen values, which ignore the possible system
antisymmetries. It is this difference the characterizes the failure of geometric
concepts, (the quadratic metric form) and theories built on such symmetric
constraints, to capture thermodynamic irreversibility.

In the special isolated-equilibrium cases, the topological features of a
universal thermodynamic critical point, and a Spinodal line of ultimate phase
stability have realizations in terms of topological constraints on the phase
function implicit hypersurface that represents the universal equilibrium van
der Waals gas. When written in terms of curvatures it can be demonstrated
that the zero set of the quadratic similarity invariant (the Gauss curvature)
represents the Spinodal line, or the edge of regression in the Gibbs surface,
of a van der Waals gas. The thermodynamic critical point occurs when
both the Mean curvature and the Gauss curvature of the equilibrium surface
vanish. It is this universality that gives credence to the idea that the
4 dimensional universe could be represented as a non equilibrium van der
Waals gas near its critical point [208]. These concepts will be extended to
the non equilibrium systems in that which follows.
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2.3.3 The Non Equilibrium Characteristic Phase Function

The 1-form of Action, used to encode a physical system, contains other useful
topological information, as well as geometric information. Reconsider the
details of an open thermodynamic system generated by a 1-form of Action,
A, of Pfaff topological dimension 4. The component functions of the Action
1-form can be used to construct a 4x4 Jacobian matrix of partial derivatives,
[Jjk] = [∂(A)j/∂xk]. In general, this Jacobian matrix will be a 4 x 4 matrix
that satisfies a 4th order Cayley-Hamilton characteristic polynomial equa-
tion, Θ(x, y, z, t; ξ) = 0, with 4 perhaps complex roots representing the 4
perhaps complex eigenvalues, ξk, of the Jacobian matrix.

Θ(x, y, z, t; ξ) = ξ4 −XMξ3 + YGξ
2 − ZAξ

1 + TK ⇒ 0. (2.33)

The Cayley-Hamilton polynomial equation defines a family of implicit func-
tions, XM , YG, ZA, TK , in the space of real variables, (x, y, z, t). The func-
tions XM , YG, ZA, TK are the real similarity invariants of the Jacobian ma-
trix, even though the eigenvalues may be complex. If the eigenvalues are
distinct, then the similarity invariants are given by the expressions:

XM = ξ1 + ξ2 + ξ3 + ξ4 = Trace [Jjk] , (2.34)

YG = ξ1ξ2 + ξ2ξ3 + ξ3ξ1 + ξ4ξ1 + ξ4ξ2 + ξ4ξ3, (2.35)

ZA = ξ1ξ2ξ3 + ξ4ξ1ξ2 + ξ4ξ2ξ3 + ξ4ξ3ξ1, (2.36)

TK = ξ1ξ2ξ3ξ4 = det [Jjk] . (2.37)

The 4 fold degeneracy that defines the critical point has roots ξ = [1, 1, 1, 1],
such that XM = 4, YG = 6, ZA = 4, TK = 1. The critical point is not
a fixed point (with zero eigenvalues). These results facilitate the law of
corresponding states.

It should be noted that the characteristic polynomial is constructed
from the "symmetric" properties of the Jacobian matrix, in the sense that
the similarity coefficients are real combinations of complex numbers. On the
other hand the anti-symmetric components of the Jacobian matrix are em-
phasized by the Pfaff topological dimension constructed from anti-symmetric
differential forms, whose coefficients are the components of the anti-symmetric
parts of the Jacobian matrix. For example, there exist 1-forms of Action that
are of Pfaff topological dimension 4, yet the 4th order symmetric similarity
invariant TK ⇒ 0. Similarly, there are examples where ZA and TK both go to
zero, but the system defined by the 1-form of Action, A, is of Pfaff dimension
3, and therefor defines a non equilibrium system. If the Quartic term TK
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vanishes, then there exists a null eigen vector for the Jacobian matrix. If the
Pfaff topological dimension of the 1-form A is equal to 4, then there cannot
exist a null eigenvector for the anti-symmetric part of the Jacobian matrix.
The null eigenvector for the Jacobian must have non-zero results for both
the symmetric and anti-symmetric parts of the Jacobian matrix, separately.
In particular, the 1-form of Work, W = i(Vξ)dA evaluated for the null eigen
vector of the Jacobian matrix, can not be zero. The effect of the null eigen
vector on the symmetric parts of the Jacobian must cancel the effects of the
1-form of Work. Hence, as noted above for symplectic systems:

J |Vnulli = S |Vnulli+A |Vnulli = 0. (2.38)

It follows that in such circumstances the symmetries must be balanced by
the anti-symmetries in the sense that

S |Vnulli = −A |Vnulli . (2.39)

The moral is that null vector constraints imply that symmetrical deforma-
tions S |Vnulli must be compensated by "electromagnetic" work A |Vnulli in
the turbulent non-equilibrium domain of Pfaff topological dimension 4. The
separation of "charge" is a possible remnant of "electromagnetic" work and
occurs via irreversible processes in domains of Pfaff topological dimension 4.

From the theory of strings and surface tension, the XM term is - in
a sense - a linear deformation contribution to the "energy" of the system.
The coefficient YG can be related to the Gauss (quadratic) curvature of the
system, and is related to an area deformation contribution. The coefficient
ZA can be related to the Interaction (Cubic) curvature of the system, and is
related to a volume deformation contribution (a Pressure) to the "energy".
The last term TK is a quartic contribution and can be related to an expansion
or contraction of the 4 dimensional volume element.

Symbolically, multiply the phase function by u/ξ4 and and consider
u/ξ to be a length deformation, δLength, u/ξ

2 to be an area deformation,
δArea, u/ξ

3 to be a volume deformation, δV ol, and u/ξ4 to be an space-time
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expansion deformation, δExp_xyzt. The suggestive formula becomes

Θ = u−XM · δLength + YG · δArea (2.40)

−ZA · δV ol + TK · δExp_xyzt (2.41)

and by comparison with a van der Waals gas,

XM ≈ "String or Surface_tension" (2.42)

YG ≈ ”Temperature - Entropy" (2.43)

ZA ≈ ”Pressure - Interaction" (2.44)

TK ≈ xyzt- "Higgs" Expansion - Rotation (2.45)

Automatically, the phase function incorporates string or surface tension ef-
fects through XM , where XM can be related to a mean four dimensional
curvature expression. Gravity effects, related to the 4D Gauss curvature,
G = YG/6 are "area" related. From the idea that the entropy of a gravita-
tional black hole is related to an area, and the fact that the phase formula for
a van der Waals gas implies that YG is dominated by the temperature (see
eq(2.13), the universal phase formula suggests that the idea of gravity (and
the Gauss curvature) is a temperature - entropic concept, contributing energy
of the type TS. The phase formula for a van der Waals gas implies that the
ZA coefficient is related to Pressure (which can be both negative or positive),
and the energy contribution is of the type PV. The last term represents a
4D xyzt expansion, which from the topological theory of thermodynamics
presented above can be related to irreversible dissipation.

It is sometimes more convenient to express the similarity invariants
in terms of their averages, where the average is determined by dividing by the
number of non zero eigenvalues. This leads to a sequence of maps from the
original variety of independent variables, {x, y, z, t}⇒ {XM , YG, ZA, TK}⇒
{M,G,AB,K}. (Note that the symbol AB is used for the Adjoint cubic aver-
age in order to eliminate confusion with the 1-form A.) When the averaged
similarity invariants are treated as generalized coordinates, then the charac-
teristic polynomial becomes a Universal Phase function, and will be used to
encode universal thermodynamic properties.

A similar procedure can be applied to domains of lesser dimension.
For example, suppose the dimension of the domain is reduced from Pfaff
dimension 4 to Pfaff dimension 3 by the constraint that the determinant TK
vanishes (this corresponds to the reduction of a non equilibrium turbulent
system to a non equilibrium non turbulent system which can support steady
states). The Phase equation must have one null eigen value, that represents
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a null eigenvector, or fixed point of the Jacobian matrix. The Phase equation
with one eigenvalue = to zero (say ξ4 = 0) reduces to

Θ(x, y, z, t; ξ) = (ξ3 −XMξ2 + YGξ
1 − ZA)ξ ⇒ 0, (2.46)

with XM = (ξ1 + ξ2 + ξ3), (2.47)

YG = (ξ1ξ2 + ξ2ξ3 + ξ3ξ1), (2.48)

ZA = ξ1ξ2ξ3 = ZA, (2.49)

Conjecture An objective herein is to exploit the striking similar-
ity between the cubic factor of the 3D phase equation (eq. (2.46)),
and the cubic equation of the rescaled van der Waals gas given
by equation (2.28 ). The fundamental assumption is that the
eigen value of the Cayley-Hamilton characteristic polynomial for
the Jacobian matrix, [Jjk] = [∂(A)j/∂x

k], plays the role of the
rescaled molar density ρ/ρc in thermodynamics.

The critical point in 3D occurs for the set {XM = 3, YG = 3, ZA =
1, TK = 0} with ξ ⇔ eρ = [1, 1, 1, 0]. A comparison of the universal equation
and the van der Waals gas equation yields

3 = XM (2.50)

{8eT + eP}/3 = YG, (2.51)eP = ZA, (2.52)

For the classic van der Waals gas, it is apparent that the (linear) similarity
invariant (which is composed of the sum of molar density eigenvalues) is at its
critical point value, XM = 3. The (quadratic) similarity invariant is equal to
YG = ({8eT+ eP}/3) and is composed of both temperature and pressure terms.
The Adjoint (cubic) interaction similarity invariant is equal to ZA = eP , the
rescaled Pressure. It is remarkable that for the van der Waals gas, the linear
terms (representing string or surface tension effects, have been fixed at their
"Critical Point" values. These concepts will be presented in more detail in
chapter 3.

If a further reduction in dimension occurs to Pfaff dimension 2, (with
2 null eigenvalues) the Phase equation with {M,G}reduces to

Θ(x, y; z, t ξ) = (ξ2 −XMξ1 +XG)ξ
2 ⇒ 0, (2.53)

with XM = (ξ1 + ξ2), (2.54)

YG = (ξ1ξ2), (2.55)
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The critical point in 2D occurs for the set {XM = 2, YG = 1, ZA = 0, TK =
0} with ξk = [1, 1, 0, 0].

The reduced Phase function

There exists a well known transformation of complex variable which will re-
formulate the characteristic polynomial. Substitute ξ = s+M/4. The result
is a new "reduced" Phase polynomial Φ(x, y, z, t; s) = Θ(x, y, z, t; ξ)reduced
of the form

Φ(x, y, z, t; s) = s4 + gs2 − as+ k = 0. (2.56)

g = (−3X2
M/8 + YG) (2.57)

a = (XM/2)3 − YGXM/2 + ZA) (2.58)

k = TK − ZA(XM/4) + YG(XM/4)2

−3(XM/4)4 (2.59)

s = ξ −XM/4 (2.60)

The "reduced" Phase function is not the same as the "rescaled" Phase
function. The coefficients {g, a, k} are constructed from the real numbers
{XM , YG, ZA, TK}, of the reduced Phase polynomial. Hence polynomial
analysis implies that the eigenvalues of the reduced Phase function belong to
3 equivalence classes (See discussion following eq. 2.11).

For a van der Waals gas (XM = 3, TK = 0), the reduced coefficients
become

Van der Waals gas (2.61)

g = −27/8 + YG = −27/8 + {8eT + eP}/3 (2.62)

a = −27/8 + {8eT − eP}/2 (2.63)

k = −243/256 + TK − 9/16 eP + 3/2eT , (2.64)

s = ξ − 3/4. (2.65)

The critical point has been moved to s = 1/4 for the van der Waals gas,
as one of the eigenvalues is presumed to be zero. The reduced formula has
eliminated the cubic term in the universal phase function by displacing the
critical point to the origin in terms of the variable s, if all eigenvalues are
not zero.
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Consider the reduced Phase formula, and its derivatives with respect
to the family parameter, s.

Φ = s4 + gs2 − as+ k = 0, (2.66)

∴ k = −(s4 + gs2 − as), (2.67)

Φs = ∂Φ/∂s = 4s3 + 2gs− a = 0 (2.68)

∴ a = 4s3 + 2gs (2.69)

Φss = Φs = ∂2Φ/∂s2 = 12s2 + 2g = 0 (2.70)

∴ g = −6s2 (2.71)

Replacing the parameter a (from the envelope condition, Φs = 0) in the
equation for k yields

Thermodynamic Higgs Potential k = s2(3s2 + g). (2.72)

A plot of the equation for k is given below for various g and s,. The 4th order
shape of the function motivates the name "Thermodynamic Higgs Potential"

The Higgs potential is a Universal Envelope.
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In the general case with TK 6= 0, then g = 0, s=0, k=0, represents the
"critical point". Note that the set k=0 defines a pitchfork bifurcation. For
g (~reduced temperature) values below the critical point, the function k is a
polynomial of 4th degree, but above the "critical temperature" the function
k is quadratic. It is evident that below the critical isotherm, the "expansion"
term k can have both negative and positive values. The formula for the 4D
expansion coefficient therefor can also have positive or negative values. The
quartic "potential" is reminiscent of the "Higgs" potential in relativistic field
theories and the "Landau" potential in mean field theories. Note that these
properties have been obtained without explicit use of a metric or connection,
nor quantum mechanics.

From the van der Waals theory, the first partial derivative of the
classic phase function yields the Pressure. For the universal Phase polyno-
mial the pressure is determined by the equation Φs = 0, Indeed, the formula
a = 4s3 + 2gs yields the universal equation for a (the Pressure) in terms of
the molar density ”s”. A plot of a (Pressure) versus s (molar density) at
fixed g (temperature) gives the familiar cubic shape, deformably equivalent
to the van der Waals gas. For the critical temperature (g = 0) the shape of
the critical isotherm is exactly the same as for the critical isotherm of the van
der Waals gas. Both k (Expansion in dashed blue) and a (Pressure in solid
black) are presented in the following diagrams as constant g (~temperature)
slices above and below the critical point.
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The Critical Isotherm

The topology of the quartic phase (potential) function is separated by a
critical isotherm into two sectors. For temperatures below the critical tem-
perature, the quartic formula yields a Higgs-like sector where expansion prop-
erties k are negative, and where liquid and vapor phases can coexist. Above
the critical temperature the 4th order expansion properties k are positive,
and the sector has lost its Higgs-like properties. The critical isotherm,
g = 0 = (−3X2

M/8 + YG) defines a line of singularities separating the two
sectors. The shape of the curve mimics the dividing center of hysteresis
phenomena.

The Binodal line

The zero sets of the "reduced Pressure (a)” occur only for temperatures below
the critical point and are described by the solution formula, 0 = 4s3 + 2gs.
Along with the solution s = 0 coming from the second factor in the general
phase formula for zero k, Φ = s4 + gs2 − as = 0, a plot of the zeros of the
"reduced Pressure (a)” in the s−g plane yield the Binodal line as a pitchfork
bifurcation, with the transition occurring at the critical temperature. From
the van der Waals gas model, the Binodal line delineates the single phase
from the mixed phase regions. The Pitchfork is essentially the line of zero
first partial derivatives of the Higgs sector of the universal phase function.
This result appears to be the first non phenomenological derivation of the
Binodal line. These Pitchfork features are readily seen in the previous figure
giving a 3D version of the Higgs - van der Waals gas potential.

The Spinodal Line

A second piece of topological information can be obtained from those points
where the partial derivative of the pressure vanishes. These points are
given by solutions to the equation Φss = 12s2 + 2g = 0. Again only for
temperatures g below the critical point will the formula give a set of points
that describes classically what has been called the Spinodal line. In van der
Waals theory the Spinodal line defines the "limit" of single phase stability
and can only be realized transiently, in the absence of fluctuations. Both
Spinodal line (blue) and the Binodal line (black) are plotted in the next figure
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The Binodal line and the Spinodal line can be related to homology
invariants of projective transformations

2.3.4 Oscillations and the Hopf bifurcation

When the eigen values of the characteristic polynomial are pure imaginary,
Hopf oscillations can occur. Suppose that the complex eigenvalues are rep-
resented as {iα,−iα, iβ,−iβ}. Then the similarity invariants are XM =
0, YG = α2 + β2, ZA = 0, TK = α2β2. Hence the criteria for a double
Hopf oscillation frequency requires that the algebraically odd similarity in-
variants vanish and the algebraically even similarity invariants are positive
definite. (Recall that in the 3D theory of minimal 2D surfaces, the mean
curvature is related to the linear similarity invariant, XM ⇒ 0). For a sin-
gle dominant Hopf oscillation frequency (β ⇒ 0), the Hopf conditions are:
XM = 0, YG ⇒ α2 > 0, ZA = 0, TK ⇒ 0. These conditions can be computed
relatively easily, and will be demonstrated in the examples below. Note that
the minimal hypersurface condition XM ⇒ 0 may be satisfied by states with
YG < 0 in accord with the examples of soap films. Such conditions are related
to non oscillatory solitons which form "stationary states", but are globally
stabilized far from equilibrium. (See Chapter 1 on Falaco Solitons.)

2.3.5 Minimal surfaces

The Universal Phase function, Θ, may be considered as a family of implicit
hypersurfaces in the 4 dimensional space, {XM , YG, ZA, TK} with a complex
family (order) parameter, ξ. Moreover, it should be realized that the Uni-
versal Phase Function is a holomorphic function, Θ = φ+ iχ in the complex
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variable ξ = u+ iv. That is

Θ(XM , YG, ZA, TK ; ξ)⇒ φ+ iχ, (2.73)

where

φ = u4 − 6u2v2 + v4 −XM (u
2 − 3v2)u

+YG(u
2 − v2)− ZAu+ TK (2.74)

χ = 4(u2 − v2)uv −XM (3u
2 − v2)v + 2YGuv − ZAv, (2.75)

As such, in the 4D space of two complex variable pairs, {φ + iχ, u + iv},
according to the theorem of Sophus Lie, any such holomorphic function
produces a pair of conjugate minimal surfaces in the 4 dimensional space
{φ, χ, u, v}. It follows that there exist a sequence of maps,

{x, y, z, t}⇒ {XM , YG, ZA, TK}⇒ {φ, χ, u, v} (2.76)

such that the family of hypersurfaces can be decomposed into a pair of con-
jugate minimal surface components.

For a phase function generated by the constraints, XM = ZA ⇒ 0,
the minimal surface functions become defined by the equations

φ = u4 − 6u2v2 + v4 + YG(u
2 − v2) + TK (2.77)

χ = 4(u2 − v2)uv + 2YGuv. (2.78)

For the Hopf Map the eigenvalues are pure imaginary, hence

φHopf = +v4 + YG(−v2) + TK (2.79)

χ = 0. (2.80)

It is important to realize that the similarity invariant XM ⇒ 0 does not
define a minimal surface unless the Jacobian matrix of the 1-form is scaled
by the Gauss map.

Examples of conjugate pairs of minimal surfaces

The idea is that the complex position vector, V = [U, V,W ], whose real or
imaginary parts will map out a minimal surface in 3D, can be generated from
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the Weierstrass representation [146] in terms of the holomorphic function
H (') = φ+ iχ,

X(') =
R
(1−'2)H(')d' (2.81)

Y (') =
R
(1 +'2)H(')d' (2.82)

Z(') =
R
(2')H(')d' (2.83)

Rewriting H(') in the form

H(') = (b− ia)/2'2, with ' = −i exp(η + iξ) (2.84)

and substituting into the Weierstrass formulas yields the position vector to
a family of minimal surfaces of the form

X = a sinh(η) cos(ξ)− b cosh(η)sin(ξ) (2.85)

Y = a sinh(η)sin(ξ)− b cosh(η)cos(ξ) (2.86)

Z = a η + b ξ (2.87)

For a = 0 the surface is a catenoid; for b = 0 the surface is a helicoid. (see
p.70 in [144]). For a and b non zero, the minimal surface so generated consists
of two conjugate minimal surfaces intertwined (the example has a = b = .5)

Note that the conjugate pairs have different chirality. Other exam-
ples of such conjugate pairs are displayed below.
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Example of a fractal minimal surface

As a second example of the Sophus Lie theorem, consider the Holomorphic
function and its functional iterates

H1(') = ('2 −D), H2(') = (('2 −D)2 −D), ... (2.88)

According to the minimal surface theorem, this Holomorphic function repre-
sents a one (complex) parameter family of minimal surfaces in 4-dimensions.
It follows that the Mandelbrot set , which is given by the values of D for
which the function H1(') fails to iterate the origin (' = 0) to infinity is
the fractal envelope of a family of minimal surfaces in 4-dimensions parame-
terized by D = a+ ib. The compliment to the Mandelbrot set is a minimal
surface with a fractal boundary where all functional sequences iterate to in-
finity. Hence the "fractal" minimal surface is complete. The non-intuitive
conclusion is that a minimal surface can be fractal!

The "Gibbs entropy" minimal surface

As another surprising example, consider those functions of a complex vari-
able such that H(') = (∂F (')/∂')3. All functions F (') that have the
form

F (') = {α ' ln(') + C '}+ (B −D '2) (2.89)

= {Gibbs Entropy}+ (Mandelbrot generator) (2.90)

generate the same Weierstrass function,

H(') = (∂3F (')/∂'3) = 2α/'2. (2.91)

The format of F (') is strikingly reminiscent of those formulas that appear
in the literature to describe the Gibb’s entropy. The coefficients α,B,C and
D are presumed to be complex constants. Rewriting H(') in the form

H(') = (b− ia)/2'2, with ' = −i exp(η + iξ) (2.92)

and substituting into the Weierstrass formulas yields the position vector to a
family of minimal surfaces. When α is real then extremal minimal surface is
a catenoid again; when α is imaginary, the minimal surface is a helix. When
α is complex, the result is a pair of conjugate helicoids.
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The interesting features are :
1. All complex wave functions are related to a minimal surface

by this technique.
2. The primitive function F (') is related to the Helmholtz free

energy, and it is the "entropy" term, α ' ln(') that generates the family of
minimal surfaces known as the conjugate helicoids. (The topic of conjugate
helicoids will be revisited below.)

3. The resulting minimal surface is independent of the linear
term C ' and the "Mandelbrot germ", (B −D '2).

4. The Petrov type D classifications (which yield the only known
black hole solutions to the Einstein gravity theory [42]) are related to minimal
surfaces.

Envelopes

The theory of implicit hypersurfaces focuses attention upon the possibility
that the Universal Phase function has an envelope. The existence of an
envelope depends upon the possibility of finding a simultaneous solution to
the two implicit surface equations of the family:

Θ(x, y, z, t; ξ) = ξ4 −XMξ3 + YGξ
2 − ZAξ + TK ⇒ 0, (2.93)

∂Θ/∂ξ = Θξ = 4ξ
3 − 3XMξ2 + 2YGξ − ZA ⇒ 0, (2.94)

For the envelope to be smooth, it must be true that ∂2Θ/∂ξ2 = Θξξ 6= 0,
and that the exterior 2-form, dΘˆdΘξ 6= 0 subject to the constraint that
the family parameter is a constant: dξ = 0. The envelope as a smooth
hypersurface does not exist unless both conditions are satisfied (see Chapter
7).

The envelope is determined (to within a factor) by the discriminant
of the Phase Function polynomial, which, as a zero set, is equal to a universal
implicit hypersurface, DISCΘ⇒ 0, in the 4 dimensional space of similarity
variables {XM , YG, ZA, TK}. This function can be written in terms of the
similarity "coordinates" (suppressing the subscripts) as :

DISCΘ = 18X3ZY T − 27Z4 + Y 2X2Z2 − 4Y 3X2T

+144Y X2T 2 + 18XZ3Y − 192XZT 2

−6X2Z2T + 144TZ2Y − 4X3Z3

−27X4T 2 − 4Y 3Z2 + 16Y 4T

−128Y 2T 2 + 256T 3 − 80XZY 2T. (2.95)
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The discriminant (envelope) has eliminated the family order parameter, ξ.
An alternate formulation describes the discriminant of the Reduced

Phase phase function, Φ = Θreduced:

DISCΦ := −27a4 + 4(−g2 + 36k)ga2 + 16k(4k − g2)2. (2.96)

The hypersurface defined by the discriminant of the phase functionΘreduced =
Φ yields the (symmetrized) version of the universal swallow tail hypersurface.
A plot of the universal envelope Φ = 0 (in terms of the coordinates (g, a, k)
is given in the following Figure.

It is apparent that the van der Waals gas is a deformation of the
universal swallowtail hypersurface formed as the envelope of the reduced
phase function, Θreduced. It is remarkable that the Discriminant Envelope
of the the universal phase function, Θ, and the Discriminant Envelope of
the reduced phase function, Φ, are the same (in the space of coordinates
{XM , YG, ZA, TK}).

Remarkably, choosing the constraint condition in terms of the hy-
pothetical condition that the Mean similarity invariant Curvature vanishes,
XM ⇒ 0, leads to a domain in the 4D space where the reduced discriminant
defines a universal swallow tail surface homeomorphic (deformable) to the
Gibbs surface of a van der Waals gas (subscripts suppressed):

Minimal Surface : Universal Swallowtail Envelope XM ⇒ 0

DISCΘ(XM=0) = −27Z4 + 144TZ2Y − 4Y 3Z2 + 16Y 4T

−128Y 2T 2 + 256T 3 (2.97)

≈ DISCΘreduced = DISCΦ⇒ 0. (2.98)
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It must be remembered that this Minimal surface is a hypersurface in the
space of Pfaff topological dimension 4. Examples are given in that which
follows. In other words, the Gibbs function for a van der Waals gas is a
universal idea associated with minimal hypersurfaces, XM = 0, of thermo-
dynamic systems of Pfaff topological dimension 4. The similarity coordinate
TK plays the role of the Gibbs free energy, in terms of the Pressure (˜ZA)
and the Temperature (˜YG). The Spinodal line as a limit of phase stability,
and the critical point are ideas that come from the study of a van der Waals
gas, but herein it is apparent that these concepts are universal topological
concepts that remain invariant with respect to deformations

Another choice would be to constrain the envelope such that it re-
sides in a domain where the 1-form of Action is of Pfaff topological dimension
3. The physical system is closed, but it is not necessarily in equilibrium.
An equilibrium or isolated physical system consists of a single topological
component, or phase (the Cartan topology is a connected topology). Do-
mains where the Pfaff topological dimension represent mixed phases imply
more than 1 topological component, and are to be associated with regions
where the Pfaff topological dimension is ≥ 3. The case of Pfaff dimension 3
would correspond to regions where the 3-form of Topological Torsion is not
zero (the Cartan topology becomes a disconnected topology - See Chapter
4). Such non equilibrium domains correspond to the situation where the
determinant of the 4× 4 Jacobian matrix vanishes. That is, set TK = 0, to
obtain the (3D constrained) envelope DISC(TK=0):

DISC(TK=0) = Z2{−4X3Z + 18XZY + Y 2X2 − 4Y 3 − 27Z2}⇒ 0, (2.99)

It is remarkable that the bracketed formula (in X,Y,Z coordinates) is pre-
cisely the Cardano cubic formula that separates the topological features of
the generalized cubic equation. It is important to recognize that the de-
velopment of a universal non equilibrium van der Waals gas has not utilized
the concepts of metric, connection, statistics, relativity, gauge symmetries,
or quantum mechanics.

The Edge of Regression and Self Intersections

The envelope is smooth as long as ∂2Θ/∂Ψ2 = Θξξ 6= 0, and that the exterior
2-form, dΘˆdΘξ 6= 0 subject to the constraint that the family parameter is
a constant: dξ = 0. If dΘˆdΘξ 6= 0, but Θξξ = 0, then the envelope has a
self intersection singularity. If dΘˆdΘξ = 0, but Θξξ 6= 0, there is no self
intersection, and no envelope.
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If the envelope exists, further singularities are determined by the
higher order partial derivatives of the Universal Phase function with respect
to ξ.

∂2Θ/∂ξ2 = Θξξ = 12ξ
2 − 6XMξ + 2YG, (2.100)

∂3Θ/∂ξ3 = Θξξξ = 24ξ − 6XM . (2.101)

When ∂3Θ/∂ξ3 = Θξξξ 6= 0, and dΘˆdΘξˆdΘξξ 6= 0, the envelope terminates
in a edge of regression. The edge of regression is determined by the simul-
taneous solution of Θ = 0,Θξ = 0 and Θξξ = 0. Solving for ξ in Θξξ = 0
yields YG = ξ(3XM − ξ).

Reduced Phase Functions

Reconsider the reduced phase function, Φ, in terms of coordinate coefficients
{g, a, k}, and its partial derivatives with respect to the family parameter, s :

Φ = s4 + gs2 − as+ k = 0, (2.102)

Φs = ∂Φ/∂s = 4s3 + 2gs− a, (2.103)

Φss = ∂2Φ/∂s2 = 12s2 + 2g, (2.104)

DISCΦ = −27a4 + 4(−g2 + 36k)ga2
+16k(4k − g2)2 (2.105)

The reduced formula is more tractable for, if the family parameter is fixed,
then the equation represents a implicit surface in the space of coordinates,
{g, a, k}. A representation for this implicit surface DISCΦ = 0 was given
in the previous figure. It is an obvious deformation equivalent to the Gibbs
function for a van der Waals gas. The edge of regression is given by the zero
set of Φss = 0 or g = −6s2. Using this value in Φs = 0 permits a solution
for a in terms of s. Using these values for a and g in Φ = 0 gives the three
components of a position vector R =[−6s2,−8s3,−3s4] in {g, a, k} space for
the edge of regression. The result for the edge of regression in the g − a
plane is plotted below:
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The same function is plotted as the edge of regression for the Uni-
versal Swallow Tail in the previous Figure.

Universal Phase Function Minimal Surfaces

For the minimal surface representation of the Gibbs surface for a van der
Waals gas, the edge of regression defines the Spinodal line of ultimate phase
stability. The edge of regression is evident in the Swallowtail figure (Figure
2.1) describing the Gibbs function for a van der Waals gas. If Θξξ = 0, then
for XM = 0 the envelope has a self intersection. It follows from Θξξ = 0,
that ξ2 = −YG/6, which when substituted into

Θξ = 4ξ
3 + 2YGξ − ZA ⇒ 0, (2.106)

yields the

Universal (XM=0) Gibbs Edge of Regression : Z
2
A + Y 3

G(8/27) = 0,
(2.107)

which defines the Spinodal line, of the minimal surface representation for a
universal non equilibrium van der Waals gas, in terms of "similarity" coor-
dinates.

Within the swallow tail region the "Gibbs" surface has 3 real roots;
outside the swallow tail region there is a unique real root. The edge of regres-
sion furnished by the Cardano function defines the transition between real
and imaginary root structures. The details of the universal non equilibrium
van der Waals gas in terms of envelopes and edges of regression with com-
plex molal densities or order parameters will be presented elsewhere. These
systems are not equilibrium systems for the Pfaff dimension is not 2. Of
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obvious importance is the idea that the a zero value for both ZG and TK are
required to reduce the Pfaff dimension to 2, the necessary condition for an
equilibrium system.

Ginsburg Landau Currents

With a change of notation (ξ ⇒ Ψ), the Universal Phase function can be
solved for the determinant of the Jacobian matrix, which is equal to the
similarity invariant TK ,

TK = −{Ψ4 −XMΨ
3 + YGΨ

2 − ZAΨ}. (2.108)

The similarity invariant TK represents the determinant of the Jacobian ma-
trix. All determinants are in effect N - forms on the domain of independent
variables. All N-forms can be related to the exterior derivative of some N-1
form or current, J. Hence

dJ = TKΩ4 = (divJ+∂ρ/∂t)Ω4 = −(Ψ4−XMΨ
3+YGΨ

2−ZAΨ)Ω4. (2.109)

For currents of the form

J = grad Ψ, (2.110)

ρ = Ψ, (2.111)

the Universal Phase function generates the universal Ginsburg Landau equa-
tions

∇2Ψ+ ∂Ψ/∂t = −(Ψ4 −XMΨ
3 + YGΨ

2 − ZAΨ). (2.112)

2.3.6 Singularities as defects of Pfaff dimension 3

The family of hypersurfaces can be topologically constrained such that the
topological dimension is reduced, and/or constraints can be imposed upon
functions of the similarity variables forcing them to vanish. Such regions in
the 4 dimensional topological domain indicate topological defects or thermo-
dynamic changes of phase. It is remarkable that for a given 1-form of Action
there are an infinite number rescaling functions, λ, such that the Jacobian

matrix
h
Jscaledjk

i
= [∂(A/λ)j/∂x

k] is singular (has a zero determinant). For

if the coefficients of any 1-form of Action are rescaled by a divisor generated
by the Holder norm,

Holder Norm: λ = {a(A1)p + b(A2)
p + c(A3)

p + e(A4)
p}m/p, (2.113)
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then the rescaled Jacobian matrix£
Jscaledjk

¤
= [∂(A/λ)j/∂x

k] (2.114)

will have a zero determinant, for any index p, any set of isotropy or signa-
ture constants, a, b, c, e, if the homogeneity index is equal to unity: m = 1.
This homogeneous constraint implies that the similarity invariants become
projective invariants, not just equi-affine invariants. Such species of topo-
logical defects can have the image of a 3-dimensional implicit characteristic
hypersurface in space-time:

Singular hypersurface in 4D: det[∂(A/λ)j/∂xk]⇒ 0 (2.115)

The singular fourth order Cayley-Hamilton polynomial of [Jjk] then will have
a cubic polynomial factor with one zero eigenvalue.

For example, consider the simple case where the determinant of the
Jacobian vanishes: TK ⇒ 0. Then the Phase function becomes (for Pfaff
Dimension 3):

Universal Equation of State (2.116)

Θ({XM , YG, ZA, TK = 0}; ξ) (2.117)

= ξ(ξ3 −XMξ2 + YGξ − ZA)⇒ 0. (2.118)

The space has been topologically reduced to 3 dimensions (one eigen value is
zero), and the zero set of the resulting singular Universal Phase function be-
comes a universal cubic equation that is homeomorphic to the cubic equation
of state for a van der Waals gas.

When the rescaling factor λ is chosen such that p = 2, a = b =
c = 1,m = 1, then the Jacobian matrix, [Jjk] , is equivalent to the "Shape"
matrix for an implicit hypersurface in the theory of differential geometry.
(See Chapter 8.) Recall that the homogeneous similarity invariants can
be put into correspondence with the linear Mean curvature, XM ⇒ CM ,
the quadratic Gauss curvature, YG ⇒ CG, and the cubic Adjoint curvature,
ZA ⇒ CA, of the hypersurface. The characteristic cubic polynomial can
be put into correspondence with a nonlinear extension of an ideal gas not
necessarily in an equilibrium state.
2.3.7 The Adjoint Current and Topological Spin

From the singular Jacobian matrix,
h
Jscaledjk

i
= [∂(A/λ)j/∂x

k], it is always

possible to construct the Adjoint matrix as the matrix of cofactors trans-
posed:

Adjoint Matrix :
hbJkji = adjoint

£
Jscaledjk

¤
(2.119)
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When this matrix is multiplied times the rescaled covector components, the
result is the production of an adjoint current,

Adjoint current :
¯̄̄bJkE = hbJkji ◦ |Aj/λi (2.120)

It is remarkable that the construction is such that the Adjoint current 3-form,
if not zero, has zero divergence globally:bJ = i(bJk)Ω4 (2.121)

d bJ = 0. (2.122)

From the realization that the Adjoint matrix may admit a non zero globally
conserved 3-form density, or current, bJ, it follows abstractly that there exists
a 2-form density of "excitations", bG, such that

Adjoint current : bJ = d bG. (2.123)bG is not uniquely defined in terms of the adjoint current, for bG could have
closed components (gauge additions bGc, such that d bGc = 0), which do not
contribute to the current, bJ.

From the topological theory of electromagnetism [207] [200] there
exists a fundamental 3-form, AˆG, defined as the "topological Spin" 3-form,

Topological Spin 3-form : AˆG. (2.124)

The exterior derivative of this 3-form produces a 4-form, with a coefficient
energy density function that is composed of two parts:

d(AˆG) = FˆG−Aˆ bJ. (2.125)

The first term is twice the difference between the "magnetic" and the "elec-
tric" energy density, and is a factor of 2 times the Lagrangian usually chosen
for the electromagnetic field in classic field theory:

Lagrangian Field energy density : FˆG = B ◦ H−D ◦E (2.126)

The second term is defined as the "interaction energy density"

Interaction energy density : Aˆ bJ = A◦bJ− ρφ. (2.127)

For the special (Gauss) choice of integrating denominator, λ with (p = 2, a =
b = c = 1,m = 1) it can be demonstrated that the Jacobian similarity
invariants are equal to the classic Mean, Gauss, and Adjoint curvatures:

{XM , YG, ZA, TK}⇒ {4M(linear), 6G(quadratic), 4A
B
(cubic), 0}. (2.128)
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It can be demonstrated (with the use of Maple) that the interaction density
is exactly equal to the Adjoint curvature energy density [204]:

Interaction energy Aˆ bJ = 4AB
(cubic)Ω4 (Adjoint Cubic Curvature).

(2.129)
The conclusion reached is that a non zero interaction energy density implies
the thermodynamic system is not in an equilibrium state (but it could be in
a "steady state" far from equilibrium).

However, it is always possible to construct the 3-form, bS :
Topological Spin 3-form : bS = Aˆ bG (2.130)

The exterior derivative of this 3-form leads to a cohomological structural
equation similar the first law of thermodynamics, but useful for non equi-
librium systems. This result, now recognized as a statement applicable
to non equilibrium thermodynamic processes, was defined as the "Intrinsic
Transport Theorem" in 1969 [164] :

Intrinsic Transport Theorem :

(Spin) dbS = Fˆ bG−Aˆ bJ, (2.131)

First Law of Thermodynamics :

(Energy) dU = Q−W (2.132)

If one considers a collapsing system, then the geometric curvatures increase
with smaller scales. If Gauss quadratic curvature, 6G(gauss_quadratic), is to
be related to gravitational collapse of matter, then at some level of smaller
scales a term cubic in curvatures, 4AB

(adjoint_cubic), would dominate. It
is conjectured that the cubic curvature produced by the interaction energy
effect described above could prevent the collapse to a black hole. Cosmol-
ogists and relativists apparently have ignored such cubic curvature effects
associated with non equilibrium thermodynamic systems.

2.3.8 Non Equilibrium Examples.

In order to demonstrate content to the thermodynamic topological theory,
two algebraically simple examples are presented below. (The algebra can
become tedious for the rescaled Action 1-forms. Maple programs can be
found in Vol. 6, "Maple programs for non Equilibrium systems". See Hopf-
Phase.mws and Holder4d.mws.) The first corresponds to a Jacobian char-
acteristic equation that has a cubic polynomial factor, and hence can be
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identified with a van der Waals gas. The second example exhibits the fea-
tures associated with a Hopf bifurcation, where the characteristic equation
has a quadratic factor with two pure imaginary roots, and two null roots.

Example 1: van der Waals properties from rotation and contraction

In this example, the Action 1-form is presumed to be of the form

A0 = a(ydx− xdy) + b(tdz + zdt). (2.133)

The 1-form of Potentials depends on the coefficients a and b. The similarity
invariants of the Jacobian matrix , J [(A0)], formed from A0, are:

Based on the 1-form A0

XM = 0, (2.134)

YG = a2 − b2 (2.135)

ZA = 0 (2.136)

TK = −a2b2 (2.137)

The eigen values of the Jacobian matrix are global complex con-
stants: ±b, ±√−1a. If the 1-form of Action is rescaled by the Gauss map

A0 ⇒ A = A0/
p
(ax)2 + (ay)2 + (bz)2 + (bt)2 (2.138)

r2 = (ax)2 + (ay)2 + (bz)2 + (bt)2 (2.139)

then the Jacobian matrix becomes the equivalent of the shape matrix, and the
similarity invariants of the shape matrix are related to the average curvatures
of the implicit Phase hypersurface, in a space of 1 less dimension. In the 3D
subspace induced by the Gauss map (ξ4 = 0) the shape matrix gives:

Linear Mean curvature : CM = XM/3 (2.140)

= (ξ1 + ξ2 + ξ3)/3 (2.141)

Quadratic Gauss curvature : CG = YG/3 (2.142)

= (ξ1ξ2 + ξ2ξ3 + ξ3ξ1)/3 (2.143)

Cubic Adjoint curvature : CA = ZA (2.144)

= ξ1ξ2ξ3 (2.145)

Quartic Curvature : CK = 0. (2.146)
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The computations for the given 1-form of Action yield the results:

Based on the 1-form A : Gauss map scaling

Linear Mean curvature : CM = −2b3tz/(r2)3/2 (2.147)

Quadratic Gauss curvature : CG = −a2b2{(x2 + y2) (2.148)

−(z2 + t2)}/(r2)2
Cubic Adjoint curvature : CA = −2a2b3tz/(r2)5/2 (2.149)

Quartic Curvature : CK = 0. (2.150)

The Determinant (4th order curvature) vanishes by construction of the renor-
malization in terms of the Gauss map. This null result does not mean the
Pfaff dimension of A is less than 4 globally, but the constraint defines a sin-
gular set upon which there is a closed Current. This current is the Adjoint
current of the previous section.

However, the rescaled 1-form A is still of Pfaff dimension 4 and has
a non zero topological torsion 3-form and a non zero topological torsion 4
form:

Top_Torsion = 2ab · [0, 0,−z, t]/(r2) (2.151)

Pfaff Dimension 4 : dAˆdA = 4b3a(t2 − z2)/(r2)2 Ω4 (2.152)

The Gauss map permits the construction of the "Adjoint conserved cur-
rent", which combined with the components of the Action 1-form yield an
interaction energy density exactly equal to the cubic curvature CA.

Adjoint Current : Js = ([x, y, z, t]) /(r
2)2, (2.153)

interaction energy density: A ◦ Js − ρφ = CA. (2.154)

The rescaled Jacobian matrix has 1 zero eigen value and 3 non zero eigen-
values. Hence, the cubic polynomial will yield an interpretation as a van
der Waals gas. The Adjoint current represents a contraction in space-time,
while the flow associated with the 1-form has a rotational component about
the z axis.

Example 2: A Hopf 1-form

In this example,the Hopf 1-form is presumed to be of the form

A0 = a(ydx− xdy) + b(tdz − zdt). (2.155)
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The 1-form of Potentials depends on the chirality coefficients a and b. There
are two cases corresponding to left and right handed ”polarizations”: a = b
or a = −b. The results of the topological theory are :

Based on the 1-form : A0

XM = 0, (2.156)

YG = a2 + b2 (2.157)

ZA = 0 (2.158)

TK = a2b2 (2.159)

Eigenvalues : ±√−1b,±√−1a (2.160)

Torsion Current = [x, y, z, t]ab, (2.161)

Parity = 4ab (2.162)

The 4 eigenvalues come in two imaginary pairs. The elements of each pair
are equal and opposite in sign.

What is remarkable for this Action 1-form is that both the linear
similarity invariant XM and the cubic similarity invariant ZA of the implicit
phase hypersurface in 4D vanish, for any real values of a or b. The quadratic
similarity invariant is non zero, positive real and is equal to a2 = b2. The
quartic similarity invariant TK is non zero, positive real and is equal to a2b2.
The 1-form also supports a Topological Torsion current, with a non zero
divergence.

However, if the 1-form A0 is scaled by the Gauss map, the resulting
Hopf implicit surface is a single 4D imaginary minimal two dimensional hy-
per surface in 4D and has two non zero imaginary curvatures, but a positive
Gauss curvature! This a most unusual result, for the usual 2D minimal
surface has equal and opposite real curvatures, with a negative Gauss curva-
ture.

Based on the 1-form A : Gauss map scaling

λ2 = (ax)2 + (ay)2 + (bz)2 + (bt)2 (2.163)

r =
p
x2 + y2 + z2 + t2) (2.164)

Linear Mean curvature : CM = 0 (2.165)

Quadratic Gauss curvature : CG = +a
2b2{r2}/(λ2)2 (2.166)

Cubic Adjoint curvature : CA = 0 (2.167)

Quartic Curvature : CK = 0 (2.168)

Eigenvalues : [0, 0,+
√−1,−√−1](abr/λ2).(2.169)
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Strangely enough the charge-current density induced by the Adjoint current
is not zero, but it is proportional to the Topological Torsion vector that
generates the 3 form AˆF. The topological Parity 4 form is not zero, and
depends on the sign of the coefficients a and b. In other words the ’handed-
ness’ of the different 1-forms determines the orientation of the normal field
with respect to the implicit surface. It is known that a process described by
a vector proportional to the topological torsion vector in a domain where the
topological parity is non zero 4ba/(x2+y2+z2+t2) 6= 0 is thermodynamically
irreversible.

2.4 The Cosmological van der Waals Gas

The concepts of a universal phase function generated from a 1-form of Action
A for a non-equilibrium system (Pfaff Topological dimension > 2) will be ap-
plied to the construction of a cosmological model. It will be demonstrated
how such a universal non-equilibrium van der Waals gas offers alternate ex-
planations for the properties of our cosmological universe. In particular, the
current "unexplained" concepts of dark energy and dark matter have a more
classical foundation than is currently appreciated. Negative pressures are
an enigma to many physicists, but are features well recognized by engineers
who understand steam engines. Current relativity theories of gravity are
based upon symmetric features of space time and in a sense "overlook" the
anti-symmetric features of non-equilibrium thermodynamic systems.

From 1974 to the present, it has been the preoccupation of the
present author to investigate the physical applications of irreversible topolog-
ical evolution [165], [164], [173], [188]. This topic goes beyond the diffeomor-
phic equivalences of tensors, which can represent linearly connected processes
that preserve the topology of the initial state during a transition to the final
state, but which cannot be used to describe, deterministically, the thermo-
dynamic irreversible processes of every day macroscopic reality. It became
evident (due to inherent linearity restrictions) that the tensor analysis was
inadequate to study irreversible topological evolution [172]. However, it was
also noted that certain progress could be made by using methods inherent
in Cartan’s theory of exterior differential systems. In the theory of electro-
magnetism, it was known that ubiquitous tensor tools of metric and affine
connection are useful, but not necessary, concepts [245]. Electromagnetism
is indeed a topological theory, and has a universal expression in terms of two
topological constraints on a set of exterior differential forms.
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Maxwell-Faraday: F − dA = 0, (2.170)

Maxwell-Ampere: J − dG = 0. (2.171)

The resulting PDE’s are covariant in form for any coordinate frame and in
any number of dimensions greater than 3 [207].

The theory of thermodynamics is also a topological theory [235],
independent from scales and deformations. Indeed the first law of ther-
modynamics is best understood as a topological constraint of cohomology,
similar to the topological constraints that can be used to formulate Electro-
magnetism. The first law is a statement that the non-exact 1-form of heat,
Q, minus the non-exact 1-form of work, W, is a perfect differential, dU :

First Law: Q−W = dU. (2.172)

To explain irreversible evolutionary processes, Lagrangian extremal
methods are to be replaced by Cartan’s Magic formula of continuous topolog-
ical evolution acting upon physical systems that admit description in terms of
exterior differential forms [190]. Exterior differential forms can carry global,
topological information, and their use has led to definite progress in the
understanding of thermodynamic irreversible turbulent flow, including the
evolutionary creation of topological defects, or coherent structures, in irre-
versible dissipative hydrodynamic processes. These macroscopic continuous
"condensation" concepts have both a micro and a cosmological realization.
One of the most vivid experimental examples of such topological structures
is given by the creation of Falaco solitons in a fluid surface of (density) dis-
continuity [178]. (Also see Chapter 1.) The visual evolutionary appearance
of the swimming pool experiments leads to a suggestion that the creation
of almost flat spiral arm galaxies from a non-linear dissipative cosmological
fluid is also a feature of continuous topological evolution.

Topological evolution can take place by both continuous (cutting)
and discontinuous (pasting) processes. The improper linear transformations
(determinant = -1) of tensor analysis (such as mirror reflections) are not
continuous about the identity. However, if the concept of tensor linear
uniqueness is replaced by multivalued (but continuous about the identity)
spinor transformations, the linear discontinuous but unique concepts admit
equivalent descriptions in terms of continuous but non-unique topological
evolution. A fundamental theme utilized herein is to replace the idea of
discontinuous but unique with the concept of non-uniqueness but continuous.
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The spirit of the idea is similar to the extension from the real line to the
complex plane, where a (zero) point obstacle on the real line (yielding a
discontinuity between positive or negative decrements) can be circumvented
by a continuous (but multi-valued) right handed or left handed circuit about
the (zero) obstacle in the complex plane. Note that a hole can be produced
in a deformable disc by discontinuously cutting a hole and separating the
parts, or by deforming the disc into the shape of the letter C and then
(continuously) pasting the ends together. Two or more holes can be formed
by discontinuously cutting a second hole, or by squeezing one hole to form the
outline of a figure 8, and continuously pasting together the central region.

Remarkably, the fact the exterior differential forms could be homo-
geneous and evolve in a self similar manner permitted fractal structures to be
admitted to the possible process descriptions of continuous topological evo-
lution. The fact that the exterior differential systems may not be uniquely
integrable (hence not in equilibrium) and yet could evolve into long lived
states far from equilibrium became a mathematical fact, not just a philo-
sophical dream. Moreover, it became possible to distinguish be chaos (
which can be thermodynamically reversible) and turbulence ( which is ther-
modynamically irreversible). Indeed, it became evident that thermodynamic
irreversibility was an artifact of topological dimension 4 [199].

Irreversible Processes and Topological Bulk Viscosity.

When the Action for a physical system is of Pfaff dimension 4, there exists
a unique direction field, T4, defined as the Topological Torsion 4-vector,
that can be evaluated entirely in terms of those component functions of the
1-form of Action which define the physical system. To within a factor,
this direction field‡ has the four components of the 3-form AˆdA, with the

‡A direction field is defined by the components of a vector field which establish the
"line of action" of the vector in a projective sense. An arbitrary factor times the direction
field defines the same projective line of action, just reparameterized. In metric based
situations, the arbitrary factor can be interpreted as a renormalization factor.
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following properties:

Properties of the Topological Torsion vector T4
i(T4)Ω4 = AˆdA (2.173)

W = i(T4)dA = σ A, (2.174)

U = i(T4)A = 0, (2.175)

L(T4)A = σ A, (2.176)

QˆdQ = L(T4)AˆL(T4)dA = σ2AˆdA 6= 0 (2.177)

dAˆdA = (2!) σ Ω4. (2.178)

Note that a T4 process is locally adiabatic, but not reversible.
Hence, by equation (4.125 ) evolution in the direction of T4 is ther-

modynamically irreversible, when σ 6= 0 and A is of Pfaff topological di-
mension 4. The kernel of this vector field is defined as the zero set under
the mapping induced by exterior differentiation. In engineering language,
the kernel of this vector field are those point sets upon which the divergence
of the vector field vanishes. The Pfaff topological dimension of the Action
1-form is 3 in the defect regions defined by the kernel of T4. The coeffi-
cient σ can be interpreted as a measure of space-time volumetric expansion
or contraction. It follows that both expansion and contraction processes (of
space-time) are related to irreversible processes. It is here that contact is
made with the phenomenological concept of "bulk" viscosity = (2!)σ. (For
symplectic systems of higher Pfaff dimension m = 2n + 2 ≥ 4, the numeric
factor becomes (m/2)!.) It is important to note that the concept of an irre-
versible process depends on the square of the coefficient, σ. It follows that
both expansion and contraction processes (of space-time) are related to irre-
versible processes. It is tempting to identify σ2 with the concept of entropy
production.

Topological Evolution to Minimal Surfaces, Wakes and Spinors

During the period 1982 - 1995, [195], [197], [194], it also became appar-
ent that long lived fluid dynamic wakes were related to minimal surfaces
of tangential discontinuities. The argument was based on the fact that
the dissipative Navier-Stokes equations could lead to long lived solutions,
where the non-harmonic components of an initial velocity field would decay
through viscous dissipation, leaving as residues, the harmonic components of
the velocity field. This dissipative decay to long lived states far from equilib-
rium turns out to be a generic process of thermodynamic irreversibility [192].
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The dissipative terms in the Navier - Stokes equations (neglecting compress-
ibility) were proportional to the product of a viscosity coefficient times the
vector Laplacian of the velocity field. As the harmonic components of the
velocity field were precisely those components such that the vector Lapla-
cian vanished, then no matter what the viscosity, the dissipation or decay
of the harmonic components would be (almost) zero. Hydrodynamic wakes
are essentially topological limit sets. Experience with differential geometry
brought to mind the notion that the generator of a minimal surface was a
harmonic vector field. Therefore wakes and minimal surfaces must be related
concepts.

A more recent re-reading (in the spring of 2000) of Cartan’s book
on Spinors [39] (and Chandrasekhar’s book on Black Holes [42]) lead to the
thought that minimal surfaces and spinors were also related ideas — via the
concept of an isotropic complex null vector. In fact, there is a connection
between all of the ideas in the above abstract to this article. It is remarkable
to me that both Cartan and Chandrasekhar do not mention the fact that
an isotropic (complex null) vector is related to the generator of a Minimal
Surface [146]. This is surprising to me, as Cartan was a differential geometer
who knew about minimal surfaces. Cartan defined the "Spinor" as amapping
of a complex pair, {α, β} to a special 3 component complex vector, Σ =
[σ1, σ2, σ3], in such a way that its quadratic form (sum of squares of the
three components) is zero: (σ1)2 + (σ2)2 + (σ3)2 = 0.. This relationship of
Spinor maps to minimal surfaces is ignored by many other authors, as well as
Cartan and Chandrasekhar. A recent personal communication with Rindler
(2000) also indicates that he also was not aware of the connection of these
ideas. Evidently the idea of connecting Spinors and minimal surfaces was
noticed by Dennis Sullivan (the topologist) about 1989. This reference I
found (after I had stumbled on the idea independently) by an internet search
which yielded the more recent article by R. Kusner and N. Schmitt [109].
There seems to be another publication relating spinors and minimal surfaces
due to Dabrowski, a student of Bunovich, but the exact publication date
(1986?) is not clear [57].

It would appear that many physicists and most engineers are not
aware of the connection between spinors and minimal surfaces, and also their
relationship to wakes and tangential discontinuities. The concept of a mini-
mal surface yields an interesting and useful physical interpretation of spinors,
especially as the interpretation does not depend explicitly upon quantum me-
chanical ideas, nor relativistic ideas, nor concepts of scale. The bottom line
is that spinors have application to the engineering sciences at all scales, as
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well as to the microscopic world of Fermions and Bosons. Spinors behave
a bit differently from tensors. Better said, the concept of spinors is more
related to a continuous topological idea, and not a discontinuous geometrical
idea.

To quote Cartan, [39] p.151

"With the geometric sense we have given to the word spinor
it is impossible to introduce fields of spinors into the classical
Riemannian technique; that is having chosen an arbitrary system
of coordinates xi for the space, it is impossible to represent a
spinor by any finite number N of components, uα, such that the
uα have covariant derivatives of the form

uα,i = ∂uα/∂x
i + Λβαiu

β (2.179)

where the Λβαi are determinate functions of x
h.”

The problem that Cartan states above has to do with the lack of
uniqueness for the covariant transplantation rule when the connection, Λβαi,
admits affine torsion of the non-integrable variety: Λβαi−Λβiα 6= 0. In a Rie-
mannian space with a given metric, the connection coefficients of "parallel"
transport are uniquely determined in terms of the Christoffel Symbols. Ten-
sors restricted by neighborhood linearity and the General Linear group admit
discrete (discontinuous but unique) transplantation laws about the identity.
Spinors, on the other hand, are associated with a certain amount of multi-
valuedness, and admit transplantation laws that are continuous about the
identity, but are not uniquely defined. When the connection admits affine
torsion, there are (at least) two methods of transplantation relating to "right
handed" or "left handed" spinors. The multi-valuedness is also a property
to be associated with systems that are not uniquely integrable in the Frobe-
nius sense, and are characteristic of Huygen envelopes in wave propagation,
Cherenkov radiation, and polarization states in Electromagnetism.

The bottom line is that Spinors permit a continuous but not unique
evolution about the identity, that is equivalent to the unique but discontin-
uous linear tensor Vector transformations of negative determinant.

2.5 The Hopf Map, Spinors, and Minimal Surfaces

It has been demonstrated in Chapter 1 that there is a close relationship be-
tween the Hopf map, minimal surfaces and Spinors. However, the historical
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lack of reference to these facts indicates that the relationship of Spinor Maps
to the Hopf map and minimal surfaces has been ignored by many researchers.
Recall that the Hopf map is a (non-linear) map from a vector of 4 compo-
nents to a vector (the Hopf vector) of 3 components, such that the sum of
squares of the three components is the square of the sum of squares of the 4
components. The map is ambiguous to within a sign (plus or minus one).
If the components of the Hopf vector in 3 space are presumed to be the di-
mensionless ratios (x/ct,y/ct/,z/ct), then the Hopf map can be viewed as a
map from R4 to a projective 3-space. Fixing the value of the sum of squares
of the 4 components to a constant (say unity) generates the equation of the
light cone in R4. There are three versions of the (real) Hopf vector, all with
the same value for the sum of squares, which can be arranged such that they
are mutually orthogonal. The implication is that there are at least three
distinct constraints that can represent the light cone.

The correspondence between the Spinor map and the Hopf map will
be investigated below, where it will be demonstrated that the rudimentary
Cartan definition of a Spinor map is a complex three dimensional ”vector”
whose real and imaginary components are both Hopf vectors. Each of the
two Hopf vectors that make up the Cartan spinor are mutually orthogonal.
As mentioned above, it is possible to construct three linearly independent
Hopf vectors that are mutually orthogonal, and when these orthogonal Hopf
vectors are combined in complex pairs, it is possible to construct six in-
dependent spinors. Integration of a given complex null vector leads to a
complex ”position” vector. The real and imaginary parts of the ”position”
vector separately describe a pair of (conjugate) minimal surfaces. In differ-
ential geometry, the null spinor is called an isotropic vector, and the pair of
minimal surfaces are called conjugate surfaces. Linear combinations of the
two conjugate components of the ”position” vector also generate a minimal
surface. The analog in physics can be described in terms of the optics of
polarization. One extreme minimal surface is linear polarization, while the
other extreme is circular polarization. A linear combination of the minimal
surfaces is analogous to elliptical polarization. Each of the polarizations is
ambiguous with respect to a sign (right handed vs. left handed, horizontal
vs. vertical)

The Hopf map also appears embedded in the classical physics lit-
erature. It is latent in the classical optics theory of partial polarization
[145]; in the classical electromagnetic theory of Bateman and Whittaker
[15]; in the theory of hydrodynamic wakes [195], [197], [194], in the exam-
ples of electric wave singular solutions that give the appearance of breaking
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time reversal symmetry [190]. Yet these classic examples, and many others,
do not focus attention on the fact the Hopf vector fields, so constructed in
terms of ordered complex pairs, are related to spinors,. It took relativistic
quantum theory to focus popularity on spinors, leading to a popular (but
false) opinion that spinors were something of a ”quantum mechanical”origin.
It is now of interest to demonstrate the thermodynamic and cosmological
importance of the Hopf map is related to adjoint 1-form (see eq. 1.38 ). The
adjoint Hopf 1-form, AHopf , is of Pfaff topological dimension 4, and has a
non- zero Topological Torsion vector, T4, which corresponds to an expansion
of space-time. Motion in the direction of T4 is thermodynamically irre-
versible. If the expanding universe was modeled in terms of AHopf then
the system would be a turbulent non-equilibrium system of Pfaff dimension
4. However, the evolutionary processes could proceed to domains of Pfaff
topological dimension 3, representing condensations, or coherent topological
defect structures, (stars - galaxies) that would admit a non-equilibrium, but
not dissipative, Hamiltonian evolution, modulo topological fluctuations. For
these reasons it is of some importance to study Hopf maps and structures
composed of Hopf maps

2.5.1 Hopf Maps and Hopf Vectors

In Chapter 1.2.3, the concept of Hopf vectors was introduced. In this section
the complex notation will be used. Consider the map from C2(α, β) to
R3(u1, v1, w1), as given by the formulas

H1 = [u1, v1, w1] (2.180)

= [α · β∗ + β · α∗, i(α · β∗ − β · α∗), α · α∗ − β · β∗

The variables α and β can be viewed also as two distinct complex variables
defining ordered pairs of the four variables [X,Y,Z, S]. For example, the
classic format given above for H1 can be obtained from the expansion,

α = X + iY β = Z + iS. (2.181)

Other selections for the ordered pairs of (X,Y,Z, S) (along with permutations
of the 3 vector components) give distinctly different Hopf vectors. For
example, the ordered pairs,

α = X + iZ , β = Y + iS, (2.182)

give
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H2 = [u2, v2, w2] (2.183)

= [α · β∗ + β · α∗, α · α∗ − β · β∗, i(α · β∗ − β · α∗)]
= [2(Y X − SZ),X2 + Z2 − Y 2 − S2,−2(ZY + SX)]

which is another Hopf vector, a map from R4 to R3, but with the property
that H2 is orthogonal to H1 :

H2 ·H1 = 0. (2.184)

Similarly, a third linearly independent orthogonal Hopf vector H3 can be
found

H3 = [u3, v3, w3] (2.185)

= [α · α∗ − β · β∗,−(α · β∗ + β · α∗),−i(α · β∗ − β · α∗)]
= [X2 + Y 2 − Z2 − S2,−2(Y X + SZ), 2(−ZX + SY )]

such that

H2 ·H1 = H3 ·H2 = H2 ·H3 = 0. (2.186)

H1 ·H1 = H2 ·H2 = H3 ·H3 = (X2 + Y 2 + Z2 + S2)2. (2.187)

The three linearly independent Hopf vectors can be used as a basis
of R3 excluding the origin. These results are to be compared to Chapter
1.2.3

Each Hopf vector can be differentiated with respect to the variables
(X,Y,Z, S) forming a gradient field on R4. That is, the mapping functions
(u, v,w) can be differentiated with respect to (X,Y,Z, S) to produce a set of
three exact 1- forms. The matrix formed by the three 4 component rows of
these gradient fields has an adjoint matrix of coefficients (composed of the
matrix of cofactors) which may be adjoined to construct a 4 x 4 basis Frame
for R4, excluding the origin. The exterior product, d(u1)ˆd(v1)ˆd(w1), pro-
duces a 3 form, whose components are proportional to those of the adjoint
matrix. These components may be used to construct a non-integrable "ad-
joint" 1-form, A. The three exact 1-forms and the non-integrable 1-form
also can be used as a basis for the space. The exterior derivatives of the
basis frame produce the usual Cartan connection, but the Cartan connection
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so defined is not free of affine torsion. By this mechanism the differential
structure of R4 as induced by the Hopf map is determined.

From another point of view, each of the four functions X,Y,Z, S can
be considered as complex variables, so that the Hopf map has a realization
from C4 to C3.

2.5.2 Isotropic Vectors and Minimal surfaces in 3D

Along with Cartan, define a rudimentary Spinor as an isotropic (or null)
vector of three complex components, Σ = [σ1, σ2, σ3] such that

(σ1)2 + (σ2)2 + (σ3)2 = 0. (2.188)

Next consider the two lemmas given in R. Osserman’s book ” A Survey of
Minimal Surfaces” [146]

Lemma 8.1 (Osserman p 63) Let D be a domain in the complex
z-plane, g(z) an arbitrary meromorphic function in D and f(z)
an analytic function in D having the property that at each point
where g(z) has a pole of order m, f(z) has a zero of order at least
2m. Then the functions

σ1 = f(1− g2)/2, (2.189)

σ2 = i f(1 + g2)/2, (2.190)

σ3 = ∓fg, (2.191)

will be analytic in D and satisfy the equation of an ”isotropic”
null vector:

(σ1)2 + (σ2)2 + (σ3)2 = 0. (2.192)

The only exception is for σ3 = 0, σ1 = i σ2.

Next consider the theorem

Lemma 8.2 (Osserman) Every simply connected minimal sur-
face in E3 can be represented in the form of a position vector

Rreal = [X1(u, v), Y 1(u, v), Z1(u, v)], (2.193)

where ' = (u + i v). A conjugate minimal surface can be con-
structed from the imaginary components of the integral formula-
tion,

Rimag = [X2(u, v), Y 2(u, v), Z2(u, v)]. (2.194)
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The position vector is computed from an isotropic complex 3 vec-
tor by means of the formulas:

X1(u, v) = Re

Z
σ1(')d' + constant (2.195)

X2(u, v) = Im

Z
σ1(')d' + constant (2.196)

Y 1(u, v) = Re

Z
σ2(')d' + constant (2.197)

Y 2(u, v) = Im

Z
σ2(')d' + constant (2.198)

Z1(u, v) = Re

Z
σ3(')d' + constant (2.199)

Z2(u, v) = Im

Z
σ3(')d' + constant (2.200)

Either (real or imaginary) component of the complex position vec-
tor, or any linear combination of the components, may be used
to induce a 2D real metric, whose Gaussian curvature is nega-
tive and whose mean curvatures is zero. Hence it follows that
a Cartan Spinor (isotropic 3 vector, Σ) generates (two) minimal
surfaces.

It is unfortunate that the historic word isotropic is used to describe
the ”null ” vector, for in engineering practice, the word isotropic is usually
interpreted as meaning the same in all directions. Technically the word
isotropic used for the null vector is correct, for no matter what direction the
null vector points in C3, its quadratic form, as a sum of squares of the three
components, is zero.

An equivalent formulation for an isotropic (null) vector was given by
Cartan in terms of α(z) and β(z), as follows.

σ1 = α2 − β2, (2.201)

σ2 = i (α2 + β2), (2.202)

σ3 = ∓2αβ. (2.203)
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The ambiguity in sign can be related to the concept of polarization.
Evidently D. Sullivan noticed that these formulas of Cartan could

be related to minimal surfaces in 1989 (hence predates my own recent in-
dependent appreciation (2000) of this fact). The formulas can also be inter-
preted in terms of the sequence of maps from the 2D space {' = u + iv}
to the 8D space {α = X(') + iY ('), β = Z(') + iS(')} to the 6D space
{σ1('), σ2('), σ3(')}. The quadratic form of an arbitrary vector on C3,
(σ1)2 + (σ2)2 + (σ3)2, can be complex, real, or zero. However, the spinor
construction given above always produces an isotropic or null vector: the
quadratic form vanishes. The mapping described above is the original defin-
ition of a Cartan Spinor. A Cartan Spinor is in fact, not the pair of functions,
α(') and β('), but the map to the isotropic complex 3 vector, Σ, such that

(σ1)2 + (σ2)2 + (σ3)2 = 0. (2.204)

The isotropic (null) condition imposes two constraints on the 6D space of
3 complex variables reducing the dimension to a 4D space of two complex
variables. In the examples below, for a simple choice of the functions α and
β, the catenoid of revolution occurs as the real part of the integration and
the helix is determined from the imaginary part of the integration. A linear
combination of the two ”conjugate” components is used to form the helicat,
which is yet another minimal surface. Each of the functions defined above
is ambiguous to a factor of ±1. The mean curvature vanishes (the minimal
surface condition) for all combinations of plus or minus signs.

As mentioned above, the real and imaginary parts of the minimal
surface position vector correspond to extremes in ”polarization”. The inter-
esting fact is that if ψ is a complex ”constant” of the type ψ = A exp(iθ),
then each component of the complex position vector

R = A exp(iθ)[Rreal + iRimag ] (2.205)

also generates a minimal surface (of mixed polarization)
For example consider the position vector in 3 space parameterized

by the two variables u and v.

R = [a sinh(v)cos(u)− b cosh(v)sin(u), (2.206)

a sinh(v)sin(u) + b cosh(v)cos(u), (2.207)

au+ bv]. (2.208)
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The space curve R generates a conjugate pair of minimal surface
components for various choices of a and b. For a = b = 0.5, the minimal
surface consists of two components which are conjugate pairs of opposite
handedness. The conjugate pairs can be in a sense "mixtures" of catenoids
and helices, and are termed helicoids. The helicoids can also be pure helices
or pure catenoids. The situation is remindful of the concept of pure and
mixed polarization states in electromagnetic waves. Whether the helicoid is
right handed or left handed depends upon whether z is increasing or decreas-
ing. In the first set of three Figures, z is increasing, and a = b = 0.5. In
the second set of three Figures, a = 0, b = 1 and generates the helix struc-
ture. In the last set of three Figures, a=1,b=0 which generates the catenoid
structure.
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It is obvious that this last case of conjugate catenoids has deformable
visual features of the Falaco Solitons.

2.5.3 Complex Curves

A theorem of Sophus Lie states that in 4D every complex holomorphic func-
tion generates a minimal surface. This is a rather remarkable result that
has not been utilized fully in application to understanding space-time evolu-
tionary processes. If an evolutionary process starts with a non-holomorphic
representation and evolves into a holomorphic representation, then physi-
cally it would be expected that dissipative processes would be minimized,
and tangential discontinuities (wakes) would be created. The normal field
to a minimal surface is harmonic.

For Navier-Stokes like fluids, the viscous shear dissipation is a viscous
coefficient times the vector Laplacian of the the velocity field. As the vector
Laplacian vanishes for a harmonic vector field it follows that such flows do not
experience viscous dissipation due to shears. Consider vector fields that are
composed of a harmonic part and a non-harmonic part. Viscous dissipation
will cause the non-harmonic part to decay. What is left is the Harmonic part,
which generates a minimal surface as the (measurable) wake.

Consider a complex curve defined in terms of ξ = u+ iv as

R = [ξ,Θ(ξ)] = [u+ iv,Re(Θ(ξ) + i Im(Θ(ξ)] (2.209)

⇒ [u, v,Φ,Ψ]. (2.210)

Osserman (p. 19 [146]) demonstrates how this 4 dimensional position vector
satifys the minimal surface equation. The Minimal surface generated by a
complex curve, does not admit a single implicit real function in 3D for its
description. Such minimal surfaces are artifacts of 4D space time.

Consider an evolutionary system like a fluid in space time. Consider
a complex holomorphic curve. This complex curve induces a two dimension
subspace of space time. The subspace is a minimal surface. However, there
does exist a parametrization of such a minimal surface, and that is what the
Weierstrass method is all about. The method represents a parametric version,
2D into 3D, but not implicit version, 3D to a constant. The "parametric"
vector to the surface can be used to describe a vorticity field (or a velocity
field). Such a vector is harmonic.

For thermodynamic systems that can be encoded by a 1-form of
Action, of Pfaff Topological dimension 4 (the canonical example is the Hopf
map), the Universal Phase function is a holomorphic function of the complex
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eigenvalue ξ

Θ(x, y, z, t; ξ) = ξ4 −XMξ3 + YGξ
2 − ZAξ + TK ⇒ 0, (2.211)

Re(Θ(z)) = u4 − 6u2v2 + v4 −XM (u
2 − 3v2)u (2.212)

+YG(u
2 − v2)− ZAu+ TK (2.213)

Im(Θ(ξ) = 4(u2 − v2)uv −XM (3u
2 − v2)v + 2YGuv − ZAv(2.214)

Hence the Universal Phase function defines a complex curve in terms of the
similarity coefficients. A cosmological universe of Pfaff topological dimension
4 can be put into correspondence with cojugate mimimal surfaces.

2.5.4 Spinors and the Hopf map

The isotropic Complex position vector, [z1, z2, z3] can be decomposed into a
real and imaginary part, such that both have the same sum of squares, and
are orthogonal. In other words, the Cartan Spinor can be represented as

|σ12i = |H1i+ i |H2i with hσ12| ◦ |σ12i = 0 (2.215)

Two other Cartan spinors are represented by the combinations.

|σ23i = |H2i+ i |H3i with hσ23| ◦ |σ23i = 0, (2.216)

|σ31i = |H3i+ i |H1i with hσ31| ◦ |σ31i = 0 (2.217)

These formulas can be obtained from the Cartan representation for
the isotropic 3 vector. As an example consider the permuted form,

z1 = α2 − β2, (2.218)

z2 = −2αβ, (2.219)

z3 = i (α2 + β2). (2.220)

Make the substitutions {α = X + iZ, β = Y − iS} to obtain the equations

|σ31i =
¯̄̄̄
¯̄ X

2 + S2 − Y 2 − Z2 + i 2(ZX + SY )
−2(Y X + SZ) + i 2(−ZY + SX)
2(−ZX + SY ) + i (X2 + Y 2 − Z2 − S2)

+
= |H3i+ i |H1i

(2.221)
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2.5.5 The Adjoint field to the Hopf Map

The Hopf Map, as characterized by the equations:

[u1, v1, w1] = [2(XZ + Y S), 2(XS − Y Z), (X2 + Y 2)− (Z2 + S2)], (2.222)

can be used to generated 3 linear independent 1-forms on R4, by forming
the gradient with respect to [X,Y,Z, S] of each of the three functions that
define the map. These three covariant 4 component vectors may be used in
the construction of a frame matrix on R4. A fourth linearly independent
vector is needed, to complete the basis frame. This fourth vector can be
constructed from the adjoint operation (on matrices or differential forms) to
within an arbitrary scaling factor,1/λ. The linearly independent 1-forms are
therefor,

d(u1) = 2Zd(X) + 2Sd(Y ) + 2Xd(Z) + 2Y d(S), (2.223)

d(v1) = 2Sd(X)− 2Zd(Y )− 2Y d(Z) + 2Xd(S), (2.224)

d(w1) = 2Xd(X) + 2Y d(Y )− 2Zd(Z)− Sd(S), (2.225)

AHopf = {−Y d(X) +Xd(Y )− Sd(Z) + Zd(S)}/Λ. (2.226)

The Frame Matrix so generated is given by the expression:

F =

⎡⎢⎢⎣
Z S X Y
S −Z −Y X
X Y −Z −S
−Y/λ X/λ −S/λ Z/λ

⎤⎥⎥⎦ , Det[F ] =
¡
Z2 + S2 + Y 2 +X2

¢2
/λ

(2.227)
It is some interest to examine the properties of the adjoint 1-form, AHopf ,defined
hereafter as the Hopf 1-form. For λ = 1, it follows that the Hopf 1-form is
of Pfaff dimension 4.

It is also of interest to consider factors λ that are of the format of
the Holder norm, where n and p are integers, and (a,b,k,m) are arbitrary
constants.

λ = (aXp + bY p + kZp +mSp)n/p (2.228)
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The exponents n and p determine the homogeneity of the resulting 1-form,
which is given below an ambiguous format (the plus of minus sign)

A± = A±/λ = {±(Y d(X)−Xd(Y ))− Sd(Z) + Zd(S)}/λ. (2.229)

For example, for n=p=2, the scaling factor becomes related to the classic
quadratic form. The scaled Hopf 1-form, A, is then homogeneous of degree
zero.

For arbitrary n and p, the 3-form of topological (Hopf) torsion

Topological Torsion (2.230)

= (A±)ˆd(A±) = i(±T4)d(X)ˆd(Y )ˆd(Z)ˆd(S) (2.231)

generates a direction field defined as the 4 component Torsion vector, T4.

T4 = ±[X,Y,Z, S]/λ. (2.232)

The factor β depends upon the integers n and p as well as the constants (
a,b,k,m).

The Topological Parity 4-form, whose coefficient is the 4 divergence
of the Torsion vector, T4,becomes

Topological Parity d(A±)ˆ(d(A±) (2.233)

= −4(±λ)(−2n/p))(n− 2)d(X)ˆd(Y )ˆd(Z)ˆd(S) (2.234)

It is most remarkable that for n=2, any p and any (a,b,k,m), the topological
parity vanishes and the scaled Hopf 1-form is of Pfaff dimension 3, not 4. In
such cases the ratios of the integrals of the topological torsion 3 form over
various closed manifolds are rational, and the closed integrals of the 3-form
are topological deformation invariants. (coherent structures).

Also note that if the scaling factor is restricted to values such that
n = 4, p = 2, a = b = k = m = 1, then the Frame matrix is unimodular,
and the scaled Hopf 1-form is homogeneous of degree -2, relative to the
substitution X ⇒ γX, etc. (A somewhat different definition of homogeneity
relative to the volume element will be given below.) For this constraint,
the 2-form, F = dA, has two components in analog to the E and B fields of
electromagnetism. The two 3 component ”blades” are identical only when
all of the coefficients are equal to unity. A finite value for the quadratic form
leads to a sphere in 3D of coordinates u1,u2,u3.
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Electromagnetism of Index zero Hopf 1-forms

Guided by prior investigations, it is of interest to use the scaled Hopf 1-form
as the generator of electromagnetic field intensities. The coefficients of the
scaled Hopf 1-form can be put into correspondence with the classic vector and
scalar potentials, [A, φ] (using S = CT ). The Action for the first examples
is then of the format,

A±,0 = A±/λ0 = {±(+Y d(X)−Xd(Y ))−CTd(Z) +CZd(T )}/λ0 (2.235)

When the number of minus signs in the quadratic form is zero (index
0), and the exponents are n=4, p=2, such that

λ0 = (X
2 + Y 2 + Z2 + S2)2, (2.236)

then it is remarkable that the derived 2-form has coefficients (E and B)
that are proportional to the same Hopf Map with the the classic result that
E2 = C2B2, Using the minus ambiguity (parity) sign, the E field is anti-
parallel to the B field. If the positive ambiguity (parity) sign is used, the E
and B fields are parallel:

F = dA , (2.237)

B = curlA = (2.238)

[2(CTY +XZ),

−2(−Y Z + CTX), (2.239)

(−X2 − Y 2 + Z2 + (CT )2)](2/(λ0)
3/2) (2.240)

E = −gradφ− ∂A/∂T = (2.241)

[−2(CTY +XZ),

2(−Y Z + CTX), (2.242)

−(−X2 − Y 2 + Z2 + (CT )2)](2C/(λ0)
3/2) (2.243)

It is natural to ask if these E and B fields admit a Lorentz symmetry
constitutive constraint such that vacuum state is charge current free. Recall
that a constitutive constraint is a relationship between a 2-form, F, and a
2-form density G, such that the coefficients of G(D,H) are related to the
coefficients of F (E,B). A Lorenz vacuum condition implies that the fields
are solutions of the vector wave equation. The question becomes, ”If
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is presumed that D = εE and B =µH, do the Maxwell Ampere equations
generate a zero 3 form of charge current? ”. Direct computation of the index
zero Hopf 1-form indicates that dG = J 6= 0, unless εµC2 + 1 = 0. Hence
the scaled Hopf Action, where the scaling is of signature zero, does not
describe a charge current free vacuum, for real positive values of ε, µ, and
C. On the other hand, if it is presumed that the domain is such that
say µ,or ε, is negative, then the Hopf Map, scaled as above, does generate
charge-current free wave solutions. Negative ε appears to hold in metals and
the Earth’s ionosphere. Recent announcements indicate constructions that
yield negative µ [151]. However, for situations where ε orµ are negative,
the Hopf wave solutions imply that the Spin angular momentum AˆG is not
a deformation invariant (hence Spin angular momentum of the field is not
conserved.)

Electromagnetism of Index one Hopf 1-forms

When the number of minus signs in the quadratic form is one (index 1), and
the exponents are n=4, p=2, such that (using lower case letters for Index
one Hopf 1-forms)

λ1 = (x
2 + y2 + z2 − c2t2)2, (2.244)

then it is remarkable that the derived 2-form has coefficients (E and B) that
are proportional to different Hopf Maps. The Action 1-form is the same as
above, but with a different denominator.

A±,1 = A(±)/λ1 = {±(yd(x)− xd(y))− Ctd(z) + zCd(t)}/λ1 (2.245)

The fact leads to the classic result that E2 = C2B2, but now the E
field is not collinear with the B field. Using the negative ambiguity (parity)
sign leads to the fields:
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F = dA (2.246)

B = curlA = (2.247)

[2(Cty + xz),

−2(−yz + Ctx), (2.248)

−x2 − y2 + z2 + (Ct)2)](2/(λ1)
3/2) (2.249)

E = −gradφ− ∂A/∂t = (2.250)

[2(Cty − xz),

2(−yz − Ctx), (2.251)

−(−x2 − y2 + z2 + (Ct)2)](2C/(λ1)
3/2) (2.252)

Independent from any other constraints, it is possible to construct the 3-
form of Topological Torsion, and its exterior derivative defined as Topologi-
cal Parity. The Topological parity can be either positive, zero, or negative.
For the example Hopf 1-form given above (using the negative ambiguity
sign), the Topological Torsion is represented to within a factor by a position
vector[−x,−y,−z,−t] inbound in 4 dimensions, and having a negative diver-
gence or parity. If the positive sign of the ambiguity factor is changed, then
the parity of the form changes sign. For example, for the 1-form,

A1 = A1+/λ1 = {+yd(x)− xd(y)− Ctd(z) + zCd(t)}/λ1, (2.253)

the 4 -form of topological parity is positive, and the topological torsion is
represented by an outbound position vector (to within a factor).

Similar to the investigation described above, it is natural to ask if
these E and B fields admit a Lorentz symmetry constitutive constraint such
that vacuum state is charge current free. Again, such a condition implies that
the fields are solutions of the vector wave equation. Direct computation of
the Maxwell Ampere equations indicates that dG = J = 0 if the phase
velocity constraint vanishes, εµC2 − 1 = 0. Hence the scaled Hopf Action,
where the scaling is of index one, does describe a charge current free vacuum,
for real positive values of ε, µ, and C.

It is some interest to give the charge current solutions to show how
the ”phase factor ” (εµC2 − 1) ⇒ 0 establishes the vacuum charge free
conditions.

Jx = −(yx2 + yz2 + 5yC2t2 − 6zCtx+ y3)(εµC2 − 1)4/λ2 (2.254)
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Jy = (x3 + xy2 + xz2 + 5xC2t2 + 6zCty)(εµC2 − 1)4/λ2 (2.255)

Jz = −(2x2 + 2y2 − z2 + C2t2)(εµC2 − 1)8Ct/λ2 (2.256)

ρ = 0 (2.257)

Note that there are possible charge current free (wave solutions) that are
governed by curves in space time generated by the intersection of the three
surfaces created by setting the coefficients of the current density equal to
zero. These solutions are valid for any phase velocity.

The given solution above is not free of Topological Torsion, AˆF,
and there is a non-zero value of the second Poincare invariant, E ·B 6= 0.
However, the Spin 3-form AˆG is also non-zero [164] [207], but it has, subject
to the phase constraint, a zero 4-divergence. (The first Poincare invariant
is zero.) The divergence of the Spin 3-form, has 2 parts. The first part is
twice the conventional Lagrange density of the fields, (B ·H−D ·E). The
second part is the interaction between the potentials and the charge currents,
(A · J − ρφ). When the divergence of the 3-form is zero, then the closed
integrals of Topological Spin are deformation invariants, and have closed
integrals with rational (quantized) ratios. That is, with regard to any singly
parametrized vector field, V , describing an evolutionary process,

L(βV )

Z
z3

(AˆG) =

Z
z3

i(βV )d(AˆG) +

Z
z3

d(i(βV )AˆG) (2.258)

= 0 + 0 ⊃ evolutionary invariance.

The function β is an arbitrary deformation parameter.

Twistors composed by superposing two index 1 Hopf 1-forms

By superposing (adding or subtracting) two different, index 1, Hopf 1-forms
(which will be shown below to be equivalent to a Penrose twistor solution) it
is possible to construct a vacuum (charge current free wave) solution to the
Maxwell system, subject to the constraint that the phase speed satisfies the
phase velocity equation, (εµC2 − 1) = 0.
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As an example consider another Hopf 1-form of index 1 formulated
as

A2 = A2+/λ1 = {Ctd(x) + zd(y)− yd(z)− xCd(t)}/λ1 (2.259)

Similar formulas for the field intensities can be determined as above. Note
that the parity of the Hopf forms to be superposed can be the same or
different. If the parity of the two superposed Hopf 1-forms are opposite, then
without consideration of the phase constraint, the Topological Torsion of the
”twistor” 1-form vanishes, AˆF = 0. Yet the quantized topological spin3-
form AˆG does not vanish, and moreover, subject to the phase constraint,
the closed integrals of the Spin 3 form are conserved. This result implies
that such a construction yields ”quantized” values for the Spin integrals.

In this ”twistor” case, note the vector represented by the vector
R = [x, y, z, t] in R4, is orthogonal to the 1-form of Action. It follows that
for a twistor Action,

A = A1− +A2+ (2.260)

i(R)A = 0, and L(R)A = 2A (2.261)

i(R)dA = 2A, and L(R)dA = 2dA (2.262)

Note that the Hopf 1 form, A and the derived 2-form, F = dA, are
both homogeneous of degree 2, with respect to R.

The ”twistor” Action created by superposing Hopf 1-forms of dif-
ferent parity (but not the general Hopf action) is integrable in the sense of
Frobenius,

Topological Torsion H = AˆF = 0. (2.263)

The implication is that the 4 forms of Topological Parity, or the second
Poincare invariant, (which does not depend upon constitutive properties) is
also zero for the twistor 1-form:

SecondPoincare invariant PII (2.264)

= d(AˆF ) = FˆF = 2E ·Bdxˆdyˆdzˆdt⇒ 0 (2.265)

Classically, one would say that the second Poincare invariant vanishes for
this twistor Action.
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From the constitutive relations, there exists a 3-form (density) S,
(Kiehn 1976) defined as the Spin 3-form,

S := AˆG such that AˆS = 0. (2.266)

The Action of the Lie Derivative on the Spin 1-form, S, is such that

L(R)S = (L(R)A)ˆG+AˆL(R)G = 2AˆG+Aˆ(2G) = 4S (2.267)

and

L(R)dS = 4dS. (2.268)

The Spin 3-form, S, and its divergence 4 form, dS are homogeneous of degree
4 relative to the vector R. Subject to the phase constraint, the divergence
of the Spin 3-form vanishes, which indicates that the closed integrals of the
spin 3-form are conserved as period integrals.

These results are to be compared with the Penrose twistor definitions
in terms of differential forms [150] The energy flow E×H of such a solution
is collinear with the spatial components of the Spin, S.

2.6 Interesting Cosmological Conjectures

2.6.1 Minimal Surfaces in Minkowski space

Most of the discussion about minimal surfaces that appears in the current
literature is dominated by the assumption of a Euclidean metric. However, it
is possible to discuss surfaces in Minkowski spaces of 3 and 4 dimensions. For
example consider the position vector in 3D given by the parametric expression
in Minkowski space with signature [−1, 1, 1]

R = [v, (1/a)sinh(av + b)cos(u), (1/a)sinh(av + b)sin(u)] (2.269)

Then straight forward computations for the parametric surface leads to the
conclusion that the mean curvature is zero (hence the surface is a minimal
surface), but has a Gauss curvature which is positive. Recall that in Euclid-
ean space, a minimal surface has a negative Gauss curvature, which makes
these results strange. However, the plot of the Minkowski space minimal
surface is not so strange, and reminiscent of the Falaco Solitons.
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2.6.2 Point Particles as Real and Complex Spheres of ”zero radii”

A point particle is typically modeled as a 3 dimensional euclidean real ball
with a vanishingly small radius vector. The length of the radius vector
squared is defined by the sum of squares of its real components. The surface
area of the real ball tends to zero as the length of the radius shrinks. However
if a ”point” particle is defined as a (complex) sphere of vanishingly small
radius, then complex point particles could be represented by an isotropic null
vector, whose length squared is defined, in the same euclidean manner as for
real vectors, as the sum of the squares of its components. In a Euclidean
space (where the signature of the fundamental quadratic form is zero) the
isotropic vector is not realized in terms of real variables. In Minkowski space,
where the signature of the fundamental form is 1, the isotropic vectors (of
null length) can be represented by real vectors, relative to the pseudometric.
It is suggested herein that a physical ”point” in real Euclidean space be
extended to include complex euclidean space, and/or Minkowski space. The
surface area of a real ”point” is zero in real euclidean space, but the surface
area of a complex ”point” can be finite, even though its ”diameter” is zero.
This result follows from the fact that an isotropic null vector can be used as
the generator of a minimal surface (see the subsection on "Isotropic Vectors
and Minimal surfaces in 3D"). The minimal surface is not of zero area. The
idea is to study a ”point” volume of ”zero” real radius that is bounded by
two minimal (perhaps conjugate) minimal surfaces. The concept of a spinor
is interpreted as the topological realization of a "point" particle of finite area,
but zero diameter.
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2.6.3 More on Minimal Surfaces

It is extraordinary that the Hopf Adjoint vector, when suitably normalized
to have coefficients homogeneous of degree zero, can be used to define a
minimal surface in 3D, where the Gauss curvature (sums of product pairs of
curvatures) is real and positive. Real minimal surfaces in 3D have a Gauss
curvature (sums of product pairs of curvatures) which is negative.

Consider the Hopf Adjoint vector is of the form

A0 = b(ydx− xdy) + a(tdz − zdt). (2.270)

The 1-form of Potentials depends on the coefficients a and b which are pre-
sumed to take on values ±1. There are two cases corresponding to left and
right handed ”polarizations”: a = b or a = −b. (There actually are 6 cases
to consider, by cyclically permuting the variables, and these can be combined
to represent spinor solutions.)

Next normalize the 1-form by dividing through by a Holder norm
such that the coefficients of the renormalized 1-form are homogeneous of
degree zero. Then construct the similarity invariants of the Jacobian ma-
trix determined from the coefficients of the renormalized 1-form. What is
remarkable for this example, is that both the Mean curvature (sum of cur-
vatures), the Adjoint (Cubic curvature = sum of all curvature triples), and
quadratic curvature (determinant of the Jacobian matrix = product of all
curvatures) of the implicit hypersurface in 4D vanish, for any choice of a or
b. The Gauss curvature (sum of all pairs of curvatures) is non-zero, positive,
real and is equal to the square of the radius of a 4D euclidean sphere. The
cubic interaction energy density is zero.

Mean = 0, (2.271)

Gauss > 0 (2.272)

Cubic = 0 (2.273)

Top_Torsion 6= 0 (2.274)

Js 6= 0 (2.275)

This situation occurs when the three curvatures of the implicit 3-
surface are {0,+iω,−iω).. This Hopf surface is therefore a 3D imaginary
minimal two dimensional hyper surface in 4D and has two non-zero pure
imaginary curvatures! Strangely enough the charge-current density is not
zero, but it is proportional to the topological Torsion vector that generates
the 3 form AˆF. The topological Parity 4 form is not zero, and depends on
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the sign of the coefficients a and b. In other words the ’handedness’ of the
different 1-forms determines the orientation of the normal field with respect
to the implicit surface.

It is also possible to deduce a closed 3-form of ”Charge-Current den-
sity”, Js, for such 3D hypersurfaces. The coefficients of AˆJs are exactly
equal to the ”Cubic” curvature similarity invariant. The spatial scalar prod-
uct of A and J is balanced by the product ρφ. It is known that a process
described by a vector proportional to the topological torsion vector in a do-
main where the topological parity (4ba) is non-zero is thermodynamically
irreversible.

It is also possible to construct combinations of chirally different Hopf
Adjoint 1-forms to find what are called Instanton solutions [143] [73].
2.6.4 Bulk Viscosity and Cosmology

A Google search (October 2004) yields over 5000 articles that utilize the con-
cepts of Bulk Viscosity in a General Relatistic treatment of dark matter, and
almost 3,000,000 articles on dark matter and dark energy. In all cases the
theories are more or less phenomenological. It is apparent that the authors
do not realize that Bulk Viscosity is a topological effect related to the diver-
gence of the Topological Torsion tensor and the expansion - contraction or
rotational shears that may occur in a 4D space time variety. For a cosmo-
logical universe encoded in terms of a 1-form of Action of Pfaff dimension
4, the Bulk Viscosity coefficient is proportional (in EM notation) to E ◦B
and the dissipation of irreversible processes depends upon parity of contrac-
tion or expansion, or the chirality of rotation. Dark matter is an artifact of
irreversible topological evolution.
2.6.5 The Four Forces and Differential Topology

Almost twenty years ago [168], an argument was presented to show how the
properties of the four forces in physics could be deduced from the features
of the four distinct Pfaffian equivalence classes of differential geometry that
can be constructed on a space of four dimensions. The four equivalence
classes were determined from the metric solutions, gµν , to the Einstein
field equations, by constructing a 1-form of action, A, in terms of the space
time, g4ν , components of the metric field: A = g4νdx

ν . The methods of
Pfaff reduction can be used to generate four equivalence classes in terms of
the Pfaff Topological dimension, or class, of this 1-form. Summarizing the
previous results, the methods lead to:

1. (Newtonian Force) The equivalence class of Pfaff Topological dimen-
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sion 1 will support long range gravitation (mass) and is parity preserv-
ing.

2. (Coulomb Force) The second equivalence class of Pfaff Topological
dimension 2 will support both gravity (mass) and electromagnetism
(charge) and is to be associated with long range parity preserving forces.

3. (Strong Force) The third equivalence class of Pfaff Topological dimen-
sion 3 will support both mass and charge, but the forces - although
parity preserving— are of short range.

4. (Weak Force) The last equivalence class of Pfaff Topological dimension
4 involved short range interactions that can violate time reversal and
symmetry breaking .

Examples were given in terms of known solutions to the Einstein
field equations.

Solution to Einstein equations
Pfaff Topological dimension

of A = g4νdx
ν

Schwarzschild 1
Riessner-Nordstrom 2

Godel 3
Kerr Taub Nut 4

Although the previous methods were motivated by ideas of differen-
tial geometry, it is now known that the concepts used to generate the four
equivalence classes associated with the four forces are not of a geometri-
cal nature, but instead are better expressed in terms of equivalence classes
which have their foundations in the topological property of Pfaff Topological
dimension. Indeed, the older analysis concluded that two of the equivalence
classes are to be associated with forces that are long range, in the sense of
having "distance" limits that extended to infinity The other two equivalence
classes are to be associated with forces that are of short range. However, the
concept of "distance" is more of a geometrical idea, not a topological idea.

Now it is perceived that the true nature of the equivalence classes
is based on the topological issue of connectedness, and does not reflect the
geometrical idea of distance necessarily. Following the work of Baldwin (see
Vol. 1, Chapter 6), two of the equivalence classes belong to a connected
topology (Pfaff Topological dimension 1 and 2), and the other two equivalence
classes belong to a disconnected topology (Pfaff dimension 3 and 4). Hence
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the topological features of the strong and the weak forces do not involve
short range, but instead reflect the concepts of accessibility. That is, the
Cartan topology of the "long range" forces is connected, while the Cartan
topology of the "short range" forces is disconnected. The topological idea
of connectedness is to be exchanged for the geometrical idea of "long range
or distance". There is a difference between the concepts of whether or not,
from point a, the point b is not "reachable" by a continuous process and not
"reachable" in a finite time. Moreover, the Pfaff topological dimension can
be associated with Thermodynamic features. Systems of Pfaff Topological
dimension greater than 2 are not in thermodynamic equilibrium.

These ideas are most readily understood in terms of the Cartan
topology built on a Pfaffian system, and its differential closure. These sets
have global properties, and therefore carry topological significance. These
concepts of Pfaff equivalence classes have application not only to the micro-
cosm of atoms and elementary particles, as well as the cosmological arena of
galaxies, but also to the mundane physics of hydrodynamics. Such methods
have been used recently to obtain a better understanding of the production
of wake patterns, and the creation and decay of turbulence in fluids.

2.6.6 Signature Symmetry Breaking

However, over the years a new feature of the analysis has appeared, and
it is to this new feature that this section is directed. Note that in the 1975
reference, the signature of the quadratic form was taken to be { +,+,+,- }.
The question now arises: Is there a symmetry to be broken if one considers
the often used but opposite signature { -,-,-,+ }. The idea is that the wave
equation

+∂2ψ/∂x2 + ∂2ψ/∂y2 + ∂2ψ/∂z2 = +(1/c2)∂2ψ/∂t2, (2.276)

has a set of characteristics which satisfy the partial differential system:

+(∂ψ/∂x)2 + (∂ψ/∂y)2 + (∂ψ/∂z)2 = +(1/c2)(∂ψ/∂t)2. (2.277)

Hence, there are two ways to write this constraint as an algebraic
variety ( a null set) :

+(∂ψ/∂x)2 + (∂ψ/∂y)2 + (∂ψ/∂z)2 − (1/c2)(∂ψ/∂t)2 = 0, (2.278)

or
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−(∂ψ/∂x)2 − (∂ψ/∂y)2 − (∂ψ/∂z)2 + (1/c2)(∂ψ/∂t)2. (2.279)

Each quadratic form is the complete mirror symmetry (the negative)
of the other, but it turns out that the signatures are intrinsically different
from a topological point of view in the neighborhood of the null variety.

The analytic question that remains is: Does this symmetry of space
time signatures have distinguishable consequences? The physical question
is: Are there experiments that can be done to distinguish the symmetry
breaking between {-,-,-,+} and {+,+,+,-}?

The analytic answer, based on the idea that the Clifford Algebras of
such systems are not isomorphic to one another [12], is yes! The mathematical
argument is similar to that used to distinguish the two species of angular
momentum algebras in quantum mechanics, an argument which is based on
the different signatures of the raising or lowering operators (commutator
or anti-commutator brackets) for Bosons vs. Fermions. The fact that the
differences in angular momentum signature are physically observable implies
that the differences in space-time signatures may also be measurable.

Consider the Clifford Algebra with signature {+,+,+,-}. As
discussed in reference [12], this algebra is isomorphic to the algebra of 4x4
matrices with real numbers as matrix elements. This matrix algebra is the
usual representation used for waves in 4 dimensions. Next consider the Clif-
ford Algebra with signature {-,-,-,+}. This algebra is isomorphic to the al-
gebra of 2x2 matrices with quaternions as matrix elements. The non-abelian
quality of the quaternions makes this algebra have extraordinary differences
from the algebra of 4x4 matrices over the real numbers.

This positive analytic result which breaks the symmetry be-
tween the two space-time signatures implies there must be a physical dif-
ference between the two types of space-time, one with signature {+,+,+,-},
and the other with signature {-,-,-,+}. These differences imply that there
exist two species of waves. What are they? A possible answer was first
given by Schultz [175] who found exact quaternionic solutions to Maxwell’s
equations that indicated that the speed of propagation in the inbound and
outbound directions would be different for such waves. This result was in
agreement with the ring laser experiments of Sanders [174]. These sets of
experiments indicated that the electromagnetic four fold degeneracy of the
Lorentz equivalence class could be broken such that all four waves of left -
right polarizations and of to - fro propagation directions would propagate at
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four distinct speeds. A further more general analysis on the macroscopic par-
ity and time reversal symmetry breaking effects in electromagnetic systems
was presented in reference [190]. The question of whether or not these waves,
or the effects of {+,+,+,-} vs. {-,-,-,+} signatures, produce any quantum or
hydromechanical effects is open.

2.6.7 Hedgehog fields, Rotating plasmas, Accretion discs

Using Maple (see Vol. 6, "Maple programs for non Equilibrium systems") ,
it is possible to find a modification of a closed 1-form solution to Maxwell’s
equations that makes the magnetic field lines appear like the spines of a
Hedgehog. It is also possible to demonstrate how such modifications of
closed 1-forms make the z=0 plane of a rotating plasma a chiral attractor.
Consider

A = Γ(x, y, z, t)[−y, x, 0]/(x2 + y2) , (2.280)

with Γ = −z m/
p
(x2 + y2 + �z2) (2.281)

and φ = 0. (2.282)

These potentials induce the field intensities:

E = [0, 0, 0], (2.283)

B = m [x, y, z]/(x2 + y2 + � z2)3/2. (2.284)

The B field is of the format of the famous Dirac Hedgehog field often asso-
ciated with ”magnetic monopoles”. However, the radial B field has zero
divergence everywhere except at the origin, which herein is interpreted as a
topological obstruction. The factor � is to be interpreted as an oblateness
factor associated with rotation of a plasma, and is a number between zero
and 1. It is apparent that the helicity density and the second Poincare
invariant are zero:

E ◦B = 0 and A ◦B = 0 . (2.285)

In fact, the 3-form of topological torsion vanishes identically (as φ = 0),

T4 = [0, 0, 0, 0]. (2.286)

In this example, there is a non zero value for the Amperian current
density, even though the potentials are static. The Current Density 3-form
has components,

J4 = (3m/2µ) (1− �) z [−y, x, 0, 0]/(x2 + y2 + � z2)5/2.. (2.287)
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which do not vanish if the system is ”oblate” (0 < � < 1). This current
density has a sense of ”circulation” about the z axis, and is proportional to
the vector potential reminiscent of a London current, J = λA. The ”order”
parameter is (3/2µ) (1− �)/(x2 + y2 + � z2)2.

The Lorentz force can be computed as:

J×B =(3m2/4µ) (1− �)[xz2, yz2,−z]/(x2 + y2 + � z2)2 (2.288)

The formula demonstrates that the Lorentz force on the plasma, for the
given system of circulating currents, is directed radially away (centrifugally)
from the rotational axis, and yet is such that the plasma is attracted to
the z = 0, xy plane. The Lorentz force is divergent in the radial plane
and convergent in the direction of the z axis, towards the z=0 plane. This
electromagnetic field, therefor, would have the tendency to form an accretion
disk of the plasma in the presence of a central gravitational field.

Although the 3-form of Topological Torsion vanishes identically,
the 3-form of Spin is not zero. The spatial components of the Spin are
opposite to the direction field of the Lorentz force (in the sense of a radiation
reaction).

S4 = (m
2/4µ)[xz2, yz2,−z, 0]/(x2 + y2 + � z2)2. (2.289)

The components of the Spin 3-form are in fact proportional to the compo-
nents of the virtual work 1-form with the ratio −3(1 − �) depending on the
oblateness factor.

It is also true that the divergence of the 3-form of spin is not zero,
for the first Poincare invariant is

d(AˆG)⇒ P1 = (m2/4µ)(x2 + y2 + 4(1− �) z2)/(x2 + y2 + � z2)3 (2.290)

For a more detailed discussion see Vol. 4 "Plasmas and Non equilibrium
Electrodynamics" [250].

2.6.8 Chandrasekhar Black Holes and the Hopf Map

All known Black Hole solutions to the cosmology of General Relativity are
Petrov type D solutions [42]. Petrov type D solutions are analogous to
Universal Phase functions with conjugate pairs of equal roots. It has been
demonstrated above that the Hopf map produces similar qualities, and gen-
erates a minimal surface as well. Another feature of the Black Hole solutions
is the fact that E ◦B 6= 0 [54]. Such is also the case with the Hopf 1-form of
Action. Super position of Hopf 1-forms can be used to generate Instantons
on a space of 4 topological dimensions. The fundamental idea is that these
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cosmological systems are non-equilibrium thermodynamic systems of Pfaff
Topological Dimension 4.

As an example, consider the composite 1-form of Action

Ac = {(ydx− xdy) + (sdz − zds)} (2.291)

+{(xdz − zdx) + (sdy − yds)} (2.292)

+{(zdy − ydz) + (sdx− xds)}, (2.293)

which is a combination of 3 Hopf adjoint 1-forms. The derived 2-form is
equal to

F = dA = 2(dyˆdx+ dzˆdy + dxˆdz) + 2(dsˆdz + dsˆdx+ dsˆdy). (2.294)

and

FˆF = 10(dxˆdyˆdzˆds). (2.295)

If λ is defined as

λ = (x2 + y2 + z2 + s2)1/2, (2.296)

and if the composite 1-form, Ac, is rescaled by the factor

f = 2/(λ2 + c2) (2.297)

then the result is the "Instanton Potential" (pp169-170 [73])

Instanton 1-form = 2Ac/(λ
2 + c2). (2.298)

If the coefficient c = 0, then the 3-form of topological torsion constructed
from the rescaled 1-form has zero divergence. Hence it is closed, but not
exact 3-form, and by deRham’s theorems produces quantized values when
integrated over closed 3 D cycles.

2.6.9 Dark matter, Dark energy (Negative Pressure), Energy Balance and
Curvatures.

Astronomical measurements over the last 20 years have been interpreted to
imply that the constituents of our Universe are ordinary matter (~5%), dark
matter (25%) and dark energy (70%). Statements that dark matter and
dark energy compose more that 95 % of the energy of the universe have been
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quite surprising. As mentioned above a Google search gives over 3 million
articles on dark matter and dark energy.

In terms of a metrically based gravitational theory, the presence of
dark matter has been inferred from the observed dynamics of cosmic objects,
particularly from fast rotation of hydrogen clouds far outside the luminous
disc of spiral galaxies, as well as high-velocity dispersion of galaxies in clus-
ters. Very little (at present) is known about dark energy and dark matter,
even though it would seem from the recent conjectures and interpretations
that more than 95% of the universe is these forms. A rash of publica-
tions involving quantum virtual states and interactions coupled with general
relativity concepts have been offered to "explain" the interpretations of as-
tronomical data. Could there be a more mundane theory that would offer
less "far out" explanations?

That being said, That being said, dark energy has the following
defining properties:

1. Dark energy emits no light;

2. Dark energy it has large, negative pressure, p = −ρc2

3. Dark energy it is approximately homogeneous.

Apparently dark energy does not cluster significantly with matter
on scales at least as large as clusters of galaxies. Because its pressure is
comparable in magnitude to its energy density, it is more "energy-like" than
"matter-like" (matter being characterized by p << ρc2 ). Dark energy
is qualitatively very different from dark matter. The three forms can be
summarily classified by how their energy densities change with a cosmic scale
factor a: ordinary and dark matter behave as a−3, radiation, which interacts
with ordinary matter, behaves as a−4, while dark energy, at least in the
simplest models thereof, is independent of the scale, a.

The ordinary matter content can be deduced from observations at
e.g. visible or radio frequencies. The presence of dark matter can be inferred
from the observed dynamics of cosmic objects, particularly from fast rotation
of hydrogen clouds far outside the luminous disc of spiral galaxies, as well as
high-velocity dispersion of galaxies in clusters. Dark energy, or quintessence,
is equivalent to a non-zero cosmological constant, , in Einstein’s equations,
and there is recent support for a non-zero also from redshift observations. All
of these direct measurements can be compared with theoretical cosmology
and the observed angular structure of the CMB. The theorists claim that a
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sequence of peaks should indeed arise from coherent acoustic oscillations in
the baryon-photon fluid during an early epoch. Their amplitudes and relative
positions provide another series of tests of cosmological models, and put a
different series of constraints on the parameters of such models,

The attempts to explain the fundamental "cause" of such surprising
results (that 95% of cosmological matter is unknown) seem to verge on the
ludicrous. Perhaps a review of some older physical ideas may be of value.
In particular, the theory of real gases, as modeled by the universal van der
Waals gas in space time, is a theory that can be expressed not only in terms
of Gauss curvature (a quadratic curvature property of implicit surfaces) but
also in terms of molar interaction and cohesion Cubic curvature effects (
Pressures which can be both positive and negative - see A. Sommerfeld),
and linear Mean curvature effects (that dominate surface tension and string
theories).

None of these concepts (similarly to most thermodynamic concepts)
depend upon size — hence metric is not explicitly required. Curvatures
are generated from the similarity invariants of a 4th order Cayley Hamilton
polynomial equation, deducible from the Jacobian matrix of the 1-form of
Action used to encode a specific physical system. Yet there is a fundamental
universal equation that links all of the different "energy - curvature" terms.

From a topological point of view:

1. Pressure is related to volume (a "3D" thing)

2. Temperature is related to Entropy (a "2D" thing)

3. Tension is related to a length (a "1D" thing)

and all of these terms appear in the equations describing a van der
Waals gas. The concepts are universal in that they are deformation in-
variants. The universal Phase function can always be deformed into a van
der Walls gas. There is always a critical point, a spinodal line of ultimate
stability (a winged cusp, or swallowtail bifurcation), a binodal line (Pitch-
fork bifurcation) that defines phase transitions, a line of critical temperature
(Hysteretic bifurcation) that separates gas from vapor and liquid conden-
sates. None of what has been said so far requires metric, or connection, or
gauge theory.

From experiment one should expect wild fluctuations on molar den-
sity near the critical point. By comparison to the van der Waals gas, the
eigen values, ξ, play the role of molar density. The Mean curvature M is
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related to a "length" as a conjugate variable, and is a measure of the "surface
tension". The Gauss curvature G has an "area" as a conjugate variable, and
is related to temperature. The cubic curvature A has a "volume" as a con-
jugate variable, and is related to Pressure. The "energy balance" equation
(to within a factor) becomes a sum of 4 parts

1- String_tension + Entropy - Pressure, (2.299)

1- Mean curvature + Gauss curvature - Cubic curvature.(2.300)

Nowhere has there been imposed a restriction on negative values of Pressure,
or Temperature, or Surface tension. The divergence =0 condition (Ricci
curvature) is automatic, for Pfaff dimension 4 conditions.

For example, the Pressure - molar density diagram for the van der
Waals gas is repeated below:

Note the region of possible negative pressure.

Note the region of "negative" pressure for the van der Waals gas,
an effect know to most steam engine designers. No mention of vacuum
fluctuations, or quantum effects, has been made.

Could it not be possible that dark matter is an effect due to bulk vis-
cosity of a topologically 4 dimensional physical system (the universe) evolving
with a fixed point of expansion or rotation, and that dark energy is merely
negative pressures associated with a non-equilibrium van der Waals gas?
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Chapter 3
THE ARROW OF TIME

3.1 Retrodiction vs. Prediction

The idea that a dissipative process is associated with a change in topology
(see Vol 1.) implies that non-adiabatic, radiative transitions cannot be de-
scribed by a homeomorphism∗. Accordingly, the transformational behavior of
physical fields with respect to continuous, but not necessarily homeomorphic,
maps is of some interest to researchers who study non-adiabatic transitions.
For tensor fields and configurations, the classical transformation rules can,
and must, be modified slightly to produce a useful concept of natural, or
intrinsic, covariance with respect to maps which may not even have invert-
ible Jacobians. Surprisingly enough, the techniques presented below indicate
that for covariant tensor fields there exists a natural sense of retrodictive
determinism which does not exist for contravariant tensor fields. Moreover,
the logical structure is not symmetric, nor even dualistic, with the ideas of
prediction of tensor fields. It appears that a system described by a tensor
field may be predictively statistical, but retrodictively deterministic.

A major purpose of this section is to sharpen the perception of re-
searchers to the transformational asymmetries associated with tensor fields,
such that these ideas may be fruitfully exploited and incorporated into phys-
ical theories. A table summarizing the transformation properties of tensor
rules w.r.t. maps of varying degrees of invertibility and differentiability is
presented, along with a few abstract applications directed towards subtle
points in the theory of thermodynamics and hydrodynamics.

3.1.1 Intrinsic Covariance and the Classification of Maps

The basic ideas to be utilized are straightforward, but appear only sporad-
ically, if at all, in the engineering literature . (For a partial, mathematical

∗Much of this material was developed in 1976 [172].
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treatment, see [116]) The definition of a contravariant tensor is taken to be
the classic one which uses the transformation rule,

XA → Y µ = JµAX
A (3.1)

to define contravariant quantities. The Jacobian matrix, JµA(X), is con-
structed in terms of the partial derivatives, ∂φµ/∂xA of the map φ : xA → yµ,
all of which are assumed to exist, but which need not be continuous.

However, a covariant tensor is defined herein to be an object which
obeys the transformation rule,

YµJ
µ
K = XK ← Yµ (3.2)

which, contrary to the usual tensor analysis definition, does not make use
of a Jacobian inverse (the base spaces need not be of the same dimension).
These two rules may be used to develop the ideas of natural, or intrinsic,
covariance w.r.t. maps for which the Jacobian inverse does not (globally)
exist, with the ideas agreeing with classic results when the transformations
are restricted to orthogonal transformations or diffeomorphisms.

Scattered through the literature of differential topology are discus-
sions of various maps which may or may not have inverses and whose Jaco-
bians may or may not be invertible. A summary of such maps is given in
Table 1, where more importantly, the intrinsic covariant behavior of tensor
fields with respect to each class of maps is also presented. A tensor field is
considered as a set of functional rules over a domain, with values in some
range. The intrinsic covariance problem considered herein (and with results
presented in Table 1) relates to the global solubility, and uniqueness of solu-
bility, of the rules (not just their values) w.r.t. various transformations of the
base spaces, as domains. For example: given two domains, x and y, with a
map φ between them from x to y, is it possible to uniquely determine a tensor
rule over the final state in terms of a tensor rule given over the initial state?
The answer is no, if the map φ does not have an inverse. Surprisingly enough,
a retrodictive version of this question obtains a favorable response for covari-
ant tensor fields: Is it possible to retrodictively determine a co-tensor rule
over an initial state, given a co-tensor rule over a final state? An affirmative
answer requires only that the Jacobian coefficients of map φ : xA → yµ exist.
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Map Existence Properties Co-rule Contra-rule
Continuous φ, dφ R -
Submersion φ, dφonto Runique -
Immersion φ, dφ1−1 R Runique

Local Inverse φ, dφonto, dφ1−1 Runique Runique

Cont, disc. Inverse φ, φ−1, dφ R P

Disc, Cont Inverse φ, φ−1, dφ−1 P R

Submanifold φ, φ−1, dφ1−1 R (R&P )uniq.
Quotient manifold φ, φ−1, dφonto (R&P )uniq P

Homeomorphisms φ, φ−1, dφ, dφ−1 R&P R&P

Embedding φ, φ−1, dφ1−1, dφ
−1
onto R&P (R&P )uniq.

Projection φ, φ−1, dφonto, dφ
−1
1−1 (R&P )uniq R&P

Diffeomorphism dφ& dφ−1 1-1 & onto (R&P )uniq (R&P )uniq.

Table 1. Retrodictive and predictive behavior of tensor fields w.r.t.
continuous maps

with different invertibility and differential structure.
R = Retrodictive, P =Predictive

A summary of the transformational solubility (and uniqueness of
solutions) of tensor fields with respect to various maps is presented in Table
1. Certain details are enumerated in Appendix A.

The logical asymmetry exhibited by the table is remarkable, as is the
fact that for non-homeomorphic maps (which are necessary to represent dis-
sipative transitions) there exists the possibility of a retrodictive determinism
— but not a predictive determinism. There appears to be an arrow of time
built into the transformational behavior of tensor fields with respect to non-
homeomorphic maps. A recognition of this built in logical asymmetry should
be taken into account by those theories which treat irreversible processes.
3.1.2 Physical Applications

There seems to exist a predilection in physics to obtain a description of nature
which is predictive. The classic problem in point mechanics is a problem in
prediction: given initial data, what is the future trajectory? Watanabe states
that "Every closed system of physical laws must include a time-dependent law
from which it is possible to deduce a predictive statement..." and ". . . physi-
cal theory is preeminently a predictive instrument.."[256] [257]. Now it is not
apparent to this author that predictive descriptions are the only way to un-
derstand nature, and a study of the transformation properties of tensor fields
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given in Table I gives support to the position that although a deterministic,
predictive, analysis for dissipative systems is impossible, surprisingly often
the opposite point of view, based on a deterministic retrodictive analysis, is
possible for dissipative systems. There is a definite asymmetry in dissipative
processes and according to Table I this asymmetry persists in the analytical
description of such systems.

The map classification table is striking in that it points out and em-
phasizes the natural retrodictive logical structure for tensor fields, especially
covariant fields, with respect to maps that are not homeomorphisms. As is
emphasized in the non-equilibrium theory of continuous topological involu-
tion, irreversible processes imply changing topology. For such systems, Table
1 indicates that a retrodictive analysis is appropriate, and moreover, it is the
only analysis that is well defined in a functional sense, if the process is irre-
versible (φ−1 does not exist). Perhaps the fundamental reason that Cartan’s
theory of differential forms, built on alternating covariant tensor fields, is so
powerful is due to the retrodictive solubility of differential forms with respect
to C1 maps. It has been shown (see Vol. 1) that the specification of a system
of differential forms is equivalent to specifying a topology and the utilization
of Pfaffian expressions (which are differential forms of degree one) in the sci-
ence of thermodynamics was an early recognition of the need for injection
of topological concepts into thermodynamic theories. Caratheodory’s use of
neighborhoods [95], Landsberg’s use of restricted continuity and the frontier
of a set [115] and the modern work of Boyling [23] are examples of the utility
of a topological approach in thermodynamics. It is in the study of Non
Equilibrium Systems and Irreversible Processes that Cartan’s mathematics
of differential forms demonstrates its power, for according to the previous
discussion, differential forms are well behaved (at least retrodictably) with
respect to non-homeomorphic, topology-changing maps. Cartan’s theory of
exterior differential forms appears to be the appropriate mathematical theory
for studying dissipative systems.

For physical applications the two most important principle maps are
the immersion and the submersion. Ordinarily, these maps are to be used
in the field sense. That is, the physical object is considered to be the base
space which is immersed or submersed into a Euclidean tensor space. The
submersion induces on the physical object, as a manifold, a set of covariant
vector lines which form an orthogonal field (on the object manifold) w.r.t.
the fibers of the submersion. The ”gradient” vector to the spherical surface
φ : R3 → R = {x2 + y2 + z2 = 1.0} is an example; the fiber is the spherical
surface itself. The orthogonal field spans the compliment to the fiber space
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created by the submersion.
On the other hand, the immersion of the object manifold into a

Euclidean space, induces a global covariant metric field, gµν , on the base
space, which permits a norm to be created for contravariant vectors on the
manifold. The idea of distance along a line is well defined by the immersion.
The notion of distance between ”surfaces” may not be well defined by an im-
mersion (consider the birefringent crystal); this concept requires a reciprocal
metric field that the object manifold may not support, globally.

For physical objects which are manifolds there exist theorems that
imply that they always may be immersed into a Euclidean space of sufficiently
large dimension [226]. The implication is that manifolds always support a
global metric field, whose covariant columns form a global, linearly indepen-
dent set of differential forms. The determinant of the induced metric field
is never zero, functionally, but can take on both positive and negative val-
ues, discontinuously. However, if the induced map, dφ, of the immersion is
continuous, as well as being 1-1, then the determinant of the metric field is
never zero and must be definite.

In a topological sense, those manifolds which are immersed in a con-
tinuously differentiable manner must be orientable. A non-orientable mani-
fold cannot support a covariant metric field with definite determinant. This
subtle point is at the basis of Caratheodory’s proof of the second part of
the second law of thermodynamics [33]. Entropy is positive definite only on
orientable manifolds. A set of points, or states, whose topology excludes,
or makes inaccessible, another set of points, or states, supports a monotonic
function only if the topology is orientable. A Mobius strip is a model of a
topology (infinitely extendable) which produces inaccessible states, but one
for which the entropy function is not globally definite (S > 0). Therefore, an
immediate application of the point of view discussed above is to demonstrate
a subtle and usually not expressed assumption in the theory of thermody-
namics: The phase space of Gibbs must be an orientable sub-manifold of
state space, if entropy is definite.

For contravariant considerations of a physical object as a manifold,
the next most important maps are the Submanifold map and the Quotient
manifold map. These mappings in physical situations are usually from a
Euclidean space to the body manifold are made in such a way as to permit
contravariant fields to be induced on the body manifold. (The submersion
and immersion described above were from the body manifold to the Euclid-
ean space, and induced covariant, not contravariant, fields on M) The classic
example is the submanifold map, φ, which carries the unit interval into a
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curve in M. The induced differential map, dφ, defines a tangent (contravari-
ant) vector on M, in the sense of Lagrange, which spans the submanifold
of M. This notion is distinct from the submersive (Hamiltonian) case which
defines a covariant wave vector field on M.

If the map to M is a quotient manifold map, then a reciprocal met-
ric field is induced on M which permits a distance between ”surfaces” con-
cept to be defined globally. Dual to the immersive case, a distance between
”points” may not be admissible. The idea is that in the immersive case a
contravariant measure is induced; in the quotient manifold case, a covariant
measure is induced. The measure coefficients are covariant and contravari-
ant, respectively, for the above mentioned measures. The two measure fields
have different transformation properties for non homeomorphic dynamical
transformations. Physically, the notion of strain is related to the covariant
measure coefficients, while the notion of stress is related to the contravariant
measure coefficients.

These results emphasize the differences between Lagrangian (con-
travariant particle) and Hamiltonian (covariant wave) mechanics [165] –
differences which become evident only for dissipative systems that do not
admit global metrics and reciprocal metrics. For the dissipative case, there
must exist two sets of physical laws: one for the covariant ideas, one for the
contravariant ideas. The differential form statements for Maxwell’s equations
are the foremost example of such dual behavior. The first Maxwell pair of
equations involving Faraday’s law and covariant E and B intensities is one
statement. The distinctly different second Maxwell pair of equations involves
contravariant quantities, D and H and is the second statement. There is a
fundamental difference between physical intensities, such as the (covariant)
E and B fields of electromagnetism, when compared to physical quantities
such as the (contravariant densities) D and H fields [155][225] . The differ-
ences are degenerate unless the system is irreversible, a fact that implies that
all physical phenomena which can be deduced from the behavior of E and B
fields can be metrically deduced from the behavior of D andH fields, in non-
dissipative systems. For a space that does not support both a global metric
field and a reciprocal metric field, one set of equations does not uniquely
imply the other. (The dual to the Einstein equation for the covariant metric
field is unknown.)

A study of these results should guide the development of physical
theories for dissipative systems. Such theories, without a dynamical inverse,
are not amenable to predictive determinism. These systems involve changing
topology, but nevertheless, such dynamical systems (if describable by con-
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tinuous maps) will yield a retrodictive determinism but only for a covariant
(wave) formalism. Contravariant (particle-trajectory) formalisms are never
predictive if φ−1 does not exist. The physicist, for dissipative field prob-
lems, should adopt the view: Given the final data, what was the initial state
from which it came? (This statement is dual, but not reciprocal to the usual
Cauchy statement: given initial data, what is the final state? Curiously
enough, this point of view seems to have been taken by Hadamard [79]).
Such questions and their answers, although not predictive in style, also yield
an understanding of nature. Moreover the methods are deterministic, not
statistical and are employed in a retrodictive sense.

Perhaps the most obvious physical example of a continuously dissi-
pative system is the turbulent fluid. The deterministic theory of a turbulent
fluid has yet to be formulated, apparently because of a predilection for a pre-
dictive theory. Moreover, from the arguments given above, as the dissipative
turbulent flow does not admit an inverse, a predictive deterministic theory
in terms of velocity fields is impossible. Again, the point of view discussed
above has led to an immediate application by proving once and for all that a
predictive, non-statistical theory of turbulence is impossible. Since the time
of G. I. Taylor, turbulence theories that have made any progress have been
predictively statistical and non-deterministic. However, the alternate point
of view, based upon the deterministic retrodiction of differential forms, is
just beginning to be utilized. Early results of the theory have demonstrated
that (1) if the system is dissipative, topology must change and (2) a turbu-
lent system cannot be described by Hamilton’s equations of motion; i.e., a
Hamiltonian analysis of a turbulent fluid is impossible. Moreover, if a flow is
to be diffusively dissipative (an intuitive requirement of turbulent flow) then
the Liouville theorem must fail. The notion that the Liouville theorem must
fail disallows the utilization of a symplectic geometry approach (better said:
symplectic transformations cannot be utilized to study turbulence, but there
exist uniquely defined thermodynamic irreversible processes on the symplec-
tic manifold! [1]). The topological criteria imply that not only are groups
not admissible (φ−1 does not exist), but also semi-groups are not admissible
in a turbulent flow. Also it has been demonstrated that the Navier-Stokes
equations for a viscous fluid cannot be derived from a strictly Hamiltonian
analysis, but indeed are representable by the covariant concepts embodied in
the theory of differential forms. The purpose of this article is to focus atten-
tion on the logical basis of the statement that, indeed, the physics of fields is
deterministically a retrodictive science. The permissibility of physics being
deterministically predictive is not the usual case and demands the special
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constraints of a non-dissipative system.

3.1.3 Transformational covariance

To demonstrate the transformation asymmetry of tensor fields this subsection
considers maps between spaces of different dimensionality, φ”M → N, from
points xA in the domain to points yµ in the range. It is assumed that a
physical system can be described as a tensor field, i.e. by a map α :M → τA

in the initial state and a map α : N → τµ in the final state. Both of these
maps are from the base space (M or N) to the contravariant tensor space
(τA or τµ ). An alternative field description can be made in terms of the
maps β : M → τK and β : N → τυ, which are from the base spaces to
the covariant tensor spaces. The contravariant and covariant fields behave
differently with respect to predictive and retrodictive deterministic solubility
and part of the purpose of this subsection is to demonstrate these differences
in behavior, even though the field values may be related by a metric.

For purposes herein it will be assumed that φ exists andthe Jacobian
matrix of partial derivatives ∂φµ/∂xA = JµA exists; i.e., unless otherwise
specified, the map φ is continuous. The Jacobian matrix induces two linear
maps, dφ : τA → τµ and fdφ : τK ← τυ between the tensor spaces. The
direction of the arrows is important; they demonstrate that the Jacobian
matrix always permits the values of the contravariant fields, as numbers,
to be predicted (but not necessarily retrodicted) and similarly the covariant
values may be retrodicted w.r.t. φ (but not necessarily predicted). The usual
rules are expressible in coordinate language as,

dφ : V A(x)→ V µ(x) =
X
A

JµA(x)V
A(x) (A1)

and

fdφ : AK(x) =
X
µ

Aµ(y(x))J
µ
K(x)← Aµ(y) (A2)

Note that the existence of a Jacobian inverse has not been assumed. The
action of the Jacobian is to push forward the values of contravariant fields and
”pull back” the values of the covariant fields. A diagrammatic description
is given in Figure 1. Classical developments of tensor analysis assume that
an inverse Jacobian matrix exists such that the rule for covariant tensor
transformation instead of being given by (A2) becomes [dφ]−1 : AK(x) →
Aµ(x) = [JµK(x)]

−1 = AK(x). This transition rule will not be assumed
herein.
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Induced maps between tensor fields.

Equations (Al) and (A2) not only yield recipes for computing values
of covariant and contravariant tensors, but also explicitly demonstrate the
differences between covariant and contravariant fields. Equation (A2) per-
mits the covariant rule, β, to be deduced retrodictively from the covariant
rule, β. On the other hand, equation (Al) for contravariant values does not
permit the contravariant rule, α, to be deduced predictively from the rule α,
for the functions V µ(x) have arguments on the domain space, x and are not
functions of variables, y, on the range space. This fact is the fundamental
observation which distinguishes between covariant/contravariant and retro-
dictive/predictive analysis. Covariant fields (especially differential forms)
are always retrodictive, even for irreversible maps where φ−1 does not exist.
This principle result is easily deduced from the directionality of the arrows
in Figure above. A study of the arrows in the figure will lead to a quick
understanding of the transformational behavior for the tensor field rules, α
and β, as more invertibility, or differentiability, structure is assumed for the
map φ.

As an example of the analysis, consider the submersion for which
dφ is onto (fdφ 1-1). For submersions, dφ admits a right inverse (J ◦ eJ is
non-singular on the range space) and by modifying the arrows in Fig. I it
is easy to see that the co-values are both predictive and retrodictive, the
contra-values are predictive and the covariant rule β is retrodictively unique.
(The proof can be effected easily by writing in a bijective arrow for fdφ .)

If the map φ is an immersion such that dφ is 1-1 (fdφ is onto), then the
map permits a left inverse of dφ ( eJ ◦J is non-singular on the domain space).
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Co-values and covariant rules are retrodictive. Contra-values are both pre-
dictive and retrodictive, but now the contravariant rules are retrodictively
unique.

If the map φ is such that dφ is both 1-1 and onto, then co- and contra-
values are both retrodictive and predictive and both the contravariant rule
and covariant rule are retrodictively unique.

None of the above maps admit an inverse function, globally; none of
the rules are predictive. The ”arrow of time” permits determinism only in a
retrodictive sense.

A continuous map, with a discontinuous inverse, yields enough ad-
ditional structure beyond the primitive cases considered above such that for
the first time the contravariant rule, α, is predictive. A completely dual sit-
uation occurs for those discontinuous maps φ that admit an inverse φ−1 and
dφ−1 (but no dφ): the co-values and covariant rules become predictive and
the contra-values and contravariant rules become retrodictive.

Of somewhat greater importance to physical systems are the maxi-
mal rank Submanifold map, for which φ, φ−1’ and dφ1−1, are valid globally,
and its dual, which is the Quotient manifold map, for which φ, φ−1and dφonto
are globally valid. These maps permit contravariant vector fields to be in-
duced globally on a manifold.

None of the maps considered so far are homeomorphisms; they do
not necessarily preserve topology. Subsequent maps to be considered are
homeomorphisms and all admit continuous inverses. Dissipative, irreversible
systems cannot be described by such maps. Dissipative systems imply a
change in topology.

For the weakest homeomorphism, φ and dφ exist and similarly φ−1

and dφ−1 exist. For such maps, both contravariant values and rules, as well
as covariant values and rules, are soluble in both a retrodictive and predictive
manner.

If the homeomorphism is an embedding, dφ is 1-1 and dφ−1 is onto;
the contravariant rules become uniquely soluble in both a predictive and a
retrodictive sense.

If the homeomorphism is a projection, then dφ is onto and dφ−1 is
1-1; the covariant rules become uniquely soluble in both a predictive and
retrodictive sense.

Finally if the map is a diffeomorphism (φ exists, φ−1 exists, dφ is
1-1 and onto, dφ−1 is 1-1 and onto) then both contravariant and covariant
rules are uniquely soluble in a predictive and retrodictive sense. The dif-
feomorphism is the usual map considered in classical tensor analysis as a
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coordinate transformation. With respect to such maps (that is, with respect
to classical tensor analysis) the different solubility features of contravariant
and covariant tensor fields becomes degenerate and indistinct.

A summary of the above map classifications is presented in Table I
along with the retrodictive or predictive solubility of the associated covari-
ant and contravariant tensor fields. Note the emphasis on retrodiction of
covariant fields for irreversible maps.

3.2 Irreversibility and Continuous Topological Evolution

On a given domain, Baldwin has shown that the existence of a Cartan 1-form
and its Pfaff sequence (4.8) may be used to define a ”Cartan” topology over
the domain (See Chapter 4 for details). If the Cartan 1-form is integrable
in the sense of Frobenius, then the Cartan topology is a connected topol-
ogy. If the Cartan 1-form is not integrable then the Cartan topology is a
disconnected topology.

Evolution from a connected topology to a disconnected topology can
proceed only by means of discontinuous processes. However, evolution from a
disconnected topology to a connected topology can be accomplished continu-
ously. It is this latter class of continuous processes that will be in focus in this
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monograph. An important practical result of this fact is that the continuous
hydrodynamic evolution from a streamline (integrable and reversible) state
to a turbulent ( non integrable and irreversible) state is impossible, while the
continuous evolution from a turbulent state to a streamline state is permissi-
ble [201]. The creation of irreversible turbulence is necessarily discontinuous,
but the decay of turbulence can be continuous.

It has been demonstrated ([172]) that for continuous but non home-
omorphic maps (C1 maps without continuous inverse) it is impossible to
predict the functional form of either covariant or contravariant vector fields.
That is, the functional form of tensor fields on the final state is not well de-
fined in terms of the functional form of the field on the initial state, if the
map from initial to final state is continuous but not homeomorphic. On the
other hand it can be shown that covariant antisymmetric tensor fields are
deterministic in a retrodictive sense, even though the continuous maps from
initial to final state are not invertible. That is, the functional form of the
components of differential forms defined on the final state are well defined on
the initial state even if the map from the initial state to the final state is C1
smooth, but not a homeomorphism. With respect to continuous topological
evolution there then exists a natural, logical, arrow of time, which is not
observable with respect to diffeomorphic geometric evolution that preserves
topology. Therefore, to understand irreversible phenomena, a retrodictive
point of view seems to be of some value [235] and it is this non statistical
retrodictive point of view constructed on Cartan’s theory of exterior differ-
ential systems that is the point of departure in this section.

The methods will be restricted at first to those evolutionary processes
and systems which are C2 continuous. It is appreciated that this restriction
does not cover all physical situations, where in the opinion of this author
”true” discontinuities, not just mathematical artifacts, are possible. The
continuous evolutionary processes to be considered will permit topology to
change in a continuous but irreversible manner (example: the pasting to-
gether of two blobs, or the collapse of a hole). Discontinuous processes are,
at present, excluded.

In this Chapter, a topological perspective will be used to establish
the long sought for, non-statistical, connection between dynamic mechanical
systems, thermodynamic irreversibility, and the arrow of time. Consider the
following remarks concerning the Boltzmann paradox:

”The traditional reductionist view is that we should seek the
explanation on the basis of the reversible mechanical equations of
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motion. But, as the physicist Ludwig Boltzmann discovered, it is
not possible to base the arrow of time directly on equations that
ignore it. His failed attempt to reconcile microscopic mechan-
ics with the second law gave rise to the ”irreversibility paradox”
Peter Coveny and Roger Highfield, ”Chaos, entropy and the ar-
row of time”, (WH Allen, London, 1990; Ballantine, New York,
1991).

”The arrow of time is one of the big unclaimed prizes of
modern physics. The problem is to reconcile the temporal asym-
metry of thermodynamics with the apparent temporal symmetry
of fundamental physical theories” Hugh Price Nature 348 (22
November, 1990), p. 356
On the other hand: ”...when they are correctly presented, the

classical views of Boltzmann perfectly account for macroscopic ir-
reversibility on the basis of deterministic, reversible, microscopic
laws” J Bricmont 1996.
Since in the differential equations of mechanics themselves

there is absolutely nothing analogous to the Second Law of ther-
modynamics the latter can be mechanically represented only by
means of assumptions regarding initial conditions. L. Boltzmann
([11], p.170)
Indeed, the laws of physics are always of the form: given some

initial conditions, here is the result after some time.
And Fred Hoyle wrote: ”The thermodynamic arrow of time

does not come from the physical system itself. . . it comes from
the connection of the system with the outside world”

In this section, the Boltzmann paradox will be resolved in terms of
the point of view of Continuous Topological Evolution (See Vol. 1). First
consider the definitions:

1. Causal evolution is defined as a map of C1 functions from a
domain of base variables to a unique range of base variables. The maps may
be many to one and are not necessarily homeomorphisms.

2. Prediction implies that well behaved functional forms (not just
numeric point data) on the range of base variables can be deduced from
functional forms defined on the domain of base variables.

3. Retrodiction implies that functional forms on the domain can be
deduced from functional forms on the range.

The fundamental axioms are:
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Axiom 1. Thermodynamic physical systems can be encoded in
terms of a 1-form of covariant Action Potentials, Ak(x, y, z, t...),
on a ≥ 4 dimensional abstract variety of ordered independent
variables, {x, y, z, t...}. The variety supports a differential volume
element Ω4 = dxˆdyˆdzˆdt...

Axiom 2. Thermodynamic processes are assumed to be encoded,
to within a factor, ρ(x, y, z, t...), in terms of contravariant vector
direction fields, V4(x, y, z, t...).

Axiom 3. Continuous topological evolution of the thermody-
namic system can be encoded in terms of Cartan’s magic formula
(see p. 122 in [133]). The Lie differential, when applied to a
exterior differential 1-form of Action, A = Akdx

k, is equivalent
abstractly to the first law of thermodynamics.

Cartan’s Magic Formula L(ρV4)A = i(ρV4)dA+ d(i(ρV4)A) (3.3)

First Law : W + dU = Q, (3.4)

Inexact Heat 1-form Q = W + dU = L(ρV4)A (3.5)

Inexact Work 1-form W = i(ρV4)dA, (3.6)

Internal Energy U = i(ρV4)A. (3.7)

Axiom 4. Equivalence classes of systems and continuous processes
can be defined in terms of the Pfaff topological dimension.

The result of employing these axioms will be to demonstrate that:

1. Topological evolution is a necessary condition for thermodynamic irre-
versibility.

2. Thermodynamic irreversibility is an artifact of topological dimension
4 or more, while topological dimension 3 is a necessary condition for
chaos.
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3. The assumption of Uniqueness of predicted solutions (which implies
a Topological dimension 2 or less) and Homeomorphic evolution are
different constraints on classical mechanics that eliminates any time
asymmetry.

The functional forms of tensor fields with arguments as the base vari-
ables of the final state are not well defined in terms of the functional
forms of tensor fields with arguments as the base variables of the initial
state, unless the map from initial to final state is a diffeomorphism,
which preserves topology. On the other hand, the functional forms of
those tensor fields which are coefficients of exterior differential forms,
and with arguments as the base variables of the initial state, are well
defined in terms of the functional forms of tensor fields with arguments
as the base variables of the final state, even when the map from initial
to final state represents topological evolution. Hence an Arrow of Time
asymmetry is a logical result when topological evolution is admitted,
but does appear if the evolution is restricted to be homeomorphic.

4. The insistence that a unique outcome can be predicted from given
initial data implies that the minimum topological dimension for a given
geometrical dimension is 2 or less. If the topological dimension is 3
or greater, and if solutions to a particular evolutionary problem exist,
then the solution is not unique. Envelope solutions are classic examples
of solution non-uniqueness.

The combined thermodynamic-topological perspective presented herein
uses the mathematical tools of exterior differential forms to describe the
topological features of physical systems, and vector fields to describe the
continuous evolutionary processes that may or may not change the topology
of the physical system. Examples will demonstrate that topological change
is a necessary condition for thermodynamic irreversibility, and continuous
topological change establishes the arrow of time.

3.3 Topological Tools

3.3.1 Topological Structure

The idea that the presence of a physical system establishes a topological struc-
ture on a base space of independent variables is different from, but similar
to, the geometric perspective of general relativity, whereby the presence of a
physical system is presumed to establish a metric on a base space of indepen-
dent variables. The topological features of the physical system are presumed
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to be encoded in terms of exterior differential forms, which - unlike tensors -
are functionally well behaved with respect to differentiable maps that are not
invertible. Note that a given base may support many different topological
structures; hence a given base may support many different physical systems.

For (smooth) maps, between base sets, that are C1 differentiable, but
are not invertible, it is impossible to predict uniquely the functional forms of
covariant or contravariant vector fields, constructed over a final base set, in
terms of functional forms given on an initial base set [172]. Point-wise values
of the tensor fields in certain cases may be predicted, but the functional forms
are never predictable with respect to such non-invertible maps. Hence, clas-
sical theories based on tensor fields, which can describe geometrical evolution,
will fail to describe topological evolution. It may be surprising to note that
(with respect to such non-invertible, non-homeomorphic, maps) it is possible
to retrodict the functional forms of covariant vectors and contravariant vector
densities on the initial base set in terms of the given functional forms on the
final base set. For differentiable evolutionary processes that are diffeomor-
phisms, topology does not change and both prediction and retrodiction of
tensor fields is possible. For differentiable evolutionary processes which are
not homeomorphisms, topology changes, and deterministic prediction fails,
but retrodiction remains possible. Hence the feature of topological evolution
imposes a sense of asymmetry with respect to an evolutionary parameter.
3.3.2 Continuity

Although C1 non-invertible maps are not homeomorphisms, and therefore
the topology of the initial state and the topology of the final state are not
the same, such maps can be continuous. Continuous topological evolution
is not an oxymoron, for topological continuity is defined such that the limit
points of every subset in the domain (relative to the topology on the initial
state) permute into the closure of the subsets in the range (relative to the
topology on the final state). The initial and final state topologies need not
be the same.

Pasting together is a continuous process for which the topology of
the final system state is not necessarily the same as the topology of the
initial system state. Separation or cutting into parts is a discontinuous
process for which the system topology of the final state is not the same as
the system topology of the initial state. The obvious topological property
that changes is the number of parts. Projections from higher dimensions
to lower dimensions are classic examples of many to one differentiable maps
that are not invertible. The obvious topological property that changes is
the property of dimension. Consider a flat putty disc in the shape of an



Topological Tools 159

annulus. Deform the putty continuously such that the points that make up
the central hole are pasted together. On the other hand make an interior
cut in a disk of putty and discontinuously separate the points to make a
hole. The obvious topological property that changes is the number of holes.
(Discontinuous processes are ignored in this presentation.)

3.3.3 Cartan’s Magic Formula

Cartan’s ”magic formula” (a descriptive phrase introduced by Marsden [133])
representing the ”evolution” of the 1-form of Action, A, with respect to the
”flow” generated by the vector field, V , is the cornerstone of the develop-
ment. The Cartan formula does not depend upon connection or metric, and
has been called the ”homotopy formula” by Arnold [6]. If the coefficient
functions of A and V are C2 differentiable then it is possible to prove that
Cartan’s formula describes continuous evolution. The C2 constraints can be
relaxed, but will be studied elsewhere.

Herein, the following definitions are made:

1. The term W = i(V)dA is defined as the inexact 1-form of ”virtual
work”.

2. The function U = i(V )A is defined as the ”internal energy”.

3. The sum of the two terms,W+dU, define the inexact 1-form of ”heat”,
Q.

From these definitions, it is apparent that Cartan’s magic formula
not only represents an evolutionary process, where the process V acts on
the physical system A to produce the 1-form of heat, Q, but also is formally
equivalent to the cohomological description of the First Law of Thermody-
namics.

L(V)A = i(V)dA+ d(i(V)A) = Q (3.8)

= W + dU = Q

In this monograph this formal correspondence is taken seriously.
Moreover the formula can be used to determine equivalence classes of evolu-
tionary processes, for a given physical system, which are thermodynamically
reversible or irreversible.

The fundamental theme is to study processes that describe contin-
uous topological evolution. Such evolutionary processes are not necessarily
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invertible and do not admit unique deterministic prediction of tensor fields
from initial data. However, they do permit the deterministic retrodiction
of tensor fields by means of functional substitution and pullbacks [64]. The
magic in Cartan’s formula is that it can be used to describe such evolution-
ary processes where the topology of the initial state is not the same as the
topology of the final state, as well as for adiabatic processes for which the
topology does not change.

Both the heat and the work 1-forms as defined above are not neces-
sarily exact, and therefore can lead to non-zero cyclic integrals. The symbol
L(V) stands for the ”Lie derivative” with respect toV,a term evidently coined
by Slebodzinsky [222]. The symbol dA stands for the ”exterior derivative”
of A, and the symbol i(V)A is used to designate the ”interior product” of
the contravariant V with the covariant A in a tensorial sense, producing a
diffeomorphic invariant. However, no constraints of metric or connection are
applied a priori to the domain of definition. For more detail see [123] [124]

For physical systems of measurement it is presumed that the ultimate
or fundamental domain (or base) of independent variables will be designated
by the ordered quadruplet {x, y, z, t}. Most useful applications will be con-
structed from both covariant and contravariant vector fields and functions
ultimately defined over this base. However, an initial domain of definition
may be conveniently of higher dimension; that is, the initial variety may con-
sist of 2n+1 or 2n+2 independent variables. Note that the initial variety may
consist of both ”coordinates” and ”parameters”, and the notation is suitable
for application of Fiber bundle theory.
3.3.4 Thermodynamic Irreversibility QˆdQ 6= 0
Following the lead of thermodynamic experience, a thermodynamic process
which is reversible it to be associated with a heat 1-form, Q, which admits
an integrating factor. The integrating factor (in thermodynamics) defines
the concept of temperature. Therefore, if the heat 1-form does not admit
an integrating factor, the thermodynamic process is irreversible [142]. From
a topological point of view, the heat 1-form admits an integrating factor if
and only if Q satisfies the conditions of the Frobenius integrability theorem,
QˆdQ = 0.This definition of thermodynamic irreversibility, when combined
with Cartan’s magic formula, permits the link to be made between thermo-
dynamics and mechanical systems.

To repeat: It is subsumed that the physical system can be repre-
sented by a 1-form of Action, A, and a physical process can be represented
by the vector field V. As the system (A) is propagated via the action of the
Lie derivative with respect to the process, V, the outcome is to produce the
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heat 1-form, Q. Hence a simple test for thermodynamic irreversibility of a
process acting on a system is given by the equations:

QˆdQ = (L(V)A)ˆ(L(V)dA) = 0 ⊃ the process is reversible. (3.9)

QˆdQ = (L(V)A)ˆ(L(V)dA) 6= 0 ⊃ the process is irreversible. (3.10)

The technique is as follows: First start with a reasonable description
of a physical system in terms of a 1-form of Action, A, and then for a given
vector field, V, representing a process, construct Q from Cartan’s formula.
Finally, use the Frobenius test to see if the given process is reversible or not.

3.3.5 The Pfaff Topological Dimension, n, versus Geometrical Dimension,
m:

Of key importance for any particular physical system is the choice of the
”correct” 1-form of Action, A, which encodes the topological features of a
specific physical system. Experience (guesswork) and the degree of agree-
ment with measurement will satisfy the working scientist. By measurement,
it is meant that certain geometrical and topological features will be ”ob-
servable” evolutionary invariants of a process, or of an equivalence class of
processes. In physics, the equivalence class of processes is often specified as
solutions to a system of partial differential equations; herein, the alternative
view is taken that the equivalence class is generated by an exterior differ-
ential system of constraints acting on exterior differential forms. Exterior
differential systems are, in effect, specifications of topological constraints on
the physical system. For example, the constraint F − dA = 0 is topologi-
cally a constraint that says the 2-form object is globally closed in an exterior
differential sense. The 2-form F is constrained to be equal to the limit sets
of A, relative to the Cartan topology generated by the topological structure
of the given 1-form of Action, A.

Perhaps one of the most important, and yet easily computed, ideas
is the concept of Pfaff Topological dimension, or class, of an exterior differ-
ential 1-form, A. Recall that dimension is a topological property, hence if
the Pfaff Topological dimension changes during an evolutionary process, the
process is describing a process of continuous topological change - a necessary
requirement for thermodynamic irreversibility. Examples of such processes
will be given below. It is also important to remember that the same set
of elements can support more than one topology. In the case at hand, the
Pfaff Topological dimension of the three 1-forms, A, W, and Q will be of im-
portance to the analysis of non-equilibrium thermodynamics, and the arrow
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of time. A given differential form, A, geometrically defined in terms of 2n
differentials and functions on a variety of geometric base dimension n, may
require m ¹ 2n independent functions and differentials for its topological de-
scription. The Pfaff topological dimension can be less than the Geometric
dimension of the space over which the 1-form of Action has been constructed.
The concept implies that their exists a differentiable projective map from a
space of dimension 2n to the space of dimension m. An exterior differential
form defined on the (final) target space induces a functionally well defined
exterior differential form on the (initial) domain space, by means of func-
tional substitution and the ”pullback” of the projection. The topological
features of investigations on the lower dimensional space can be retrodicted
back to the initial higher dimensional manifold, even though the projective
mapping is not a homeomorphism and therefor implies topological change.
Remarkably, the Pfaff topological dimension of the 1-form on the target space
is the same as the Pfaff topological dimension of the pulled back 1-form on
the initial space.

For any given 1-form, A, functionally defined on a (perhaps geomet-
rical) base space, or variety, of dimension n, it is possible to compute the
”Pfaff sequence”, {A, dA,AˆdA, dAˆdA...}. It is remarkable that this se-
quence terminates at a minimum number,m ≤ n, representing the irreducible
minimum number of independent functions required to define the topological
encoding. This number m is called the Pfaff topological dimension, and
the last non-zero element of the Pfaff sequence is defined as the top Pfaf-
fian. The topological dimension, m, is less than or equal to the geometric
dimension, n. Note that the requirement for thermodynamic irreversibility
implies that the Pfaff dimension of the heat 1-form Q must be 3 or greater,
which means the Frobenius theorem of unique integrability for the Pfaffian
expression, A = 0, fails. The idea is that the Pfaff topological dimension
implies the existence of a continuous differentiable map from the variety of
dimension n > m to a variety of dimension m.

An explicit physical 1-form, A, will generate a ”Cartan topology”
on the domain. It is easy to demonstrate that the Cartan topology is a
connected topology if the Pfaff dimension is 2 or less, and a disconnected
topology if the Pfaff dimension is 3 or more (See Vol 1). Hamiltonian me-
chanics and Eulerian streamline flows in hydrodynamics (on base spaces of
geometric dimension 4) are associated with Action 1-forms of Pfaff topologi-
cal dimension 2 or less, and are thermodynamically reversible. Turbulence,
being the antithesis of streamline flow, must be represented by a topology of
Pfaff dimension 4 or more, and is thermodynamically irreversible. Again,
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the constraint of continuous topological evolution induces a logical ”Arrow of
Time” related to a change in Topology. Note that the decay of turbulence
can be studied by continuous methods, but the creation of turbulence cannot.
It is possible to demonstrate that a map from a continuous topology to a dis-
continuous topology is not continuous, but a map from a continuous topology
to a discontinuous topology is continuous. In both evolutionary maps, topo-
logical evolution takes place as the Pfaff topological dimension changes, but
note that the creation of turbulence cannot be continuous, where the decay
of turbulence can be continuous.

When the 1-form A is of odd topological dimension (n= 3 or greater),
then the 2-form dA can be put into correspondence with an odd-dimensional
n = 2k+1 antisymmetric matrix of functions of maximal rank. This matrix
has one unique eigenvector with a null eigen value. Hence the topological
encoding of a physical system determines a unique direction field defined as
the ”extremal” direction field (on the 2k+1 dimensional variety). Evolution
in the direction of this unique ”extremal” vector field, VE , implies that the
virtual work, W, vanishes, and that the exterior derivative of heat 1-form dQ
vanishes, as Q is exact. Such extremal vector fields always have a Hamil-
tonian generator, and are not thermodynamically irreversible, as QˆdQ = 0.
The extremal Hamiltonian evolution preserves the even dimensional topo-
logical features of the physical system (the Poincare invariants). If the
extremal process is also adiabatic, such that both Q = 0 and dQ = 0, then
the process preserves both odd and even topological features, and is a home-
omorphism. The equivalence class of processes that satisfy the closure re-
quirement, (dQ = 0) includes not only extremal fields, i(VE)dA = 0, but
also those that can have a Casimir generator (Bernoulli flows) or those that
can generate limit cycles.

3.3.6 Symplectic manifolds:

When the 1-form A is of even topological dimension (n = 4 or greater), then
the 2-form dA can be put into correspondence with an even-dimensional
antisymmetric matrix of functions of maximal rank. Extremal fields (with
null eigenvalue) do not exist, but there is a unique evolutionary direction field,
VT , on the n = 2k + 2 dimensional variety that is completely determined
from the topology of the physical system, induced by the 1-form, A. On a n
= 4 dimensional base manifold, this unique direction field is defined by the
equations,

AˆdA = i(VT )dxˆdyˆdzˆdt. (3.11)
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This vector fieldVT is defined as the Topological Torsion vector on the 2n+2
dimensional Symplectic manifold. As AˆAˆdA = 0 the Topological Torsion
vector is transverse with respect to the 1-form of Action: i(VT )A = 0. By
direct calculation it is possible to show that W = i(VT )dA = ΓA. In other
words the 1-form of virtual work is proportional to the 1-form of Action.
Cartan’s magic formula becomes

L(VT )A = ΓA, (3.12)

with i(VT )A = 0. (3.13)

Here Γ equals 1/2 the coefficient of the non-zero 4-form

dAˆdA = 2 · Γ(x, y, z, t)dxˆdyˆdzˆdt (3.14)

= {div4(VT )}dxˆdyˆdzˆdt. (3.15)

As the 2-form is of maximal rank, Γ(x, y, z, t) 6= 0. It follows that evolution
in the direction of the Torsion Vector VT is thermodynamically irreversible,
as

QˆdQ = L(VT )AˆL(VT )dA = Γ
2AˆdA 6= 0. (3.16)

The factor Γ2 plays a role related to the entropy production rate.
If the evolutionary process proceeds to a domain where Γ(x, y, z, t)⇒

0, then (on the 2n+2 =4 dimensional Symplectic space) the Topological
Torsion vector VT satisfies the equations

L(VT )A = 0, (3.17)

with i(VT )A = 0, (3.18)

and i(VT )dA = 0, (3.19)

or VT ⇒ CT . (3.20)

The Topological Torsion vector VT becomes a characteristic direction field
CT and evolution in the direction of CT is no longer thermodynamically
irreversible. Note that in this case dAˆdA⇒ 0, hence the Pfaff Topological
dimension is reduced from 2n + 2 = 4 to 2n + 1 = 3. (The arguments can
be extended to arbitrary n).
3.3.7 Cartan’s development of Hamiltonian systems.

Recall that Cartan proved that if the 1-form of Action is taken to be of
the classic format, A = pkdq

k + H(pk, q
k, t)dt, on a 2n+1 dimensional do-

main of variables {pk, qk, t}, then a subset of all vector fields, V, that sat-
isfy his magical equation would generate ”Hamiltonian flows” of classical
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mechanics.[38] The necessary and sufficient constraint for the vector field
to be of the Hamiltonian format was that the closed integrals of the ActionR
z1
A must be evolutionary invariants of the process, V .

Cartan’s Constraint: L(V)

Z
z1

A⇒ 0. (3.21)

The symbol,
R
z1
, is used to designate that the integration chain is a closed

cycle, z1;
R
z2
, would be used to designate a two dimensional closed cycle;

etc.. The cycle may or may not be a boundary.
The Cartan criteria does not constrain the Hamiltonian function

H(pk, q
k, t) to be independent from time, but as will be described below, it

does insure that the Cartan topology of the initial state is the same as the
Cartan topology of the final state. The same criteria to generate ”Hamil-
tonian flows” can be used on 2n+2 dimensional domains, (pk, qk, t, s). The
key difference is that on the odd dimensional domain ( a contact manifold)
the Hamiltonian flow is a unique ”extremal” field. The generator of the flow is
the Hamiltonian function, H(pk, qk, t). On the 2n+2 dimensional domain (a
symplectic manifold), a unique extremal field does not exist. There do exist
(many) ”Hamiltonian flows”, but they are generated, not from H(pk, q

k, t, s),
but from other functions, known as Bernouilli-Casimir functions, Θ. There
does, however, exist a unique vector direction field of evolution on the sym-
plectic 2n+2 domain, but it is not a Hamiltonian flow. In fact, it will be
demonstrated below that this unique vector field (defined as the Topological
Torsion current) represents thermodynamically irreversible processes.

3.3.8 Thermodynamic Reversibility QˆdQ = 0

The Cartan constraint (L(V)
R
z1
A = 0) thereby partitions all possible vector

fields of evolution into two equivalence classes, those representing processes
that were ”Hamiltonian”, and those that were not Hamiltonian. Herein the
idea is to exploit the Cartan’s magic formula to obtain a better understanding
of the non-Hamiltonian processes (L(V)

R
z1
A 6= 0), and how they may repre-

sent dissipative and irreversible physical phenomena. Hamiltonian processes
may be time-dependent, hence decaying energy alone is not a sufficient cri-
teria to insure thermodynamic irreversibility.

Following the lead of thermodynamic experience, a thermodynamic
process which is reversible it to be associated with a heat 1-form, Q, which
admits an integrating factor. The integrating factor (in thermodynamics)
defines the concept of temperature. Therefore, if the heat 1-form does not
admit an integrating factor, the thermodynamic process is irreversible. From
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a topological point of view, the heat 1-form admits an integrating factor if
and only if Q satisfies the conditions of the Frobenius integrability theorem,
QˆdQ = 0.This definition of thermodynamic irreversibility, when combined
with Cartan’s magic formula, permits the link to be made between thermo-
dynamics and mechanical systems.

Rather than applying the method to many examples, it is possible
to consider equivalence classes determined by the Pfaff dimension, or class,
Pfaff(W ), of the 1-form of virtual work, W. The Pfaff dimension of the
virtual work 1-form, W = i(V)dA, depends on both the process (V) and the
system (A). Conservative Hamiltonian processes belong to the Pfaff(W ) =
0 or Pfaff(W ) = 1. Processes that belong to the Pfaff(W ) = 4 are always
irreversible.

3.4 The Pfaff Dimension of the 1-form of Virtual Work, Pfaff(W)

Given any 1-form, W = i(V)dA, defined over a set of independent variables,
it is always possible to construct its Pfaff sequence from the form,W , its
exterior differential, dW , and algebraic exterior products of these objects;

Pfaff sequence of W {W,dW,WˆdW, dWˆdW, ..}. (3.22)

At some integer M+1 the remaining elements of the Pfaff sequence are zero.
The Pfaff dimension, or class, Pfaff(W ) of the form, W , is defined as the
integer M equal to the number of non-zero terms in the Pfaff sequence. This
integer is always less than or equal to the number of independent variables.
The Pfaff dimension specifies the irreducible number of functions required to
specify the 1-form of interest. As the 1-form of Work is constructed from the
1-form of Action, the number of contravariant components of a vector field,
V , required to define the 1-form of virtual work,W, need not exceed the Pfaff
dimension of the Action 1-form. However, the components of an arbitrary
contravariant vector field on the original domain of definition may not be
fully expressible in terms of projected functions of the 1-form of Action. In
modern language, the Pfaff dimension of the 1-form of Action determines the
base, but the contravariant vector field has additional components along the
fibers of the vector bundle.

Cartan’s magic formula takes note of this difference, for the 1-form
of virtual work, W, is transversal to the process, while the 1-form of heat is
not.

i(V)W = i(V)i(V)dA = 0 but i(V)Q = i(V)d(i(V)A) 6= 0 (3.23)
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In the language of fiber bundles, this result gives a precise definition to the
differences between the concepts of work and heat. Heat can have compo-
nents along the fibers, work does not.

In that which follows, the features of the various equivalence classes
defined by the Pfaff dimension of the 1-form of virtual work are explored.
In all classes considered, the trivial case dA = 0, is ignored, for then every
vector field representing a process on such physical systems is such that the
virtual work vanishes. All such cyclic processes are adiabatic, and if the
process is such the the internal energy is constant, dU = d(i(V)A) = 0,
then such processes are locally and globally adiabatic. If the process is an
associated vector, (such the U = i(V )A⇒ 0) then the process resides on the
”equipotential” surface defined by the Pfaffian equation, dA = 0.

3.4.1 Reversible Case 1: Pfaff(W) = 0. Cyclic processes that are adiabatic
and extremal.

When dA 6= 0, the constraint, Pfaff(W ) = 0, implies that the virtual
work 1-form vanishes, W = i(V)dA = 0, and the 2-form dW ⇒ 0. Recall
that the 2-form of ”vorticity”, or field intensities, dA, consists of an anti-
symmetric matrix of coefficients. Hence, only when the Pfaff dimension of
the Action is an odd-integer, 2n+1, is it possible for work 1-form to vanish.
In such cases the processes, V, are defined as extremals (a word borrowed
from the calculus of variations) and are uniquely determined (to within a
projective factor) as the null eigen vector of the anti-symmetric matrix of
functions that are used to represent the coefficients of the 2-form dA. As
this extremal constraint determines the ”equations of motion”, it should be
noted that there is a large equivalence class of physical systems that will have
the ”same” orbital motion. In the extremal case the 1-form of Action is not
unique, for any closed 1-form, γ, with dγ = 0, may be added to the initial
1-form, A, without changing the structure of the 2-form, dA. It is the form
dA that determines the virtual work, W.

dA = d(A0 + γ) = dA0 + dγ = dA0. (3.24)

The ”equations of motion” are said to be ”gauge” invariant in the sense that
the virtual work 1-form is the same for all physical systems which are elements
of the large equivalence class of Actions which differ from one another by a
closed 1-form (the ”gauge”). Note that the gauge differences between the
elements of different actions are not necessarily exact differentials; the class
of actions that produce gauge invariant fields, or equations of motion, can
belong to different cohomology classes. In short, the same W has many
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precursors A
However, from a thermodynamic point of view, the heat 1-form, Q,

and how the system interacts with its surroundings, is sensitive to the closed
1-form additions to the Action 1-form. The heat 1-form, Q, and the internal
energy, U, are not gauge invariant.

L(V)A = i(V)dA+ d(i(V)A) (3.25)

= 0 + dU = d{i(V)A0 + (i(V)γ} = Q

However, what is remarkable, is that any closed integral of the Ac-
tion,

R
z1
A, is a (relative) integral invariant of the extremal evolutionary

processes generated by V of this equivalence class.

L(V)

Z
z1

A =

Z
z1

Q = 0 (W = 0). (3.26)

Hence, any cyclic integral of the heat 1-form is ”gauge” invariant. During
portions of the cycle, Q may be positive and negative, such that over the
cycle, the net Q is zero. (Such systems are sometimes called ”breathers” and
can be related to limit cycles that occur in dissipative systems.)

If Q vanishes identically, the process is said to be locally adiabatic.
For a given system, the constraint that the process be locally adiabatic, can
be satisfied by an extremal vector field, which is also ”associated”. The two
constraints,

(i(V)A) = 0 (associated) (3.27)

i(V)dA = 0 (extremal) (3.28)

form a subclass of processes defined as ”characteristic” processes, It follows
that such characteristic processes are locally adiabatic.

As mentioned above, on an even dimensional manifold of maximal
rank, extremal fields do not exist. However, as will be discussed below, on
the 2n+2 symplectic manifold for which there is no unique extremal field,
there does exist a unique direction field defined as the (topological) torsion
current. Evolution in the direction of the torsion current can decay to a
domain where (through topological evolution) the 2n+2 domain becomes
a 2n+1 domain, and from then on the evolution can take place along an
extremal direction. The initial decay is essentially a transient process that
dies out (irreversibly) to a steady state conservative process.
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The extremal evolutionary processes form the basis for classical me-
chanics on state-space. It is apparent that the net heat around any closed
path is cyclically zero. If in addition the internal energy is a constant,
dU = 0,then such processes are locally adiabatic, Q =W + dU = 0+ 0 = 0.
As the extremal vector field is determined only up to a factor, ρ, it is possible
to choose this function such that the internal energy is a constant,

U = ρ(i(V)A) = Const. (3.29)

For such choices of ρ the extremal process is locally adiabatic.
Suppose the initial domain of independent variables {E, t, pk, qk} is

of dimension 2n+2, with a Darboux representation for the 1-form of Action
given by the expression

A = pkdq
k −Edt. (3.30)

The top Pfaffian, dAˆdA... is a 2n+2 form

dAˆdA... = dEˆdtˆdp1...ˆdpnˆdq
1...ˆdqn. (3.31)

If the Pfaff dimension of the Action 1-form is to be 2n+1, then this 2n+2
form must vanish. Hence the variable, E, cannot be functionally independent
from the remaining (presumed to be independent) variables; it follows that
E = H{p, q, t} on the 2n+1 dimensional domain. The Action 1-form is then
written in the Cartan-Hamiltonian format

A = pkdq
k −H{p, q, t}dt (3.32)

Relative to the 2n+1 ”coordinates” {pk, qk, t}, consider the vector field V =
{fk, V k, 1} and find the solution to the equation,W = i(V)dA = 0. The
result is

V = {fk = −∂H/∂q, V k = ∂H/∂p, 1} (3.33)

and the extremal field is said to be Hamiltonian.
By constructing the exterior derivative of Cartan’s magic formula,

L(V)dA = di(V)dA+ dd(i(V)A) (3.34)

= dW + 0 = dQ

As dW = 0 for Pfaff(W ) = 0, it follows that dQ = 0. Hence, all even dimen-
sional elements of the Pfaff sequence generated by the Action, {dA, dAˆdA, ...},
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and their integrals, are absolute invariants of the equivalence class of extremal
fields, a result known to Poincare.

Note that all processes for which the work 1-form is of Pfaff class 0
are reversible, for QˆdQ = 0.

3.4.2 Reversible Case 2: Pfaff(W) = 1. Symplectic processes.

When the virtual work 1-form is closed but not zero, W 6= 0, dW = 0, then
the Pfaff dimension is equal to 1. The closure constraint forces the virtual
work 1-form to be composed of a perfect differential and/or a harmonic part.
When the virtual work 1-form is exact such that

W = i(V)dA = dΘ(x, y, z, t), (3.35)

then the function Θ is defined as a Bernouilli-Casimir function, and is an
invariant (first integral) of those evolutionary process, V, that belong to the
Pfaff(W ) = 1.

L(V)Θ = i(V)dΘ = i(V)(i(V)dA) = 0. (3.36)

In hydrodynamics, the Bernoulli function is a constant along any stream-
line, but neighboring streamlines will have different values for the Bernoulli
function, hence Θ = Θ(x, y, z, t) but i(V )dΘ = 0.

When the virtual work 1-form is exact, the processes are not only
reversible (dQ = 0), but they are also cyclically adiabatic. On the other
hand, if the virtual work 1-form is closed, but not exact, then the processes,
although reversible, are not cyclically adiabatic.

If the Pfaff class of the Action is even, then there exists a unique
vector field, V, that defines a locally reversible adiabatic process. For if
Q = 0,

W = i(V)dA = −dU = −d(i(V)A) (3.37)

then

L(V)A =W + dU = −dU + dU = Q = 0. (3.38)

As an example consider the domain {x, y, z, t} and the Action A =
A• dr−φdt. The adiabatic condition becomes the partial differential system

−∂A/∂t− gradφ+V× curlA = −grad(V ·A− φ) (3.39)
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V · (−∂A/∂t− gradφ) = ∂(V ·A− φ)/∂t (3.40)

However, when the work 1-form in not exact, then the process is not
cyclically adiabatic, and there will exist non-zero cyclic contributions to the
work and heat. The ratio of these integrals is rational [deRham].

The evolutionary vector field is again said to be ”Hamiltonian”, for
dp − (−∂Θ/∂q)dt = 0 and dq − (∂Θ/∂p)dt = 0. If the Action is written in
the Cartan format,

A = pdq −H(p, q, t, σ)dt),

then the Hamiltonian energy, H(p, q, t, σ), is not necessarily an invariant
of the flow generated by the Bernoulli-Casimir function, Θ. The Bernoulli-
Casimir is, however, an evolutionary invariant, and its gradient is transversal
to the evolutionary process.

However, when the work 1-form in not exact, but may have harmonic
components, γ, representing topological obstructions. In these cases, the
process is not adiabatic in a cyclic sense, forZ

z1

Q =

Z
z1

W + d(U) =

Z
z1

{d(Θ+ U) + γ} = 0 +
Z
z1

γ 6= 0

There will exist non-zero cyclic contributions to the work and heat. The
ratio of these cyclic integrals is rational [deRham].

Note that all processes for which the work 1-form is of class 1 are
reversible, for QˆdQ = 0.

3.4.3 Case 3: Reversible, Pfaff(W) = 2 or 3

When QˆdQ = 0, but dQ = dW 6= 0, the first law implies that

WˆdW + dUˆdW = 0. (3.41)

Then either WˆdW = 0 (and the Pfaff dimension of W is 2) or WˆdW 6= 0
(and the Pfaff dimension of W is 3 or more). In the first case there is a
functional relationship between the variables U = U(P, V ) or U = U(T, s).
In both cases dWˆdW = 0,hence the Pfaff dimension of W is 3 or less.

3.4.4 Case 4 : Irreversible, Pfaff(W) = 4.

In this case dWˆdW = dQˆdQ 6= 0 and the process is never reversible.
Examine the case where dAˆdA 6= 0, on a domain of 4 dimensions. Then
there exists a unique direction field T such that
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AˆdA = i(T )dxˆdyˆdzˆdt. (3.42)

This vector field T is defined as the Topological Torsion vector. AsAˆAˆdA =
0 the Topological Torsion vector is associated with the 1-form of Action:

i(T )A = 0. (3.43)

By direct calculation it is possible to show that

W = i(T )dA = ΓA. (3.44)

In other words the 1-form of virtual work is proportional to the 1-form of
Action. Cartan’s magic formula becomes

L(V)A = ΓA (3.45)

where Γ equals the coefficient of the non-zero 4-form

dAˆdA = Γ(x, y, z, t)dxˆdyˆdzˆdt. (3.46)

As the 2-form is of maximal rank, Γ(x, y, z, t) 6= 0.
It follows that evolution in the direction of the Torsion Vector yields

QˆdQ = L(V)AˆL(V)dA = Γ
2AˆdA 6= 0, (3.47)

which implies that the process is thermodynamically irreversible.

3.5 Anholonomic Fluctuations.

Consider a physical system that can be defined in terms of the Cartan-Hilbert
1-form of Action,

A = L(t; q, v)dt+ pk(dq
k − vkdt), (3.48)

defined on the 3n+1 variety {t; qk, vk, pk}. Do not assume that pk is con-
strained to be a jet; e.g., pk 6= ∂L/∂vk. Instead, consider pk to be a La-
grange multiplier to be determined later. It follows that the exact two form
dA satisfies the equations

(dA)n+1 6= 0, but Aˆ(dA)n+1 = 0. (3.49)

The actual formula for the top Pfaffian (which is of dimension 2n+2 and not
3n+1) is:



Anholonomic Fluctuations. 173

(dA)n+1 = (n+ 1)!{Σnk=1(∂L/∂vk − pk) • dvk}ˆ Ω2n+1. (3.50)
where Ω2n+1 = Ωpˆ Ωqˆdt, (3.51)

and Ωq = dq1ˆ...ˆdqn, (3.52)

and Ωp = dp1ˆ...ˆdpn. (3.53)

It is to be noted that the unconstrained top Pfaffian of the Cartan-Hilbert
Action is always associated with a symplectic (even dimensional) manifold,
but not of the maximum dimension of the space of the 3n+1 variables. For
n = 3 degrees of freedom, the top Pfaffian indicates that the topological of
Pfaff dimension of the 2-form, dA is 2n+ 2 = 8.

If the domain of definition is constrained such that the momenta are
defined canonically, ∂L/∂vk − pk = 0, then the 2-form dA is not symplectic
on its maximal dimension 2n+2, but becomes a contact structure on 2n+1
with the formula

Aˆ(dA)n = n!{pkvk − L(t, q, v}Ω2n+1. (3.54)

The coefficient in brackets is the Legendre transform of the Lagrangian pro-
ducing the format of the classic Hamiltonian energy. The resulting 2n+1
(state) space always has a contact structure if the ”total energy” is never
zero, and the momenta are canonically defined. The space is reducible to a
2n phase space only if the Lagrangian is homogeneous of degree 1 in the vk,
otherwise it is a contact structure of dimension 2n+1.

Consider evolutionary processes defined in terms of a vector field
γW = γ{1, v, a, f}, relative to {t; q, v, p}. Construct the 1-formW of virtual
work by contracting the exact two form dA with the vector field. For every
case, the 1-form of virtual work has the format

W = i(W)dA = {p− ∂L/∂v}∆v + {f − ∂L/∂x}∆q. (3.55)

where

∆v = dv − adt 6= 0 (3.56)

and

∆q = dq − vdt 6= 0. (3.57)
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When the 2-form dA is symplectic, the work 1-form (which can not vanish)
has two terms for any n; the first involves ∆v and the second involves ∆q.
The work 1-form cannot vanish if dA is symplectic for there are no null
eigenvectors of an anti-symmetric matrix of maximal rank. This fact implies
that the following 4 situations are NOT allowed when dA is symplectic.

1. {p− ∂L/∂v} = 0 and {f − ∂L/∂x} = 0
(Canonical momentum and gradient forces.)

2. {p− ∂L/∂v} = 0 and ∆q = 0

(Canonical momentum and zero kinematic fluctuations in position.)

3. ∆v = 0 and {f − ∂L/∂x} = 0
(Zero kinematic fluctuations in velocity and gradient forces.)

4. ∆v = 0 and ∆q = 0

(Zero kinematic fluctuations in velocity and Zero kinematic fluctuations
in position.)

Conversely, when dA generates a contact manifold, one of the four
cases above must be true. An elementary case is based upon the assumption
that 4 is valid. That is, there exists a kinematic description of the process at
both the first and the second order. Another case that is common is based
on the assumption that the momentum is canonically defined. Then, for the
Contact extremal case to exist, and as p − ∂L/∂v = 0, it is necessary that
the work 1-form reduces to vanishing expression

W = {f − ∂L/∂x}∆q ⇒ 0 in the extremal case. (3.58)

The extremal constraint is satisfied when the bracket factor vanishes, which
is then the equivalent of the Lagrange-Euler equations of classical mechan-
ics. However, the Contact constraints are also satisfied when the force is
a gradient field, or there exist zero fluctuations in position, or the non-zero
components of the force (the otherwise dissipative components) are orthog-
onal to the kinematic fluctuations in position.

Of current interest are those situations when the work one form is
closed, but not zero. Such constraints define symplectic (not extremal) evo-
lutionary processes which occur on even dimensional symplectic manifolds.
Locally, asW = i(W)dA = dΘ, it can be shown that such evolutionary fields
belong to Lie groups, and that the non-constant functions, Θ, are Casimirs.
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A hydrodynamicist would use a different set of words. He would describe
the Casimir as a Bernoulli function, a function which is constant along a par-
ticular flow line, but which will vary from flow line to flow line. Symplectic
processes create conservation theorems of the Helmholtz type (conservation
of vorticity, conservation of angular momentum..). In such systems, the
Hamiltonian energy need not be an evolutionary invariant, and the system
can decay to singular points where the symplectic structure condition fails.
Such points will be defined as ”equilibrium” points of a symplectic process.
An example is given in Vol. 1, with more detail given in Vol 3. to show how
the Navier-Stokes equations generate evolutionary vector fields of the sym-
plectic type, but the Euler equations (without pressure) generate extremal
vector fields.

If ∆v is interpreted as ”anholonomic differential fluctuations” in ve-
locity, and ∆q is interpreted as ”anholonomic differential fluctuations” in
position, then it is intuitive to state that fluctuations in velocity relate to
temperature and fluctuations in position relate to temperature. Following
this train of thought implies that the first term in the expression for W
must be related to Enthalpy (functions of the type−TS that involve tem-
perature) and the second term to Helmholtz free energy (functions of the
type+PV that involve pressure). The combination defines the Gibbs free
energy (functions of the type −TS+PV ) of closed thermodynamic systems,
and reversible processes. These thermodynamic ideas, more than 100 years
old, are essentially the Casimirs of the symplectic vector fields of irreducible
dimension 2n+2, and are not evident in extremal systems. When the evo-
lutionary vector fields are symplectic, such that dW = dQ = 0, they define
thermodynamic reversible processes. The Cartan evolutionary equation of a
symplectic process becomes

L(W)A = W + dU = dΘ+ dU

= {p− ∂L/∂v}∆v + {f − ∂L/∂x}∆q + dU (3.59)

⇒ d(−TS + PV + U) = d(G) = Q, (3.60)

which defines the heat 1-form Q as the ”gradient” of the Gibbs free energy,
G = TS − PV + U . The Gibbs function is an evolutionary invariant by
construction, for all Bernoulli-Casimir functions have transversal gradients.

L(W)(G− U) = i(W)d(G− U) = i(W)i(W)dA = 0. (3.61)
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Under the classic assumption that dU −TdS+PdV = Q, it follows that the
symplectic evolution generates a Pfaffian form of the type −SdT +V dP = 0,
which if integrated yields Gibbs version of an equation of state.

When the work 1-form is not closed, then the process can become
thermodynamically irreversible. In this case, the evolution is on a symplectic
manifold, but the process is not symplectic (as dW 6= 0). To test for irre-
versibility, the usual engineering requirement is that the heat 1-form Q does
not admit an integrating factor. Hence, as described above, a given process,
W, acting on a physical system, A, is irreversible when

QˆdQ = L(W)AˆL(W)dA 6= 0. (3.62)

It is remarkable that the symplectic systems of irreducible dimension
2n+2 seem to solve the Boltzmann - Loschmidt-Zermelo paradox of why
canonical Hamiltonian mechanics does not seem to be able to describe the
decay to an equilibrium state, and why the usual (extremal) methods of
Hamiltonian mechanics do not give any insight into the concept of Pressure,
Temperature, or the Gibbs free energy. It is extraordinary that answers to
these 150 year old paradoxes of physics seem to follow without recourse to
statistics if one utilizes Gromov’s work on symplectic systems.

The interpretation of the fact that the top Pfaffian is of dimension
2n+2 and not 3n+1 is an open problem. The implication is that there must
exist 3n+1-2n+2 = n-1 topological invariants in these systems.

3.6 Dissipative Evolution to States Far from Equilibrium

3.6.1 Electromagnetic Irreversible Process in the direction of the Topological
Torsion vector

On the four dimensional space-time of independent variables, (x, y, z, t) the
Electromagnetic 1-form of Action can be written in the form

A=Σ3k=1Ak(x, y, z, t)dx
k − φ(x, y, z, t)dt (3.63)

which generates the 2-form

dA = Bzdxˆdy...+Exdxˆdt..... (3.64)

The 3-form of Topological Torsion becomes

AˆdA = i(VT )dxˆdyˆdzˆdt = S
xdyˆdzˆdt.....− hdxˆdyˆdz, (3.65)
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such that in engineering language,

VT = −{(E×A+Bφ);A •B} ≡ {S, h} and Γ = (E •B). (3.66)

The 4-form of Topological Parity becomes

dAˆdA = 2(E •B)dxˆdyˆdzˆdt = (div S+ ∂h/∂t)dxˆdyˆdzˆdt. (3.67)

From (7) and (8), evolution in the direction of the Topological Torsion vector,
VT , is thermodynamically irreversible.

3.6.2 Mechanical Irreversible Process in the direction of the Topological Tor-
sion vector

Again, the 1-form of Action chosen to represent the Mechanical system will
be represented in terms of a Lagrangian term, Ldt, augmented by a set of
topological fluctuations, or Pfaffian expressions, appended to the Lagrangian
term with coefficient functions equivalent to Lagrange multipliers. The result
is a natural generalization of the Cartan-Hilbert 1-form of Action (see 3.48).

A = L(t; q, v)dt+ pn∆
n. (3.68)

The differential 1-forms ∆n(t, q, v) represent Pfaffian expressions and the
coefficient functions pk are to be treated as LaGrange multipliers:

∆n(t, q, v) = An
mdq

m − φkdt. (3.69)

It is apparent that the Pfaff Topological dimension of A is 2n+2. Some of
the Lagrange multipliers may be canonical (a constraint), but not all. The
1-form generates a 2n+1 form defined as the extended Topological Torsion
vector, VT . The 2n+2 divergence ofVT generates the dissipation coefficient,
Γ. Evolution in the direction of VT is thermodynamically irreversible. The
evolution can proceed until the Pfaff topological dimension is 2n+1, and then
it is possible that the evolution proceeds without topological change, having
formed a long-lived state far from equilibrium.

In the next section, this procedure is applied to the problem of the
sliding bowling ball. The generalize coordinates will be the translation direc-
tion x , the rotational coordinate, θ, the translational speed, v, the rotational
speed, ω, and the time, t. Three topological constraints be imposed an-
holonomically by the Pfaffian system:

{dx− vdt}⇒ 0, {dθ − ωdt}⇒ 0, {dx− λdθ}⇒ 0 (3.70)
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3.7 An Irreversible Example: The Sliding Bowling Ball

3.7.1 The Observation

Consider a bowling ball given an initial amount of translational energy and
rotational energy. Assume the angular momentum and the linear momentum
are orthogonal to themselves and also orthogonal to the ambient gravitational
field. Then place the bowling ball, subject to these initial conditions, in
contact with the bowling alley. Initially, it is observed that the ball slips
or skids, dissipating its linear and angular momentum, until the engineering
No-Slip condition is achieved. Once the no slip condition is achieved, the
ball continues rolling without further sliding and without further irreversible
dissipation (ignoring the frictional effect of air viscosity). It is the purpose
of this example to demonstrate that the Pfaff Topological dimension of the
dissipative irreversible portion of the evolutionary motion is 2n+2 = 6. When
the No-Slip condition is reached, the divergence of the topological torsion
tensor on the 6 dimensional space becomes zero. The Pfaff topological
dimension of this long-lived No-Slip state is 2n + 1 = 5, which is far from
equilibrium.

Note that it is possible for the angular momentum or the linear
momentum to change sign during the irreversible phase of the evolution.
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3.7.2 The Analysis

Assume that the physical system may be represented by a 1-form of Action
constructed from a Lagrange function:

L = L(x, θ, v, ω, t) = {βm(λω)2/2 +mv2/2} (3.71)

The constants are: m=mass, β =moment of inertial factor (2/5 for a sphere),
λ = effective ”radius” of the object, the moment of inertia = βmλ2.

Let the topological constraints be defined anholonomically by the
Pfaffian system:

{dx− vdt}⇒ 0, {dθ − ωdt}⇒ 0, {dx− λdθ}⇒ 0 (3.72)

Define the constrained 1-form of Action as

A = L(x, θ, v, ω, t)dt+ p{dx− vdt}+ l{dθ − ωdt}+ s{λdθ − dx} (3.73)

where {p, l, s} are Lagrange multipliers. Rearrange the variables to give (in
the language of optimal control theory) a pre-Hamiltonian action:

A = (+p−ms)dx+ (l + λs)dθ − {pv + lω − L}dt, (3.74)

(πx)dx+ (πθ)dθ − {ht}dt, . (3.75)

It is apparent from the Darboux format that the Pfaff Topological dimension
of this Action 1-form is the sum of 3 independent differentials {dx, dθ, dt}
and 3 independent functions {πx, πθ, ht} which is equal to 6.

For simplicity, assume that two of the Lagrange multipliers are de-
fined canonically and are interpreted as canonical momenta; e.g.,

p = ∂L/∂v ⇒ mv, l = ∂L/∂ω ⇒ βmλ2ω (3.76)

which implies that

A = (mv − s)dx+ (βmλ2ω + λs)dθ − {mv2/2 + βm(λω)2/2}dt. (3.77)

The volume element of the 6 dimensional symplectic manifold is given by the
expression

6V ol = 6m2βλ2{v − λω}dxˆdθˆdvˆdωˆdsˆdt = dAˆdAˆdA (3.78)

The 6D volume element is either expanding or contracting (irreversibly) with
a coefficient 6m3βλ2{v − λω}. This dissipative coefficient is related to the
concept of "bulk" viscosity.
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The symplectic manifold has a singular subset upon which the Pfaff
dimension of the Action 1-form is 2n+1 = 5. The constraint for such a contact
manifold is precisely the No-Slip condition (when the "Bulk viscosity" goes
to zero):

{v − λω}⇒ 0. (3.79)

This condition is the analogue of the zero divergence condition in incom-
pressible hydrodynamics, only the divergence is that associated with the
topological torsion vector, d(AˆdAˆdA) in a six dimensional (2n+2) space.

Motion on the 6 dimensional space cannot be Hamiltonian, for on the
6 dimensional symplectic manifold, there does not exist a unique extremal
field, nor a unique stationary field, that can be used to define the dynamics
of the physical system. The symplectic manifold does support vector fields,
S, that leave the Action integral invariant, but these vector fields are not
unique in the sense that that they depend on an arbitrary gauge addition to
the 1-form of Action that may be required to satisfy initial conditions.

There does exist a unique torsion field (or current) defined (to within
a projective factor, σ) by the 6 components of the 5 form,

Topological Torsion = AˆdAˆdA (3.80)

Relative to the topological coordinates [dx, dθ, dt, dv, dω, ds], the Topological
Torsion vector has the components

T6 = [0, 0, 0,Tv,Tω,Ts], (3.81)

AˆdAˆdA = i(T6)Ω6, (3.82)

Tv = m2βλ2{+βλ2ω2 + 2λvω − v2} (3.83)

Tω = m2λ{+βλ2ω2 − 2βλvω − v2} (3.84)

Ts = m2βλ2{+βmλ2ω2 +mv2 + 2(λω − v)s} (3.85)

If the three non zero components of the Topological Torsion vector are treated
as a dynamical system, then it is to be noted that the dynamical system is
a Volterra system generated on a Finsler space (see p.205 [4]).

This unique Topological Torsion vector, T6, independent of gauge
additions, has the properties that

L(T)A = Γ ·A and i(T)A = 0. (3.86)

This ”Torsion” vector field satisfies the equation

L(T)AˆL(T)dA = QˆdQ = (6m2βλ2{v − λω})2AˆdA 6= 0. (3.87)
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Hence a dynamical system having a component constructed from this unique
Torsion vector field becomes a candidate to describe the initial irreversible
decay of angular momentum and kinetic energy.

It is to be noted that the non canonical ”symplectic momentum”
variables, defined by inspection from the constrained 1-form of Action lead
to the momentum map:

Px
.
= mv − s, Pθ

.
= mβλ2ω + sλ. (3.88)

Substitution in terms of the momentum variables leads to the generic
form (p. 31 [268], also see [132]) for the 1-form of Action:

A = Pxdx+ Pθdθ −Hdt (3.89)

where H is an independent variable on the 6-dimensional manifold. The H
map is given by the expression for energy where v and ω are eliminated in
terms of the Px and the Pθ.

H = (mv2/2+βm(λω)2/2)⇒ (1/2m)[(Px+ s)2+(1/β)(Pθ/λ− s)2] (3.90)

Note that v = ∂H/∂Px and ω = ∂H/∂Pθ. Each component of ”canonical
momenta” decays with the same rate in the canonical domain.

On the 5 dimensional contact submanifold there exists a unique ex-
tremal (Hamiltonian) field which (to within a projective factor) defines the
conservative reversible part of the evolutionary process. As this unique ex-
tremal vector satisfies the equation

i(V)dA = 0, (3.91)

it is easy to show that dynamical systems defined by such vector fields must
be reversible in the thermodynamic sense. (As dQ = d(i(V)dA) = 0 for all
Hamiltonian or symplectic processes, it follows that QˆdQ = 0.) Note that a
particular representation for a Hamiltonian process is given by the Topologi-
cal Torsion vectorT6 which, in domains of zero divergence, is a characteristic,
hence Hamiltonian, vector for the 6 dimensional system constrained to the
5 dimensional hypersurface defined by the no slip condition. This vector is
not only Hamiltonian, it is associative, and therefor is representative of an
adiabatic Hamiltonian process.
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Chapter 4
A SUMMARY OF NON EQUILIBRIUM

THERMODYNAMICS

This chapter summarizes the concepts of continuous topological evolution as
applied to Non Equilibrium Thermodynamics and Processes.

4.1 From the Topological Perspective of Continuous Topological
Evolution

According to many authors [235] , the connection between deterministic
predictive mechanics and thermodynamics remains an open problem. The
topological relationships and constraints that make up the laws of equilib-
rium thermodynamics (ref Tisza [235], Boyling [23]) heretofore have resisted
analysis in terms of the geometrical and deterministic methods of classi-
cal mechanics. A fundamental issue is that the concept of intensive and
extensive variables in thermodynamics is not compatible with Riemannian
geometries built on quadratic forms [219]. Although non Riemannian Finsler
spaces (projectivized spaces that support torsion and distinguish between
functions that are homogeneous of degree 1 and degree 0) appear to be the
natural domain for equilibrium thermodynamics, little has been done in this
area [45] [4]. Statistical methods appear to lead to reasonable values for
equilibrium properties [163] of physical systems, but neither the statistical
or deterministic prediction methods of mechanics say anything about the
details of the processes - especially of the irreversible processes - that can
take place. Other authors have emphasized the topological foundations of
thermodynamics [115], and from the time of Caratheodory have noted the
connection to Pfaff systems [95]. However, these authors did not have ac-
cess to, or did not utilize, the Cartan topology and DeRham cohomology.
A remark by Tisza, greatly stimulated the early developments of the theory
presented in this monograph:
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”... the main content of thermostatic phase theory is to derive the
topological properties of the sets of singular points in Gibbs phase
space” (p.195 [235] ),

It has been demonstrated [172]) that for continuous but non home-
omorphic maps (C1 maps without continuous inverse) it is impossible to
predict the functional form of either covariant or contravariant vector fields.
That is, the functional form of the field on the final state is not well de-
fined in terms of the functional form of the field on the initial state, if the
map from initial to final state is continuous but not homeomorphic. On the
other hand it can be shown that antisymmetric covariant tensor fields and
contravariant tensor densities are deterministic in a retrodictive sense, even
though the continuous maps from initial to final state are not reversible.
That is, the functional form of the components of differential forms defined
on the final state are well defined on the initial state even if the map from the
initial state to the final state is C1 smooth, but not a homeomorphism. With
respect to continuous topological evolution there exists a natural, logical, ar-
row of time, which is not observable with respect to diffeomorphic geometric
evolution. Therefore, to understand irreversible phenomena, a retrodictive
point of view seems to be of some value and it is this non statistical retro-
dictive point of view constructed on exterior differential systems that is the
point of departure in this monograph.

The methods will be restricted at first to those evolutionary processes
which are C2 continuous. It is appreciated that this restriction does not cover
all physical situations, where in the opinion of this author ”true” discontinu-
ities, not just mathematical artifacts, are possible. The continuous evolution-
ary processes to be considered will permit topology to change in a continuous
but irreversible manner (example: the pasting together of two blobs, or the
collapse of a hole). Discontinuous processes are at first excluded.

This first introductory chapter will introduce and describe many of
the ideas, and the general philosophy, associated with a topological view
of thermodynamics. The reader is to be alerted to the fact that details,
derivations and examples are to be found in the subsequent chapters. As
implied in the preface, a major objective of this monograph is to establish
a topological, non statistical, link between thermodynamics and mechanical,
electrical, or hydrodynamic physical systems. A particular goal is to develop
a method of describing the differences, and how and when such differences
occur, between

• Equilibrium and non equilibrium physical systems, and between
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• Reversible and irreversible evolutionary processes acting on such sys-
tems.

Warning! The topology of interest is that generated by Cartan’s
Topological structure, which is defined in terms of his theory of exterior
differential forms (See chapter 5). The topology is NOT a metric topology,
NOT a Hausdorf topology, and even does NOT satisfy the separation axioms
required to be a T1 topology∗. Yet all of the pertinent topological ideas,
including the non intuitive ones, are easy to grasp from the simple example
of the T4 point set topology. Of utmost importance, for physical systems of
topological dimension greater than 2, the Cartan topology is not a connected
topology. As will be discussed below, when the topological dimension is
greater than 2, the physical system is a non equilibrium physical system. The
importance of this result resides with the topological theorem that mappings
from a disconnected topology to a connected topology can be continuous,
but continuous maps from a connected topology to a disconnected topology
are impossible. In other words continuous maps can be used to describe the
decay of a Turbulent state, but not its creation [201].

However, the presentation herein is not meant to be a textbook on
Cartan’s theory of exterior differential forms, nor a textbook on abstract
topology. Instead an effort has been made to meld Cartan’s methods and
topological ideas in a manner that would be useful to the applied researcher
and engineer. At the time of writing, not too many physicists, and almost
no engineers, are conversant in either the language of the exterior calculus or
the language of topology. Of course, some familiarity with the fundamentals
of each said discipline is required, and to that end several terse, to the point,
presentations (with examples) are given in the Appendix. Most of the useful
topological ideas can be rapidly absorbed in terms of point set topology with
its metric de-emphasis. In fact, one of the beauties of using the Cartan
calculus is that it constructs a differential topology that is free of the metric
and connection constraints of differential geometry. It is extraordinary that
the Maxwell theory of Electromagnetism (when based on the fields, E and
B, distinct from the fields, D and H) was one of the first physical theo-
ries to be recognized as being a topological theory [245], independent from
a choice of metric, or connection. Geometric constraints (such as consti-
tutive constraints between the two distinct sets of fields) merely refine the
topological features of the fundamental theory. In this monograph, it will

∗For those not familiar with point set topology, chapter 5 in Schaum’s outline [125] can
be useful.
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be demonstrated how thermodynamics may be considered fundamentally as
a topological theory, also independent from metric and connection.

Pick up a modern text in classical thermodynamics and note the
appearance of the following words used in describing fundamental thermo-
dynamic concepts:

1. Isolated

2. Closed

3. Open

4. Number of disconnected parts (moles)

5. Closed Cycles

6. Integrability

7. Extensive (homogeneous degree 1) variables

8. Intensive (homogeneous degree 0) variables

Now go to Schaum’s Outline, "General Topology" [125], or some
other textbook on elementary topology, and check the index for these terms.
All of these terms have precise definitions in topology, without the imposition
of geometric constraints of size, shape or scales. In short, it would appear
that Thermodynamics has its foundations in topology, and should be treated
as a topological theory from the outset. This is the topological perspective
of thermodynamics adopted herein.

In 1974 it was suggested that a certain extension to Hamilton’s prin-
ciple [165], [169] could be made such that the evolutionary processes consid-
ered would describe dissipative mechanical systems. Cartan had proved
that extremal vector fields, which satisfy the Cartan-Hamilton equation,
i(V)dA = 0, are generators of Hamiltonian dynamical processes [38]. Rather
than study such "extremal" vector fields, it was suggested to consider those
processes that satisfy the extended equation: i(V)dA = ΓA+ dθ. Through-
out this current presentation, and in the older articles, it is subsumed that a
physical system may be described adequately by a 1-form of Action, A, and
a physical process may be defined in terms of a dynamical system generated
by a vector field, V. It was not appreciated in 1974 that the topological
domain of the extremal conservative (Hamiltonian) systems was a contact
manifold of odd topological dimension, while the topological domain of the
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suggested dissipative extension was a symplectic manifold of even topological
dimension. (Extremal solutions do not exist on even dimensional manifolds
of maximal rank). Currently, the concept of topological dimension seems
to be intimately connected to the differences between conservative versus
dissipative processes. In fact, as is developed in that which follows, irre-
versible turbulent thermodynamic processes are artifacts of Pfaff topological
dimension 4 (or more). Irreversibility requires that the evolutionary topol-
ogy of the initial state is not the same as the topology of the final state. It
sometimes comes as a surprise to realize that such topological changes can
occur continuously. These features of continuous topological evolution (and
an explanation of the symbols) are presented in detail in Chapter 5 and 6,
below.

A symplectic manifold is defined by the non zero domain of an exact
2-form, F = dA. The concept of Hamiltonian mechanics can be extended to
symplectic (even dimensional) manifolds, where the Bernoulli-Hamiltonian
constraint is of the form i(V)dA = −dB, and which also satisfies the more
general Helmholtz constraint, di(V)dA = 0. Such Helmholtz processes
(although reversible) are of interest for they admit the evolution of topological
defects of the Bohm-Aharanov type. These topological defects are related
to the Work 1-form, W = i(V)A, which is produced by the process V acting
on the physical system, A. These Work related defects are due to the Work
1-form and are not due to the closed, but not exact, parts of the 1-form of
Action.

Almost symplectic manifolds are defined by a 2-form G which is
closed but not exact. These even dimensional manifolds G can have compact
defect domains without boundary. Such topological structures have been
studied by Fomenko [24]. From electromagnetic theory, it becomes apparent
that the non exact 2-form (almost symplectic) G is to be associated with
the defect structures called charge, and extensive thermodynamic variables,
D and H, while the exact 2-form (symplectic) F is to be associated with
intensive thermodynamic variables, E and B.

The 1-form of Action (Lagrangian) point of view has its advantages,
for the fundamental 2-form of a symplectic domain is deduced by construc-
tion, A⇒ F = dA. The disadvantage is that almost all symplectic domains
so constructed are not compact without boundary. This apparent flaw be-
comes an advantage when it is appreciated that such non compact domains
are precisely that which is needed to describe closed (but not isolated) or
open thermodynamic systems.
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Most classical ”laws of physics” are based upon the dogma that a
useful physical theory of evolution must give a unique prediction starting
from a given set of initial conditions. Combining this constraint with a
mathematical description of physical systems in terms of geometrical tensor
fields leads to evolutionary processes which preserve topological properties
and are (therefore) ”reversible”. The ubiquitous assumption of uniqueness
of predicted solutions, and/or homeomorphic evolution, are topological con-
straints on ”classical mechanics” that eliminates any time asymmetry. The
point of departure in this monograph assumes that reasonable physical laws
must be capable of describing topological change, and when this feature is
encoded in mathematical form, the laws of physics are no longer necessar-
ily reversible. Hence, in this monograph, the Boltzmann paradox will be
resolved in terms of a theory based upon Continuous Topological Evolution
[Chapter 5]. It is presumed that the presence of a physical system estab-
lishes a Topological Structure [Chapter 4] on a base space of independent
(but ordered) variables. When a specific evolutionary process is applied to
this physical system, the topology becomes refined.

It will become evident that physical systems require two topological
structures, one based upon an exact 2-form, F = dA, and its associated
symplectic manifold, and the other based upon a non exact 2-form, G , which
may or may not be closed, but when closed, dG = 0, leads to an almost
symplectic structure with compact topological defects.

4.2 Applied topology versus applied geometry

It was mentioned above that the presentation herein is not meant to be a
textbook on Cartan’s theory of exterior differential forms, nor a textbook
on abstract topology. Instead, this monograph is an attempt to use the
simpler features of topology contained in the exterior calculus and apply
the Cartan methods of continuous topological evolution to interesting non
equilibrium problems in the disciplines of mechanics, electrodynamics, or
hydrodynamics, without the use of probability theory or statistics. Although
the concept of equilibrium has had many useful scientific successes, the truth
of the matter is that the observable parts of the real world are rarely in
equilibrium. The historical theories and methods of describing evolution
that have been developed so far give no details as how the change from non
equilibrium to equilibrium takes place. Even the much touted Quantum
Mechanics fails to describe the details of the evolutionary decay of an excited
state to the ground state. Paraphrasing Bohr, "a miracle takes place" is
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not a satisfying answer.
The topological methods employed herein can be used to determine

when a physical system is in an equilibrium or non equilibrium state. The
topological methods employed herein can be used to distinguish thermody-
namically irreversible from reversible evolutionary processes. The topolog-
ical methods employed herein can be used to describe the irreversible dissi-
pative decay processes from open systems into excited stationary states far
from equilibrium, and the further decay from excited states into equilibrium
ground states.

Since before the beginning of the 20th century, advances in physi-
cal theories have been predicated upon a geometrical approach. (It should
be mentioned that another interesting point of view about thermodynamics
based upon algebra was presented by Zeleznik [266].) Several attempts to
better understand thermodynamics in terms of geometrical ideas have been
attempted [20], [258], but without notable success. It was pointed out by
Tisza [235] that metrical based properties can not be used to distinguish
between the two classes of intensive and extensive thermodynamic variables,
and the hint was offered that perhaps topological methods, rather than geo-
metrical methods, might prove to be suitable. In fact, as mentioned above,
Tisza states the "main content of thermostatic phase theory is to derive the
topological properties of the sets of singular points in Gibbs space". These
ideas will be examined in detail and extended in sections 2.10 and chapter 3.
Finsler spaces have been examined by Anotelli and Ingevarden [4]. At the
Aspen conference in 1977, the present author suggested that the methods
based upon the first fundamental form (metric) should be replaced by meth-
ods based on the second fundamental form (the shape matrix). In section
2.10, these ideas will be exploited in describing how in 4 dimensional space,
the van der Waals gas is a universal topological artifact. The same ideas
apply to the symplectic dual vector fields that encode dynamical systems.
In 4D, the features of the van der Waals gas are universal.

Much of the motivation for development of a topological view of
thermodynamics was based upon the concept of topological defects being
related to domains or points where topological change took place. The idea
that a phase transition was a realization of topological evolution and change
was very influential in the struggle over the years to develop a dynamics of
such a thermodynamics process. The work of van der Kulk and Schouten
inspired the use of the concept of Pfaff topological dimension, and its change,
as being one of the key tools for use in topological thermodynamics. The
later work Martinet and Zhitomirski [132] [268] has yet to be fully exploited.
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The concept that smoothness could influence thermodynamic evolution has
only recently been appreciated. How C1 smoothness interplays with the
Nash and Gromov axioms has yet to be exploited, but it was a surprise to
find out that C1 translational sequences of transitive processes in 3D could
be reversible, where C2 intransitive processes of rotation and expansion could
be thermodynamically irreversible (see chapter 3)

Herein, the emphasis is on topological properties and features of
physical systems, and moreover, how the topology of a physical system can
change in a continuous evolutionary manner. What is meant by this state-
ment is that the topology of the initial state need not be the same as the
topology of the final state. Such topological change can take place either
continuously (pasting) or discontinuously (cutting). The result to be demon-
strated is that topological change is a necessary artifact of continuous ther-
modynamic irreversibility.

4.3 Topological Universality

It is a remarkable fact that the physical theories of Thermodynamics, Elec-
trodynamics and Hydrodynamics all have similar topological foundations.
These similarity features become evident, and useful, when the different
disciplines are expressed in the universal language of Cartan’s theory of ex-
terior differential forms.

1. Each discipline utilizes the concept that a physical system can be en-
coded in terms of an exterior differential 1-form of Action, A.

2. Each discipline utilizes the concept that a process, or current, acting
on the physical system, can be encoded to within a factor, ρ, by a
contravariant direction field, V .

3. Each discipline has a dynamics that can be expressed in terms of
continuous topological evolution based upon the Lie differential with
respect to V . Warning: this topological dynamics is not always fully
equivalent to that dynamics generated by the covariant differential of
tensor analysis. The geometric dynamics of tensor analysis is a subset
of the topological dynamics.

The arguments of the functions that define the physical system, the
process, and the induced additional 1-forms, in this section are limited (with
some exceptions) to an ordered variety of n = 4 independent base variables,
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abstractly specified as {x, y, z, t}, and their differentials, {dx, dy, dz, dt}. It
is presumed that other varieties of base variables {ξ1, ξ2, ξ3, ξ4} can be repre-
sented in terms of diffeomorphic maps from {ξ1, ξ2, ξ3, ξ4} to {x, y, z, t}. To
a physicist, the base variables play the role of admissible coordinates if they
are diffeomorphically related. However no specific geometric metric or con-
nection is (necessarily) imposed on these varieties of pre-geometric dimension
n = 4 base variables.

The main thrust of this monograph is to study useful applications
of Cartan’s theory of exterior differential systems to problems of non equi-
librium thermodynamics systems. Some knowledge of Cartan’s’ topological
structure, and the topological properties of the continuum are required. This
material has been developed in Chapter 4 and Chapter 5.

4.4 Fundamental Axioms and Notable Results

4.4.1 Axioms

Axiom 1. Thermodynamic physical systems can be encoded in
terms of a 1-form of covariant Action Potentials, Ak(x, y, z, t...),
on a ≥ 4 dimensional abstract variety of ordered independent
variables, {x, y, z, t...}. The variety supports a differential volume
element Ω4 = dxˆdyˆdzˆdt...

Axiom 2. Thermodynamic processes are assumed to be encoded,
to within a factor, ρ(x, y, z, t...), in terms of contravariant vector
direction fields, V4(x, y, z, t...).

Axiom 3. Continuous topological evolution of the thermody-
namic system can be encoded in terms of Cartan’s magic formula
(see p. 122 in [133]). The Lie differential, when applied to a
exterior differential 1-form of Action, A = Akdx

k, is equivalent
abstractly to the first law of thermodynamics.

Cartan’s Magic Formula L(ρV4)A = i(ρV4)dA+ d(i(ρV4)A) (4.1)

First Law : W + dU = Q, (4.2)

Inexact Heat 1-form Q = W + dU = L(ρV4)A (4.3)

Inexact Work 1-form W = i(ρV4)dA, (4.4)

Internal Energy U = i(ρV4)A. (4.5)
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Axiom 4. Equivalence classes of systems and continuous processes
can be defined in terms of the Pfaff topological dimension.

In effect, Cartan’s methods can be used to formulate precise math-
ematical definitions for many thermodynamic concepts in terms of topolog-
ical properties - without the use of statistics or geometric constraints such
as metric or connections. Moreover, the method applies to non equilibrium
thermodynamical systems and irreversible processes, again without the use
of statistics or metric constraints. The fundamental tool is that of contin-
uous topological evolution, which is distinct from the usual perspective of
continuous geometric evolution.

In order to make the equations more suggestive to the reader, the
symbolism for the variety of independent variables has been chosen to be of
the format {x, y, z, t}, but be aware that no geometric constraints of metric or
connection are imposed upon this variety. For instance, it is NOT assumed
that the base variety is euclidean.

It is emphatically stated that geometric notions of scale and metric
are to be avoided in favor of topological properties, some of which are invari-
ants of continuous topological evolution, and some of which are not. Those
classical thermodynamic features which are diffeomorphic invariants (use-
ful to many equilibrium applications) are ignored, while topological features
which are invariants of continuous transformations (and therefore useful to
non equilibrium applications) are not. Topological evolution is understood to
occur when topological features (not geometrical features of size and shape)
change. The motivation for this perspective was based upon the goal of
developing analytical methods which could decide if a given physical system
was an equilibrium system or a non equilibrium system, and, also, if a spe-
cific analytic process was applied to the physical system, was that process
reversible or irreversible.

4.4.2 Notable Results

Remarkably, utilization of these (topological) axioms leads to notable results
that are not obtained by geometric methods:

1. Thermodynamics is a topological theory.

2. Topological change is a necessary condition for thermodynamic irre-
versibility.
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3. When the Pfaff topological dimension of the 1-form of Action that
encodes a physical system is 2, or less, the system is topologically iso-
lated. The topological structure on domains of topological dimension
n ≤ 2 never admit a continuous process which is thermodynamically ir-
reversible. non equilibrium systems are of Pfaff topological dimension
> 2.

4. A 1-form of Action, A, with Pfaff topological dimension equal to 1,
defines an equilibrium isolated system which has representation as a
Lagrangian submanifold.

5. The topological structure of physical systems on domains (contact man-
ifolds) of odd topological dimension n = 3, 5, 7.. > 2 are non equilib-
rium systems. On such systems there exists (to within a factor) a
unique continuous extremal process, VE , which may be chaotic, but
nevertheless is thermodynamically reversible, and has a Hamiltonian
generator.

6. The topological structure of physical systems on domains of even topo-
logical dimension n = 4, 6, 8... > 2 (symplectic manifolds) are non equi-
librium systems. Such systems support (to within a factor) a unique
continuous process, VT , related to the concept of Topological Torsion.
Continuous evolution in the direction of the topological torsion vec-
tor is thermodynamically irreversible. In this sense, thermodynamic
irreversibility is an artifact of topological dimension n ≥ 4.

7. The change of the Pfaff topological dimension will produce topological
defects and thermodynamic phase changes.

8. The assumption of uniqueness of evolutionary solutions (which implies
a Pfaff Topological dimension equal to 2 or less), and homeomorphic
evolution, are different, but ubiquitous, constraints imposed upon clas-
sical mechanics that eliminate any time asymmetry.

9. All Hamiltonian, Symplectic-Bernoulli and Helmholtz processes are
thermodynamically reversible. In particular, the work 1-form, W ,
created by Hamiltonian processes is of Pfaff topological dimension 1 or
less.

10. The functional forms of tensor fields with arguments in terms of the
base variables of the final state are not deterministically predictable in
terms of the functional forms of tensor fields with arguments in terms
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of the base variables of the initial state, unless the map from initial to
final state is a diffeomorphism (which preserves topology) [172] . On
the other hand, the functional forms of those alternating tensor fields
which are coefficients of exterior differential forms, and with arguments
in terms of the base variables of the initial state, are well defined in
terms of the functional forms of tensor fields with arguments in terms
of the base variables of the final state, even when the (C1) map from
initial to final state describes topological evolution. In other words,
retrodiction of differential forms is possible when topology changes,
but prediction is impossible. Hence an Arrow of Time asymmetry is a
logical result [206] when topological evolution is admitted, but does not
appear if the evolution is restricted to be homeomorphic, and therefor
topologically invariant.

11. The topological structure of domains of Pfaff dimension 2 or less creates
a connected, but not necessarily simply connected topology. Evolu-
tionary solution uniqueness is possible.

12. The topological structure of domains of Pfaff dimension 3 or more cre-
ates a disconnected topology of multiple components. If solutions
to a particular evolutionary problem exist, then the solutions are not
unique. Envelope solutions, such as Huygen wavelets and propagat-
ing discontinuities (called signals) are classic examples of solution non
uniqueness.

13. Cartan’s Magic formula, in terms of the Lie differential acting on ex-
terior differential 1-forms establishes the long sought for combination
of dynamics and thermodynamics, enabling non equilibrium systems
and many irreversible processes to be computed in terms of continuous
topological evolution, without resort to probability theory and statis-
tics.

14. The Lie differential acting on differential forms is not necessarily the
same as a linear affine covariant differential acting on differential forms.
It is possible to demonstrate that if the process is locally adiabatic (no
heat flow in the direction of the evolutionary process), then the Lie
differential and the covariant differential can be made to coincide, as
they both satisfy the Koszul axioms for an affine connection. This is a
surprising result, for, when the argument is reversed, the theorem im-
plies that the ubiquitous affine covariant differential of tensor analysis,
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acting on a 1-form of Action, can always be cast into a form represent-
ing an adiabatic process. However, such adiabatic processes need not
be reversible.

15. The Lie differential can describe evolutionary processes which are not
C2 differentiable, leading to a better understanding of wakes and shocks.
On odd dimensional spaces, sequential C1 (translational) processes can
be thermodynamically reversible, while intransitive C2 processes (ro-
tation and expansion with a fixed point) can be thermodynamically
irreversible.

16. If the evolutionary process described by the Lie differential, affine equiv-
alent or not, leaves the 1-form of Action invariant, then the process is
thermodynamically reversible. If the affine covariant differential of
tensor analysis induces parallel transport (the covariant differential is
zero), then the affine process is adiabatic and reversible.

17. On spaces of Pfaff topological dimension 4, the Cayley-Hamilton theo-
rem produces a characteristic polynomial with similarity invariant co-
efficients which will generate the format of the Gibbs function for a
(universal) van der Waals gas, with a well defined critical point and
binodal and spinodal lines. The same technique can be applied to
dynamical systems.

The combined thermodynamic-topological perspective presented herein
uses the mathematical tools of exterior differential forms to describe the topo-
logical features of physical systems, and vector fields to describe the contin-
uous evolutionary processes that may or may not change the topology of the
physical system. Examples will demonstrate that topological change is a
necessary condition for thermodynamic irreversibility.

4.5 Topological properties vs. Geometrical properties

The idea that the presence of a physical system establishes a topological struc-
ture on a base space of independent variables is different from, but similar
to, the geometric perspective of general relativity, whereby the presence of a
physical system is presumed to establish a metric on a base space of indepen-
dent variables. The topological features of the physical system are presumed
to be encoded in terms of exterior differential forms, which - unlike tensors -
are functionally well behaved with respect to differentiable maps that are not
invertible. Note that a given base may support many different topological
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structures; hence a given base may support many different physical systems.
In particular, the topology associated with a 1-form of Action need not be
the same as the topology associated with the 1-form of Heat, Q, or the 1-form
of Work, W , even though the base variables are the same for each 1-form.
The Pfaff topological dimension can be different for each of the 1-forms.

For maps, between base sets, that are C1 differentiable†, but are not
invertible, it is impossible to predict uniquely the functional forms of covari-
ant or contravariant vector fields, constructed over a final base set, in terms
of functional forms given on an initial base set [172]. Point-wise (numeric)
values of the tensor fields in certain cases may be predicted, but the func-
tional forms describing neighborhoods are never predictable with respect to
such non invertible maps. Hence, classical theories based on tensor fields,
which can describe geometrical evolution, will fail to describe topological
evolution. It may be surprising to note that (with respect to non invertible,
non homeomorphic, maps) it is possible to retrodict the functional forms of
covariant vectors and contravariant vector densities on the initial base set in
terms of the given functional forms on the final base set. For differentiable
evolutionary processes that are diffeomorphisms, topology does not change
and both prediction and retrodiction of tensor fields is possible. For dif-
ferentiable evolutionary processes which are not homeomorphisms, topology
changes, and deterministic prediction fails, but deterministic retrodiction re-
mains possible. Hence the feature of topological evolution imposes a sense
of asymmetry with respect to an evolutionary parameter - the arrow of time
is an artifact of topological change.

Although C1 non invertible maps are not homeomorphisms, and
therefore the topology of the initial state and the topology of the final state
are not the same, such maps can be continuous. Continuous topological
evolution is not an oxymoron, for topological continuity is defined such that
the limit points of every subset in the domain (relative to the topology on the
initial state) permute into the closure of the subsets in the range (relative to
the topology on the final state). The initial and final state topologies need
not be the same!

A physical property which is independent of continuous deformation,
and is independent from geometric concepts of size and shape, is a primitive
example of a topological property. However, not all topological properties
fit this useful, but imprecise, description. As examples, note that the num-
ber of holes in a rubber sheet is a topological property, and is independent
of the continuous deformation of the rubber sheet into different sizes and

†C1 implies connected, where C2 implies smooth.
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shapes. The Planck black body radiation distribution of a hot body is a
topological property, for the distribution of radiation frequencies (in first ap-
proximation) depends only on temperature, but not on the size and shape of
the heated sample. Deformation invariants often can be encoded in terms
of multi-dimensional integrals. As the elements of the integrand and the
integration chain evolve, the value of the integral may be an evolutionary
invariant, even though the domain and integration chain are deformed by
the evolutionary process. Of special interest are those integral deforma-
tion invariants where the integration chain is a closed cycle. Such objects
lead to topological ”quantum-like” concepts, for the values of the integrals
of closed, but not exact, exterior differential forms over different cycles have
(by deRham’s theorems) rational ratios. (In this volume, quantum effects
are discussed only in terms of their topological origin and deRham period
integrals.) If the evolutionary process causes the topological quantum num-
ber to change, then the process describes a topological quantum transition.
Surprisingly, processes of topological evolution can change topology in a con-
tinuous manner. A soap film connected to a double loop of wire will form
the non orientable surface of a Moebius band. Deformation of the wire into a
single loop will cause the soap film to form a disk surface which is orientable.
The topological property of orientability has changed continuously in terms
of the process described.

More precisely, a topological property is defined as an invariant of
a homeomorphism. A homeomorphism is a map from initial to final state,
which is continuous and has a continuous inverse. If the homeomorphism
is C1 differentiable both ways, then the map is called a diffeomorphism.
Diffeomorphisms are the transformations used to define tensors and most
geometric properties. Invariance with respect to diffeomorphisms is a con-
straint employed in many physical theories which are based upon tensor cal-
culus and the calculus of variations. Recall Klein’s concept of a (euclidean)
geometric property as being defined in terms of the invariants of rotations
and translations (which are diffeomorphisms). Yet diffeomorphisms are spe-
cialized homeomorphisms which preserve topology. It follows that tensor
analysis, so useful in studying geometric concepts, cannot be used effectively
to describe topological change, and therefor tensor analysis is inadequate to
describe irreversible evolution, where topological change is a necessary condi-
tion. However, continuous C1 processes need not be homeomorphisms, and
therefor can be used to describe topological change. Exterior differential
forms are mathematical objects that are well behaved in a retrodictive sense
with respect to functional substitution of C1 continuous, but not invertible,
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maps; tensor fields are not. It follows that Cartan’s exterior differential
forms become the mathematical objects of choice for describing continuous
topological evolution, and therefor Cartan’s mathematics is the mathematics
of choice for a theory of Irreversible Thermodynamic processes.

A key topological property is that of dimension. However, the con-
cept of topological dimension is somewhat different from the concept of geo-
metrical dimension. For purposes of the theory developed herein, the topo-
logical structure imposed upon a base variety of m independent variables
can be used to determine the "Pfaff topological dimension", n, which is to
be distinguished from the ”geometric dimension” of the base variety, n ≤ m.
The primary feature of a topological structure is that it can be used to de-
termine when an evolutionary process involving topological change (such as
the change in topological dimension) is continuous. Topological change can
occur both continuously and discontinuously. However, in this article, the
focus is on continuous topological evolution. Herein it will be demonstrated
that thermodynamic ”relaxation” from some initial configuration to a state
of ”equilibrium” can be described by a sequence of continuous processes that
cause the topological dimension to change from some initial value n to a final
value n ≤ 2.

4.6 Pfaff Topological Dimension

Perhaps one of the most important topological tools to be used within the
theory of continuous topological evolution is the concept of Pfaff topological
dimension. The maximum Pfaff dimension is equal to number of independent
variables in the base variety, which in this article has been limited (in most
cases) to n = 4. For a given 1-form of Action, A = Ak(x, y, z, t)dx

k defined
on the base variety of {x, y, z, t}, it is possible to ask what is the irreducible
minimum number of independent functions θ(x, y, z, t) required to describe
the topological features that can be generated by the specified 1-form, A.
This irreducible number of functions is defined herein as the "Pfaff topological
dimension" of the 1-form, A. For example, if

A = Akdx
k ⇒ dθ(x, y, z, t)irreducible, (4.6)

such that Ak = ∂θ(x, y, z, t)/∂xk, (4.7)

then only one function θ(x, y, z, t) is required to describe the Action, not four.
In this example the irreducible Pfaff topological dimension of the 1-form, A,
is 1, although the geometric dimension of base variety is 4. In a sense, the
Pfaff topological dimension defines the existence of a domain of "topological"
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base variables (topological coordinates) as submersions from the original base
variety (geometric coordinates) to the irreducible base variety (topological
coordinates). Differential forms constructed on the irreducible base variety
of functions, are functionally well defined on the original base variety. (See
Chapters 4, 5 and 6)

Relative to the Cartan topology [11], the "Pfaff topological dimen-
sion" can be generated by each of the Pfaffian forms associated with each
discipline. The irreducible Pfaff topological dimension for any given 1-form
A is readily computed by constructing the Pfaff sequence of forms:

Pfaff sequence :{A, dA,AˆdA, dAˆdA}. (4.8)

The Pfaff topological dimension is equal to the number of non zero
terms in the Pfaff sequence. For example, if the Pfaff sequence for a given
1-form A is {A, dA, 0, 0} in a region U ⊂ {x, y, z, t}, then the Pfaff topologi-
cal dimension of A is 2 in the region, U. The 1-form A, in the region U, then
admits description in terms of only two, but not less than 2, independent vari-
ables, say {u1, u2}. For a differentiable map ϕ from {x, y, z, t} ⇒ {u1, u2},
the exterior differential 1-form defined on the target variety U of 2 pre-
geometry dimensions as

A(u1, u2) = A1(u
1, u2)du1 +A2(u

1, u2)du2, (4.9)

has a functionally well defined pre-image A(x, y, z, t) on the base variety
{x, y, z, t} of 4 pre-geometric dimensions. This functionally well defined pre-
image is obtained by functional substitution of u1, u2, du1, du2 in terms of
{x, y, z, t} as defined by the mapping ϕ. The process of functional substitu-
tion is called the pull-back.

A(x, y, z, t) = Akdx
k = ϕ∗(A(u1, u2)) = ϕ∗(Aσdu

σ) (4.10)

It may be true that the functional form of A yields a Pfaff topo-
logical dimension equal to 2 globally over the domain {x, y, z, t}, except for
sub regions where the Pfaff dimension of A is 3 or 4. These sub regions
represent topological defects in the almost global domain of Pfaff dimension
2. Conversely, the Pfaff dimension of A could be 4 globally over the domain,
except for sub regions where the Pfaff dimension of A is 3, or less. These
sub regions represent topological defects in the almost global domain of Pfaff
dimension 4. Applications of both viewpoints will be described below. The
important concept of Pfaff topological dimension also can be used to define
equivalence classes of physical systems and processes.
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The concept defined herein as the "Pfaff topological dimension" was
developed more than 110 years ago (see page 290 of Forsyth [68] ), and has
been called the "class" of a differential 1-form in the mathematical literature.
The term "Pfaff topological dimension" (instead of class) was introduced by
the present author in order to emphasize the topological foundations of the
concept. More recent mathematical developments can be found in Van der
Kulk [219]. The method and its properties have been little utilized in the
applied world of physics and engineering. Of key importance is the fact that
the non zero existence of the 3-form AˆdA, or

Topological Torsion = AˆF (4.11)

implies that the Pfaff topological dimension of the region is 3 or more, and
the non zero existence of the 4-form of Topological Parity, dAˆdA = FˆF
implies that the Pfaff topological dimension of the region is 4. Either value
is an indicator that the physical system (in the sub region) is NOT in ther-
modynamic equilibrium. It is also important to recall that non zero values of
Topological Torsion imply that the Frobenius unique integrability Theorem
for the Pfaffian equation, A = 0, fails. The concept of topological parity,
FˆF , has its foundations in the theory of Pfaff’s problem, with a recogniz-
able 4 dimensional formulation appearing in Forsyth [68] page 100. On a
variety of 4 variables, the coefficient of the 4-form FˆF will be defined as the
topological parity (or orientation) function, K, such that

Topological Parity FˆF = Kdxˆdyˆdzˆdt = KΩ4. (4.12)

It is possible to ascribe the idea of entropy production (due to bulk viscosity)
to the coefficient K of the Parity 4 form.

The idea of Topological Torsion, AˆF , has been associated with the
idea of magnetic helicity density, a concept that apparently had its electro-
magnetic genesis with the study of plasmas in WWII. However, the concept
of helicity density is but one component of the four dimensional Topological
Torsion 4 vector.

Recall that a space curve with non zero Frenet - Serret torsion does
not reside in a two dimensional plane. non zero Frenet - Serret torsion of a
space curve is an indicator that the geometrical dimension of the space curve
is at least 3. The fact that the Pfaff topological dimension of the 1-form, A,
is at least 3, when AˆF is non zero, is the basis of why the 3-form, AˆF ,
was called "Topological Torsion". The idea of non zero 3-form AˆF also
appears in the theory of the Hopf Invariant [26].
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The concept of AˆF has also appeared in the differential geometry of
connections, where a matrix valued 3-form is known as the Chern-Simons 3-
form. However, on varieties without connection or metric, the Chern-Simons
concept is not well defined, but the Topological Torsion concept exists and
is acceptable, for it does not depend upon the geometric features of metric
and/or connection. The concepts can be extended to "pre-geometrical", and
therefor topological, domains of dimension greater than 4. Pre-geometry
implies that constraints of metric or connection have not been (necessarily)
imposed on the base variety.

It is possible to define a "curvature" dimension (at a point) in terms
of the number of non null eigenvectors of the Jacobian matrix built from the
partial derivatives of the C1 functional components that define the 1-form
of Action. The "Curvature" dimension is always less the dimension of the
base variety. The implication is that the determinant of the shape matrix
is zero. It is possible that the Pfaff topological dimension can exceed the
"curvature" dimension.

4.7 Evolutionary Invariants

Evolutionary invariants are generally those properties of physical systems
that are observables in the sense of physical measurements. Invariants of
continuous processes are included in the set of topological properties (invari-
ants of homeomorphisms), and topological properties are included in the set
of geometric properties (invariants of diffeomorphisms).

4.7.1 Deformation Invariants as Topological Properties

Topological properties are defined as invariants with respect to homeomor-
phisms. A more mundane definition is that a topological property is an
invariant of a continuous deformation. Certain integral properties of a ther-
modynamic system are deformation invariants with respect to those contin-
uous evolutionary processes that can be described by a singly parameterized
vector field. For the example of an electrodynamic thermodynamic system,
the absolute deformation invariants lead to fundamental topological conser-
vation laws, described in the physical literature of electromagnetism as the
conservation of charge and the conservation of flux.

Recall the definitions used to describe processes of continuous topo-
logical evolution.

Definition A continuous process is defined as a map from an
initial state of topology Tinitial into a final state of perhaps dif-
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ferent topology Tfinal such that the limit points of the initial state
are permuted among the limit points of the final state (see p. 97
et.seq. [126]). If the ordering of the limit points is invariant, the
process is uniformly continuous. If the ordering (as in a folding
of a boundary) or the number of the limit sets is changed, then
the process is non uniformly continuous.

A simple description of a topological property (invariant of a home-
omorphism) is an object that is a deformation invariant. Consider a rubber
sheet with three holes. Stretch the rubber sheet. The holes may be deformed
but the fact that there are 3-holes stays the same under small deformations.
The concept of three holes is a topological property. It is remarkable that
such topologically coherent objects (the holes) can be determined from those
open and closed integrals which are deformation invariants.

A topological deformation invariant is defined as an integral of an
exterior differential p-form over a p dimensional manifold, or cycle, zpd,
such that the Lie differential of the integral of the p-form ω with respect to a
singly parameterized vector field, ρV k, vanishes, for any choice of deformation
parameter, ρ.

Integral Deformation Invariant: L(ρV k)

Z
p

ω = 0 any ρ (4.13)

The requirements that a given p-form becomes a deformation invari-
ant (and therefor a topological property, invariant with respect to homeo-
morphisms) is expressed in terms of certain topological constraints. Those
objects that remain the same under continuous deformation represent topo-
logical, not geometric, properties. However, if the topological constraints re-
quired for continuous deformation are not satisfied, then topological change
takes place. Topological change would require that the number of holes in
the thin rubber sheet example were to change. Topological change can occur
continuously or discontinuously. The focus in this article is on continuous
topological change, and as will be demonstrated below, topological change is
a necessary requirement for thermodynamic irreversibility [172].
4.7.2 Absolute Integral Invariants

There are two types of invariant integrals, Absolute and Relative integral
invariants. If the exterior p-form that forms the integrand is exact, the
Absolute integral invariant places conditions only on the boundary of the
domain of integration. It is these types of objects (Absolute integral in-
variants) that give a formality to those thermodynamic concepts whereby
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a physical system reaches equilibrium uniformly within its interior, and yet
may couple with its exterior environment via fluxes across its boundary. In
such cases, only effects related to the boundary are of consequence. For ex-
ample, consider physical systems that can be defined by a 1-form of Action,
A, such that the derived 2-form F = dA, is exact. It follows from Stokes
theorem that the 2-dimension integral of F is an absolute integral deforma-
tion invariant with respect to all continuous processes that can be defined
by a singly parameterized vector field, subject to a boundary condition that
the net flux, i(ρV k)F, of F, across the 1-dimensional boundary ofM is zero:

L(ρV k)

Z Z
M

F =

Z Z
M

i(ρV k)dF +

Z Z
M

d(i(ρV k)F ) (4.14)

= 0 +

Z
boundary of M

i(ρV k)F ⇒ 0. (4.15)

This concept is at the basis of the Helmholtz theorems of vorticity
conservation (or angular momentum per unit mass) in hydrodynamics, and
the conservation of flux in classical electromagnetism. Herein, this concept
of deformation invariance of a topologically coherent structure will be written
in the form of an exterior differential system [30], F − dA = 0. The exterior
differential system is to be recognized as topological constraint. From Stokes
theorem, the 2 dimensional domain of finite support for F can not, in gen-
eral, be compact without boundary, unless the Euler characteristic vanishes.
There are two exceptional cases for absolute invariance of the integral, and
they occur when the integration domain is compact without boundary. Such
two dimensional domains which have a zero Euler characteristic are the torus
and the Klein-Bottle, but these situations require the additional topological
constraint that FˆF ⇒ 0. The fields in these exceptional cases must reside
on these exceptional compact surfaces without boundary, which form topo-
logical coherent structures. Note that an evolutionary process could start
with FˆF 6= 0, and possibly evolve to a state with FˆF = 0. If such residue
states are compact without boundary, then they must be either tori or Klein
bottles.

The same integration technique can be applied to non exact but
closed p-forms.

4.7.3 Relative Integral Invariants

If the integration of the exact 2-form, F , is over a closed two dimensional
integration chain, designated as a 2 dimensional cycle, z2d (which may or
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may not be a 2 dimensional boundary), then the Integral is invariant for any
deformation factor, ρ :

L(ρV k)

Z Z
z2d

F =

Z Z
z2d

i(ρV k)dF +

Z Z
z2d

d(i(ρV k)F ) = 0 + 0. (4.16)

The two integrals on the right vanish, the first due to the fact that dF = 0,
and the second due the fact that the closed integral over an exact form
vanishes. Close integrals of exact p-forms are always relative deformation
integral invariants. However, the same technique can be applied to non exact
but closed p-forms. For electromagnetism, there are several exact p-forms,
each producing a relative deformation integral invariant. For example, the 3-
form of charge-current density is exact, J = dG. The 4-forms that define the
Poincare Invariants are exact: FˆF = d(AˆG) and FˆG − AˆJ = d(AˆG).
See Section 4.5.

If the conditions of relative integral invariance are applied to an
arbitrary 1-form of Action, then the relative integral invariance condition
becomes

L(ρV k)

Z
z1d

A =

Z
z1d

i(ρV k)dA+

Z
z1d

d(i(ρV k)A) (4.17)

=

Z
z1d

i(ρV k)F + 0⇒ 0. (4.18)

It follows the i(ρV k)dA must be zero on the cycle z1d for any deformation
parameter ρ. Cartan has shown that this is the condition that implies the
process ρV k has a "Hamiltonian" representation [38]. See Section 3.1.1

4.7.4 Holder Norms, Period Integrals and Topological Quantization

Besides the invariant structures considered above, the Cartan methods may
be used to generate other sets of topological invariants. Realize that over a
domain of Pfaff dimension n less than or equal to N , the Cartan criteria
admits a submersive map to be made from N to a space of minimal dimension
n. Assume the submersive map produces functions

[V 1(x, y, z..), V 2(x, y, z..), ...V n(x, y, z..)] (4.19)

with a differential volume element, Ωn = dV 1ˆdV 2ˆ...ˆV n. Then construct
the n-1 form,

C = i(V 1, V 2, ..., V n)Ωn (4.20)
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Define an integrating factor ρ in terms of the Holder norm,

ρ = 1/λ = 1/{a(V 1)p + b(V 2)p + c(V 3)p + .....}m/p. (4.21)

Then multiply the C form by ρ to produce n-1 form density (current) J as:

J = i(V 1, V 2, V 3, ...)V ol =

ρ{V 1 dV 2ˆdV 3... − V 2 dV 1ˆdV 3...+ V 3 dV 1ˆdV 2...− ...}. (4.22)

Theorem 1. The n-1 form J is closed, for any choice of con-
stants a,b,c.. and for any p, if the holder homogeneity index
m = n : dJ = 0.

It is remarkable that the "current" J so defined has a vanishing
exterior differential, independent of the value of p for a given m (equal to
the dimension of the volume element), and for all values of the constants,
plus or minus a,b,c...). All such "currents" thereby define a ”conservation
law”. As the map defining the components of the vector field in terms of the
base {x,y,z..} is presumed to be differentiable, then the n-1 form, J, has a
well defined pull back on the base space (almost everywhere), and its exterior
differential on the base space also vanishes everywhere mod the defects. That
is, the form J is locally exact. The number of negative coefficients in set
{a, b, c, d...} determines the signature index of the Holder norm. The number
m determines the homogeneity index. The Holder integrating factors are
more familiar whenm = 1, p = 1 which generates the barycentric coordinates
{a, b, c, d...} of Moebius, [27], and for m = 1, p = 2, a = b = c..., which is
known as the Gauss map. Use for both of these special Holder constructions
will be developed in that which follows.

The integrals of these closed currents, when integrated over closed
N-1 dimensional chains, form deformation invariants, with respect to any
evolutionary process that can be described by a vector field, for

L(ρV)

Z
z(n−1)d

J =

Z
z(n−1)d

i(ρV)dJ +

Z
z(n−1)d

d(i(ρV))J) = 0 + 0 = 0.

(4.23)
These integral objects appear as ”topological coherent” structures (which
may have defects or anomalous sources, when the integrating factor 1/λ is
not defined). The integration chain is a (n− 1) dimensional (d) cycle z.

The compliment to the zero sets of the function λ determine the
domain of support associated with the specified vector field. The closed n-1
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form, J , that satisfies the conservation law, dJ = 0, has integrals over closed
domains that have rational fraction ratios. As this n-1 current is closed
globally, it may be deduced on a connected local domain from a n-2 form, G.
In every case J has a well defined pull-back to the base variety, x,y,z,t. Note
that the n functions [V x (x, y, z..), V y(x, y, z..), V z(x, y, z..), ...] represent the
minimum number of Clebsch variables that are equivalent to the original
action, A, over the domain of support. As each of these integrals is intrinsi-
cally closed, the Lie differential with respect to any C1 vector field, ρV, is a
perfect differential, such that (when integrated over closed domains that are
p-1 boundaries) the evolutionary variation of these closed integrals vanishes.
These n-1 integrals are relative integral invariants for any C1 evolutionary
processes, or flows. The values of the integrals are zero if the closed inte-
gration domains are boundaries, or completely enclose a simply connected
region. If the closed integration domains encircle the zeros of the function
λ, then the values of the integrals are proportional to the integers; i.e., their
ratios are rational.

In general, by deRham’s theorems, these values of these period inte-
grals, for different closed integration chains in domains where dJ = 0, have
rational ratios [173]. When the evolution of a period integral is such that
the integer changes, the process can describe the decay from a quantized
stationary state of topological quantum number m to a state of topological
quantum number n:

Topological Quantization: L(ρV)

Z
z(n−1)d

J = n constant. (4.24)

Note that each signature of λ must be investigated. For the elliptic
(positive definite) signature, the singular points are the stagnation points,
and the domain of support excludes those singularities. For the hyperbolic
signatures, the domain of support excludes the hyperbolic singularities of
lower dimension, such as the light cone. Further note that a given vector
field may not generate real domains of support for all possible signatures of
the quadratic form, λ.

Details and applications of homogeneous constructions that give rise
to period integrals are presented in Chapter 6.

4.8 Unique Continuous Evolutionary Processes

Evolutionary processes can preserve the topological properties of a physical
system, or they can change them. In this monograph, those processes which
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can change continuously the topology of a physical system are of major in-
terest, for topological change is a necessary requirement of thermodynamic
irreversibility. Intuitively, a process applied to a physical system can be
arbitrary, which implies that the process V is not necessarily dictated by the
topological structure of the physical system, A. This intuitive idea is not
precise. In contrast, for a given physical system, A, there are two vector
direction fields that are determined uniquely from the functions that defined
the topological structure of the physical system. One of these vector fields,
VE , is uniquely defined on contact manifolds of odd topological dimension,
2n + 1. VE is called an "extremal" field. The second vector direction
field, VT , is defined uniquely on symplectic manifolds of even topological
dimension, 2n+ 2. VT is called a "torsion" vector. Recall that the topo-
logical dimension can be smaller than or equal to the geometric dimension.
The concept that these two vectors are uniquely determined implies that the
representation is in terms of topological, not geometrical, coordinates.

The extremal vector VE on a contact manifold is proportional to
the unique null eigen value of the 2n + 1 × 2n + 1 anti-symmetric matrix
of functions that forms the components of the 2-form, dA. Such null eigen
vectors exist (uniquely) only on topological domains of odd maximal rank,
typically in this monograph, equal to 3. The extremal vector,VE , satisfies
the equations:

Extremal Vectors : i(VE)dA = 0, (4.25)

Ω = dx1ˆdx2ˆ...dx2n+1 (4.26)

L(VE)A = d(i(VE)A). (4.27)

It will be demonstrated in the subsequent chapters that extremal vector fields
admit a Hamiltonian representation, or generator, that describes the evolu-
tionary direction field. Extremal Hamiltonian vector fields (without fixed
points) do not alter the topological properties of the physical system repre-
sented by the 1-form, A. On geometric domains of dimension greater than
2n+1, there can exist are other vector direction fields that have a Hamiltonian
(or better said a Bernoulli-Casimir) generator. However, these "Hamil-
tonian" direction fields are not uniquely defined in terms of the functions
that define the topology of the physical system. For example, on a geometric
domain of 2n+2 dimensions, if there exists one null eigenvector of the 2-form,
dA, then there must exist at least two null eigenvectors. The differences be-
tween extremal Hamiltonian processes and the Bernoulli processes will be
discussed in the subsequent chapters.
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On the other hand, on topological domains where dA is of even max-
imal rank, extremal vectors (null eigenvectors relative to dA) do not exist.
Yet there is a unique vector, the vector, VT , that is determined by the topo-
logical structure of the physical system, A. Such unique vectors exist only
on topological domains of even dimensional maximal rank, typically in this
monograph, equal to 4. The Topological Torsion vector satisfies the equa-
tions:

Topological Torsion Vector : i(VT )Ω = AˆdA...dA, (4.28)

Ω = dx1ˆdx2ˆ...dx2n+2 (4.29)

L(VT )A = i(VT )dA = σA (4.30)

i(VT )A = 0 (4.31)

These equations will be developed in detail in the next section. It will also
be shown that an evolutionary process which has a component in the direc-
tion of the "Topological Torsion" vector will produce a thermodynamically
irreversible process on the physical system defined by the 1-form of Action,
A. Evolution in the direction of the Topological Torsion vector causes topo-
logical change.

The previous paragraph contains the first introduction to the con-
cept of topological torsion to appear in this monograph. The properties of
the topological torsion vector will be extolled and examined again and again
in the chapters that follow. The existence of a Topological Torsion direction
field is a signal that the physical system is not in equilibrium. Evolution
in the direction of the Topological Torsion vector is thermodynamically ir-
reversible if the divergence of VT is not zero. The dogmatic insistence on
topological invariance in many classical physical theories in effect excludes
the concept of the "topological torsion". When σ = 1, the Topological
Torsion vector has been called the "Liouville vector field" (see page 65 [123]
[124]). If the topological structure of the physical system, A, evolves (or
decays) from a domain where the rank of dA is even to a domain where the
maximal rank of dA is odd, then the components of VT become propor-
tional to a characteristic direction field, which has both extremal properties
and associated properties.

The extremal processes, VE , can always be put into correspondence
with a Hamiltonian process, but those processes represented by a direction
field component proportional to VT do not have a Hamiltonian representa-
tion, unless the divergence of VT is zero. These features apply not only to
topological dimension 3 and 4, but are also valid for topological dimensions
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which are odd (VE for n = 2k + 1) or even (VT for n = 2k + 2). The
topological refinement induced by the process forms two categories related
to a Contact structure (n = 2k+1) or to a Symplectic structure (n = 2k+2).
Note that the concept of ”uniqueness” relates to the direction field V that
represents a process, but such direction fields as a vector field are unique
only to within an arbitrary (deformation) factor.

Continuous evolution includes two equivalence classes of processes:
those processes that preserve topological features (homeomorphisms) and
those processes that do not ( non homeomorphisms). The latter class is the
class of processes that describe continuous topological evolution, and it is this
class which is studied extensively in this article. As will be demonstrated be-
low, the topological structure of a physical system leads to the consideration
of odd dimensional integrals of the type

R
2k+1

AˆdA... and even dimensional
integrals of the type

R
2k+2

dAˆdA.... If these integrals are deformation invari-
ants they represent a topological property that is an evolutionary invariant.
Of particular interest is the set of even and odd dimensional integrals where
the integration chain is a closed cycle.

The class of continuous processes that describe topological change
can be divided into two distinct classes, A and B.

• Class A. This equivalence class of non homeomorphic continuous processes
preserves the even dimensional integrals as deformation invariants, but
causes the values of the odd dimensional integrals to change. The
Helmholtz conservation of vorticity concept is a classic example of
when an even dimensional topological property is preserved. Such
processes will be called Helmholtz (or Symplectic) processes, in gen-
eral, when the 2-form of Action, dA, is an evolutionary invariant. The
Poincare integral invariants of classical mechanics are further examples
of even dimensional integral invariants. Extremal and Hamiltonian
processes are special cases of Helmholtz processes. However, it will
be demonstrated that all such Helmholtz processes, which can produce
topological change of the odd dimensional integrals, are thermodynam-
ically reversible. Topological change is a necessary, but not sufficient,
condition for continuous thermodynamic irreversibility.

• Class B. This equivalence class of non homeomorphic continuous processes
causes the values of both the even and the odd dimensional integrals
to change. Both the odd and the even topological features of the
physical system are modified. It is this equivalence class that contains
those processes which are thermodynamically irreversible. Without
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being too precise, both energy and angular momentum must change if
a process is to be thermodynamically irreversible. Pasting together is
a continuous process for which the topology of the final system state
is not necessarily the same as the topology of the initial system state.
Separation or cutting into parts is a discontinuous process for which
the system topology of the final state is not the same as the system
topology of the initial state. The obvious topological property that
changes is the number of parts. Projections from higher dimensions
to lower dimensions are classic examples of many to one differentiable
maps that are not invertible. The obvious topological property that
changes is the property of dimension. Consider a flat putty disc in
the shape of an annulus. Deform the putty continuously such that the
points that make up the central hole are pasted together. On the other
hand make an interior cut in a disk of putty and discontinuously sepa-
rate the points to make a hole. The obvious topological property that
changes is the number of holes. (Discontinuous processes are more or
less ignored in this presentation.)

In this article, attention will be focused on dissipative turbulent sys-
tems with thermodynamic irreversible processes such that the Pfaff topo-
logical dimensions of A, W, and Q will be maximal and equal to 4. (The
techniques can be extended to higher dimensional geometric spaces.) These
Turbulent systems of Pfaff dimension 4 are not topologically equivalent to
Equilibrium systems (for which the topological dimension is 2, at most).
Topological defects in the Turbulent state will be associated with sets of
space time where the Pfaff topological dimensions of A, W, and Q are not
maximal. It is remarkable that such topological defect sets can form at-
tractors causing self organization and long lived states of Pfaff dimension 3,
which are far from equilibrium. Examples will be presented below.

4.8.1 Physical Systems: Equilibrium, Isolated, Closed and Open

Physical systems and processes are elements of topological categories deter-
mined by the Pfaff topological dimension (or class) of the 1-forms of Action,
A, Work, W , and Heat, Q. For example, the Pfaff topological dimension of
the exterior differential 1-form of Action, A, determines the various species
of thermodynamic systems in terms of distinct topological categories. The
are two topological thermodynamic categories that are determined by the
closure (or differential ideal) of the 1-form of Action, A∪dA, and the closure
of the 3-form of topological torsion, AˆdA ∪ dAˆdA. The first category is
represented by a connected Cartan topology, while the second category is
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represented by a disconnected Cartan topology. The Cartan topology is
discussed in detail in Chapter 4.

Connected Topology AˆF = 0

1. Equilibrium physical systems are elements such that the Pfaff topolog-
ical dimension of the 1-form of Action, A, is 1.

2. Isolated physical systems are elements such that the Pfaff topological
dimension of the 1-form of Action, A, is 2, or less. Isolated systems of
Pfaff dimension 2 need not be in equilibrium, but (in historic language)
do not exchange radiation or mass with the environment.

Disconnected Topology AˆF 6= 0
1. Closed physical systems are elements such that the Pfaff topological di-
mension of the 1-form of Action, A, is 3. Closed systems can exchange
radiation, but not mass, with the environment.

2. Open physical systems are such that the Pfaff topological dimension
of the 1-form of Action, A, is 4. Open physical systems can exchange
both radiation and mass‡ with the environment.

Systems : defined by the Pfaff dimension of A (4.32)

dA = 0 Equilibrium - Pfaff dimension 1 (4.33)

AˆdA = 0 Isolated - Pfaff dimension 2 (4.34)

d(AˆdA) = 0 Closed - Pfaff dimension 3 (4.35)

dAˆdA 6= 0. Open - Pfaff dimension 4. (4.36)

Note that these topological specifications as given above are deter-
mined entirely from the functional properties of the physical system encoded
as a 1-form of Action, A. The system topological categories do not involve
a process, which is encoded (to within a factor) by some vector direction
field, V4. However, the process V4 does influence the topological properties
of the work 1-form W and the Heat 1-form Q. Compare these topological
definitions, whereby Equilibrium or Isolated systems are determined in terms
of two independent variables at most, and Duhem’s theorem

‡The use of the word mass to distinguish between closed and open systems is a legacy
that ought to be changed to "mole or particle" number, as it is now known that mass
energy can be converted to radiation, and radiation can produce massive pairs.



212 A Summary of Non Equilibrium Thermodynamics

"Whatever the number of phases, components and chemical
reactions, if the initial mole numbers Nk of all components are
specified, the equilibrium state of a closed system is completely
specified by two independent variables. (p.182 [160])"

4.8.2 Equilibrium versus non Equilibrium Systems

The intuitive idea for an equilibrium system comes from the experimental
recognition that the intensive variables of Pressure and Temperature (con-
jugate to volume and entropy) become domain constants in an equilibrium
state: dP ⇒ 0, dT ⇒ 0. A definition made herein is that the Pfaff
topological dimension in the interior of a physical system which is in the
equilibrium state is at most 1 [12]. Formally, the idea is restated such that
the equilibrium state is a Lagrangian submanifold of a 4 dimensional sym-
plectic manifold, and upon this Lagrangian submanifold, the 2-form dA, that
generates the symplectic structure, vanishes. Hence the equilibrium state is
of Pfaff topological dimension 1:

Equilibrium {A 6= 0, dA = 0, AˆdA = 0, dAˆdA = 0}.
The isolated physical system is of Pfaff dimension 2,

Isolated {A 6= 0, dA 6= 0, AˆdA = 0, dAˆdA = 0}.
For both the isolated or equilibrium system, the Cartan topology generated
by the elements of the Pfaff sequence for A is then a connected topology of
one component, as AˆdA = 0, (see chapter 4).

Although the Pfaff topological dimension of A is at most 2 in the
isolated state, processes in the isolated state are such that the Work 1-form
and the Heat 1-form must be of Pfaff dimension 1. For suppose W = PdV,
then dW = dPˆdV ⇒ 0 if the pressure is a domain constant. Similarly,
suppose Q = TdS, then dQ = dTˆdS ⇒ 0 if the temperature is a domain
constant. Hence both W and Q are of Pfaff dimension 1 for this isolated
example. If the Pfaff dimension of the 1-form of Action is 1, then dA⇒ 0.
It follows in this more stringent case that W ⇒ 0. Hence for elementary
systems the Pressure must vanish or the Volume is constant, and the Heat
1-form is a perfect differential, Q = d(U).

Of particular interest herein are those regions of base variables for
open, non equilibrium, Turbulent physical systems, formed by the closure§ of

§The closure of the p-form Σ is the union of Σ and dΣ, which Cartan has called a
differential ideal.
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the 3-forms AˆdA, WˆdW , and QˆdQ. For such regions, the Pfaff topologi-
cal dimension of the 1-forms, A, W, and Q, are all initially of Pfaff topological
dimension 4,

dAˆdA 6= 0, dWˆdW 6= 0, dQˆdQ 6= 0, (4.37)

save for defect regions that are of Pfaff dimension 3 (or less). It is remark-
able that evolutionary dissipative irreversible processes in such open systems
can describe evolution to regions of base variables where the Pfaff topological
dimension of the 1-form of Action, A, changes from 4 to 3. Such processes
describe topological change in the physical system. For a given 1-form of
Action, A, those regions of Pfaff topological dimension 3, once created, form
topological "defect structures" in the closure of the 3-form, AˆF. The defect
structures of the 1-form of Action, A, (of Pfaff dimension 3) can behave as
long lived (excited) states of the initial physical system, but they are far
from equilibrium and are not isolated, for they are not of Pfaff topological
dimension equal to 2 or less. Such excited states (of odd topological dimen-
sion) can admit extremal processes of kinematic perfection, and can have
a Hamiltonian generator for the kinematics represented as a system of first
order ordinary differential equations. The Hamiltonian evolution remains
contained in the defect structure, unless topological fluctuations destroy the
kinematic perfection.

Such concepts can be applied to a model of cosmology (where the
stars are the defect structures), to turbulent plasmas and fluids (where wakes
are the defect structures), and to a better understanding of the arrow of
time. Although the defects in the Turbulent non equilibrium regime are not
necessarily equilibrium structures, once formed and self organized as coherent
topological structures of Pfaff dimension 3, they can evolve along extremal
trajectories that are not dissipative, Indeed such extremal processes have
a Hamiltonian representation. These "stationary", or long lived (excited),
states of Pfaff dimension 3, indeed are states "far" from the equilibrium
state, which requires a Pfaff dimension of 1. Note that the word "far"
does not imply a "distance". The Pfaff dimension 3 and 4 sets are not
even "connected" to the equilibrium states in a topological sense. The non
equilibrium but isolated states of a physical system that are "near-by" to the
equilibrium state, are "connected" to the equilibrium state, and are of Pfaff
dimension 2.

The descriptive words of self-organized states far from equilibrium
have been abstracted from the intuition and conjectures of I. Prigogine [160].
However the topological theory presented herein presents for the first time
a solid, formal, mathematical justification (with examples) for the Prigogine
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conjectures. Precise definitions of equilibrium and non equilibrium sys-
tems, as well as reversible and irreversible processes can be made in terms of
the topological features of Cartan’s exterior calculus. Thermodynamic irre-
versibility and the arrow of time are well defined in a topological sense [206],
a technique that goes beyond (and without) statistical analysis. Thermo-
dynamic irreversibility and the arrow of time requires that the evolutionary
process produce topological change.

4.8.3 Change of Pfaff Topological Dimension

It should be noted that the closed components of the 1-form of Action do not
effect the components of the 2-form of intensities, F = dA = d(Ac + A0) =
0 + d(A0) = F0. However, these "gauge" additions of closed forms, Ac, do
influence the topological dimension of the 1-form of Action. For example,
let A0 be of Pfaff Topological dimension 2, representing an isolated system
where A0ˆdA0 = 0. Then by addition of a closed component to the original
action, the new 1-form of Action, A = Ac + A0 could have a topological
dimension of 3:

AˆdA = (Ac +A0)ˆdA0 = AcˆdA0 6= 0, (4.38)

So the addition of a closed component to the 1-form of Action could change
the system from an isolated system of Pfaff dimension 2 to a closed system
of Pfaff dimension 3. The 4-form dAˆdA is not influenced by the (gauge)
addition to the original 1-form of Action.

dAˆdA = dA0ˆdA0. (4.39)

In higher dimension, such gauge additions imply that the Pfaff dimension
can change according to the rule, 2n⇒ 2n+ 1.

It is also possible to change the Pfaff dimension of a 1-form by "renor-
malization", or better said, by "rescaling" with a multiplying function, often
in the form of an integrating factor. For example, consider the 1-form A0 of
Pfaff dimension 4, such that d(A0ˆdA0) 6= 0. Next rescale the 1-form such
that A = βA0. Then

d(AˆdA) = d(β2A0ˆdA0)⇒ 0, (4.40)

if β2 is an integrating factor for the 3-form A0ˆdA0. In 4 dimensions there
exists an infinite number of such functions that serve as integrating factors for
the 3-form of Topological Torsion, A0ˆdA0. The integrating factors (which
can be formulated from Holder norms) can be interpreted as distributions of
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"density" which change the Pfaff topological dimension from 4 to 3, or, in
general, from 2n + 2 ⇒ 2n + 1. Such distributions can be put into corre-
spondence with "stationary" states far from equilibrium.

As an example of how the Pfaff dimension of a 1-form can be modified
by a gauge addition, see section (3.3.3) where a 1-form representing a Bohm-
Aharanov-Abrikosov singular "vortex" string,

γ = b(ydx− xdy)/(x2 + y2), (4.41)

is added to a 1/r potential for a point source. The bare m/r "Coulomb"
potential, A0 = m/

p
(x2 + y2 + z2)dt exhibits no Topological Torsion but

does exhibit Topological Spin. The 1/r potential term implies that A0 6= 0.
Hence the 1-form of Action representing a bare "coulomb" potential, is not
in equilibrium, but does represent a connected "isolated" topology of Pfaff
dimension 2. The combined 1-form of Action,

A = b(ydx− xdy)/(x2 + y2) +m/
p
(x2 + y2 + z2)dt, (4.42)

even though dγ = 0, is of Pfaff dimension 3, not 2. The Topological Torsion
3-form AˆF depends on both b and m, and is zero if b = 0, or if m = 0,
reducing the Pfaff dimension of the modified 1-form back to 2.

4.8.4 Systems with Multiple Components

One of the most remarkable properties of the Cartan topology generated by
a Pfaff sequence is due to the fact that when AˆdA = 0, (Pfaff dimension
2 or less) the physical system is reducible to a single connected topological
component. This single connected topological component need not be
simply connected. The Topological Torsion field vanishes on equilibrium
domains.

On the other hand when AˆdA 6= 0, (the Pfaff topological dimen-
sion of the 1-form, A, is 3 or more) the physical system admits more than
one topological component (and the topology is a disconnected topology see
Chapter 4). The bottom line is that when the Pfaff dimension is 3 or greater
(such that conditions of the Frobenius unique integrability theorem are not
satisfied), solution uniqueness to the Pfaffian differential equation, A = 0,
is lost. If solutions exists, there is more than one solution. Such concepts
lead to propagating discontinuities (signals), envelope solutions ¶ (Huygen
wavelets), an edge of regression (the Spinodal line of phase transitions) a lack
of time reversal invariance, and the existence of irreducible affine torsion in

¶See section 6.6
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the theory of connections. It is the opinion of this author that a dogmatic
insistence that a viable physical theory must give a unique prediction from a
set of given initial conditions historically has hindered the understanding of
irreversibility and non equilibrium systems. Irreversibility and non equilib-
rium are concepts that require non uniqueness, and demand that the dogma
mentioned above has to be rejected.

4.9 Thermodynamic Processes

4.9.1 Continuous Processes

All continuous processes (see Chapter 5) may be put into equivalence classes
as determined by the vector direction fields, V , that locally generate a flow.
For example on a domain of geometric dimension, n, and for the 1-form, A,
those n-1 vector fields, Vassociated, that satisfy the transversal equation,

Associated Class: i(ρVassociated)A = 0, (4.43)

are said to be elements of the associated class of vector fields relative to the
form A. If the direction field of the 1-form of Action is considered to be
a fiber, then the associated vectors are also said to be "horizontal". The
associated vectors will form a distribution orthogonal to the 1-form, A, but
the distribution need not be a smooth foliation. That is, the fiber direction
field is not necessarily the normal field to an implicit hypersurface. The
requirement for a smooth foliation is that the associated 1-form be of Pfaff
topological dimension 2 or less. For such associated processes acting on a
1-form of Action, A, the "internal interaction energy" vanishes. As shown
below, processes generated by associated vectors relative to the 1-form of
Action, A, are also included in the set of thermodynamic locally adiabatic
processes. Other locally adiabatic processes are generated by those processes
which are associated vectors of the exterior derivative of the internal energy,
U. In both cases, the adiabatic processes are null vectors of the Heat 1-form,
in the sense that i(ρVadiabatic)Q = 0.

Those vector fields, Vextremal, that satisfy the equations,

Extremal Class: i(ρVextremal)dA = 0, (4.44)

are said to be elements of the extremal class of vector fields. As the matrix
of functions that define the 2-form dA is antisymmetric, the extremal vector
is proportional to that eigen vector of the antisymmetric matrix that has
a zero eigen value. If the matrix dA is of maximum rank, then there is
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only one (unique) eigen vector with zero eigen value, and that null eigen
vector exists, only if the Pfaff topological dimension of the 1-form A is odd
(2n + 1). In other words, the 2-form dA defines a Contact manifold. The
extremal direction field is completely determined (to within a factor) by the
component functions of the 1-form A utilized in its definition. Note that the
work 1-form W = i(ρVextremal)dA ⇒ 0 vanishes for extremal evolutionary
processes.

If the Pfaff topological dimension of the 1-form A is even, then a
unique extremal vector does not exist. The reduced topological domain
(not necessarily the entire geometric domain) is a symplectic manifold of
even dimensions, (2n + 2). However, on the symplectic manifold of 4
geometric dimensions and 4 topological dimensions, it follows that there
does exist a unique vector direction field, the Topological Torsion vector,
VTorsion, completely determined (to within a factor) in terms of the func-
tions which define the physical system.

Topological Torsion Class : i(ρVTorsion)dA = σA, (4.45)

i(ρVTorsion)A = 0, (4.46)

In the next section it will be shown that evolution with a component
in the direction of the "Topological Torsion" vector will produce an irre-
versible process on the physical system (as encoded by the Action 1-form), if
the divergence of the "Topological Torsion" vector is not zero. This "Topo-
logical Torsion" vector equivalent to the 3-form AˆdA = AˆF is always an
associated vector, but it is not necessarily an extremal vector, relative to the
Action 1-form, A. The Torsion vector is identically zero on domains of Pfaff
topological dimension 2. Hence non zero values of the Torsion vector are an
indication that the physical system, A, is not an equilibrium system. The
Topological Torsion vector exists only on domains of Pfaff topological dimen-
sion 3 or greater, in the same sense that Frenet-Serret torsion exists only on
domains of geometric dimension 3 or greater. With respect to evolution in
the direction of the Torsion Current, the symplectic 4D volume is contracting
or expanding exponentially unless σ = 0. If the divergence of VTorsion van-
ishes, σ ⇒ 0, and therefore such vector fields cannot represent a symplectic
process (which preserves the volume element, dAˆdA). The factor, σ, is a
Liapunov function and defines the stability of the process (depending on the
sign of σ). When σ = 1, the Torsion vector has been called the ”Liouville
vector” [124].

Vector fields which are both extremal and associated are said to be
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elements of the characteristic class, Vcharacteristic, of vector fields [98].

Characteristic Class : i(ρVcharacteristic)A = 0, (4.47)

and : (ρVcharacteristic)dA = 0. (4.48)

Note that characteristic flow lines generated by Vcharacteristic of the
Characteristic class preserve the Cartan topology, for each form of the Cartan
topological base is invariant with respect to the action of the Lie differential
to characteristic flows (See Chapter 4). Characteristics are often associated
with wave phenomena, and propagating discontinuities. They are locally
adiabatic. The Topological Torsion vector mentioned above may have zero
divergence on certain geometric subsets of space-time, but these domains are
of Pfaff topological dimension 3 (although of geometric dimension 4). In
such cases, the Topological Torsion vector will be a characteristic vector for
the 1-form of Action, A. These and other properties of the "Topological
Torsion" vector will be described in detail by examples presented below.

4.9.2 Reversible and Irreversible Processes

The Pfaff topological dimension of the exterior differential 1-form of Heat,
Q, determines important topological categories of processes. From classical
thermodynamics "The quantity of heat in a reversible process always has an
integrating factor" [76] [142] . Hence, from the Frobenius unique integrability
theorem, which requires QˆdQ = 0, all reversible processes are such that the
Pfaff dimension of Q is less than or equal to 2. Irreversible processes are
such that the Pfaff dimension of Q is greater than 2, and an integrating factor
does not exist. A dissipative irreversible topologically turbulent process is
defined when the Pfaff dimension of Q is 4.

Processes : as defined by the Pfaff dimension of Q
QˆdQ = 0 Reversible - Pfaff dimension 2 (4.49)

d(QˆdQ) 6= 0. Turbulent - Pfaff dimension 4. (4.50)

Note that the Pfaff dimension of Q depends on both the choice of a
process, V4, and the system, A, upon which it acts. As reversible thermo-
dynamic processes are such that QˆdQ = 0, and irreversible thermodynamic
processes are such that QˆdQ 6= 0, Cartan’s formula of continuous topolog-
ical evolution can be used to determine if a given process, V4, acting on a
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physical system, A, is thermodynamically reversible or not:

Processes defined by : the Lie differential of A
L(ρV4)A = Q (4.51)

Reversible Processes ρV4 : QˆdQ = 0, (4.52)

L(ρV4)AˆL(ρV4)dA = 0, (4.53)

Irreversible Processes ρV4 : QˆdQ 6= 0, (4.54)

L(ρV4)AˆL(ρV4)dA 6= 0. (4.55)

Remarkably, Cartan’s magic formula can be used to describe the
continuous dynamic possibilities of both reversible and irreversible processes,
acting on equilibrium or non equilibrium systems, even when the evolution
induces topological change, transitions between excited states, or changes of
phase, such as condensations.

It is important to note that the direction field, V4, need not be
topologically constrained such that it is singularly parameterized. That is,
the evolutionary processes described by Cartan’s magic formula are not nec-
essarily restricted to vector fields that satisfy the topological constraints of
kinematic perfection, dxk − V kdt = 0. A discussion of topological fluctua-
tions, where dxk − V kdt = ∆k 6= 0, and an example fluctuation process is
described in Section 2.6.

In the next section it will be demonstrated that evolution in the
direction of the Topological Torsion vector (or Current), T4, defined from
the components of the 3-form of topological torsion,

i(T4)dxˆdyˆdzˆdt = AˆdA, (4.56)

induces a process which satisfies the equations of a conformal evolutionary
process

L(T4)A = σA and i(T4)A = 0, σ 6= 0, (4.57)

such that

L(T4)AˆL(T4)dA = QˆdQ = σ2AˆdA 6= 0. (4.58)

Conclusion Evolution in the direction of the Topological Torsion
vector, T4, relative to a physical system encoded by the 1-form A,
is thermodynamically irreversible.
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A crucial idea is to recognize that irreversible processes must be on
domains of Pfaff topological dimension which support Topological Torsion,
AˆdA 6= 0, with its attendant properties of non uniqueness, envelopes, regres-
sions, and projectivized tangent bundles Such domains are of Pfaff dimension
3 or greater. Moreover, as described below, it would appear that thermo-
dynamic irreversibility must support a non zero Topological Parity 4-form,
dAˆdA 6= 0. Such domains are of Pfaff dimension 4 or greater.
4.9.3 Adiabatic Processes - Reversible and Irreversible

The topological formulation of thermodynamics in terms of exterior differ-
ential forms permits a precise definition to be made for both reversible and
irreversible adiabatic processes in terms of the topological properties of Q.
On a geometrical space of N dimensions, a 1-form, Q, will admit N-1 as-
sociated vector fields, VAssociated, such that i(VAssociated)Q = 0. Processes
defined by associated vector fields, VAssociated, relative to Q are defined as
(locally) adiabatic processes (or sometimes as null vectors), Vadiabatic [12].

Locally Adiabatic Processes: i(Vadiabatic)Q = 0. (4.59)

The N-1 null vectors will form a distribution of adiabatic processes orthogonal
to the 1-form Q. The distribution of adiabatic processes will not form a
smooth hypersurface, unless the Pfaff dimension of Q is 2 or less. In other
words the null curves (adiabats) form a smooth hypersurface only in the
equilibrium or isolated state. Note that all adiabatic processes are defined
by vector direction fields, to within an arbitrary factor, β(x, y, z, t). That is,
if i(VA)Q = 0, then it is also true that i(βVA)Q = 0. The adiabatic direction
fields and the 1-form of Action can be used to construct an interesting basis
frame related to projective connections. This possibility will be discussed in
section 5.11.

The differences between the inexact 1-forms of Work and Heat be-
come obvious in terms of the topological format. Both 1-forms, W and Q,
depend on the process, V4, and on the physical system, A. However, Work
is always transversal to the process, but Heat is not - unless the process is
adiabatic:

Work is transversal : i(V4)W = i(V4)i(V4)dA = 0,(4.60)

Heat is NOT transversal : i(V4)Q = i(V4)dU ; 0, (4.61)

unless : the process is adiabatic (4.62)

It is this fundamental difference between Heat, Q, and Work, W , that lead
to the Carnot-like statements that it is possible to convert work into heat
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with 100% efficiency, but it is not possible to convert heat into work with
100% efficiency.

Adiabatic direction fields, so defined as null curves of Q, do not imply
that the Pfaff dimension of Q must be 2. That is, it is not obvious that
Q can be written in the form, Q = TdS, as is possible on the manifold of
equilibrium or isolated states. From the Cartan formulation it is apparent
that if Q is not zero, then

L(VA)A = Q 6= 0, (4.63)

i(VA)L(VA)A = i(VA)i(VA)dA+ i(VA)d(i(VA)A) (4.64)

= 0(transversality) + i(VA)d(i(VA)A) = i(VA)Q

The necessary condition for a process to be adiabatic is given by the state-
ment that the process is an "associated" vector relative to the exact exterior
differential of the internal energy.

An adiabatic process requires i(VA)Q = i(VA)d(i(VA)A))⇒ 0,(4.65)

Q 6= 0 (4.66)

with a necessary condition given by : i(VA)dU ⇒ 0, (4.67)

and a sufficient condition given by : d(i(VA)A)⇒ 0. (4.68)

Note that the Topological Torsion vector is an associated vector relative to
the Action 1-form, A, and therefore defines a locally adiabatic (but irre-
versible) process on domains of Pfaff topological dimension 4.

If the heat 1-form is zero, then the process is a reversible adiabatic
process of a special type. A reversible process is defined such that the Pfaff
dimension of Q is less than 3; or, QˆdQ = 0. Hence i(VA)(QˆdQ) = 0 for
reversible processes. However,

i(VA)(QˆdQ) = (i(VA)Q)ˆdQ−Qˆi(VA)dQ, (4.69)

which permits reversible and irreversible adiabatic processes to be distin-
guished k when Q 6= 0:

Reversible Adiabatic Process = −Qˆi(VA)dQ⇒ 0, (4.70)

i(VA)Q ⇒ 0, (4.71)

Irreversible Adiabatic Process = −Qˆi(VA)dQ 6= 0, (4.72)

i(VA)Q ⇒ 0. (4.73)
kIt is apparent that i(V)Q = 0 defines an adiabatic process, but not necessarily a

reversible adiabatic process. This topological point clears up certain misconceptions that
appear in the literature.
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It is certainly true that if L(V)A = Q = 0, identically, then all
such processes are adiabatic, and reversible. (In the next section, it will
be demonstrated how these thermodynamic ideas can be associated with the
tensor processes of covariant differentiation and parallel transport.) In such
special adiabatic cases, the Cartan formalism implies thatW+dU = 0. Such
systems are elements of the Hamiltonian-Bernoulli class of processes, where
W = −dB.
4.9.4 Processes classified by connected topological constraints on the Work

1-form.

Cartan has shown that all Hamiltonian processes (systems with a generator
of ordinary differential equations), ρVH , satisfy the following equations of
topological constraint on the work 1-form, W :

A Hamiltonian process VH is either VE or VB

Extremal Hamiltonian VE

WE = i(ρVE)dA = 0 Pfaff dimension of W = 0 (4.74)

Bernoulli-Casimir Hamiltonian VB

WB = i(ρVB)dA = −dB Pfaff dimension of W = 1 (4.75)

More details about Cartan’s development of Hamiltonian systems appears in
section 3.5. A special case occurs when the Bernoulli function is equal to
the negative of the internal energy, for then the heat 1-form produced by this
special Hamiltonian process vanishes.

For Helmholtz processes (which are not strictly Hamiltonian) the
situation is a bit more intricate, but in all cases the Pfaff dimension of the
Work 1-form is at most 1. Hamiltonian processes are subsets of Helmholtz
processes.

Helmholtz (Symplectic) Process VS

WS = i(ρVS)dA = −dB + γ Pfaff dimension of W = 1 (4.76)

dWS = 0 as γ is closed but not exact. (4.77)

ρVS is Symplectic when

dAˆdA 6= 0, WS 6= 0, dWS = 0. (4.78)

Helmholtz-Symplectic processessatisfy the following equation which is known
as the Helmholtz conservation of vorticity theorem:

Helmholtz : Conservation of Vorticity (4.79)

L(ρVS)dA = dWS + ddU = 0 + 0 = Q⇒ 0. (4.80)
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However, the closed but not exact component of work can have finite
period integrals, so the evolutionary Helmholtz process can involve changing
topology. The closed integrals of Action are not invariant with respect to
ρVS unless γ = 0.

L(ρVS)

Z
z1d

A =

Z
z1d

γ =

Z
z1d

Q 6= 0 (4.81)

The Helmholtz class of processes 4.81 can be split into two types:
Type HA. Those processes for which the connectivity of the domain

of support for the 1-form A is invariant.

Helmholtz type A : L(ρV)

Z
z1

A⇒ 0, any ρ 6= 0,
Z
z1

W =

Z
z1

Q = 0.

(4.82)
Type HB . Those processes for which the connectivity of the domain

of support for the 1-form A can change (the number of holes and handles can
change),

Helmholtz type B : L(ρV)

Z
z1

A 6= 0, any ρ 6= 0,
Z
z1

W =

Z
z1

Q 6= 0.
(4.83)

Cartan proved [38] that if the 1-form of Action is taken to be of the
classic "Hamiltonian" format,

A = pkdq
k −H(pk, q

k, t)dt (4.84)

on a 2n+1 dimensional domain of variables {pk, qk, t}, there exists a unique
extremal vector field, ρVE , that satisfies the conditions of Helmholtz type
A processes. The closed but not exact forms, γ, introduce non uniqueness
into the definition of the work 1-form for Helmholtz type B processes. As
dQ = d(−dB + γ + dU) = 0 for all three processes defined above, all three
processes are thermodynamically reversible (see equation ( 4.49)).

Conclusion Helmholtz Type B processes demonstrate that topo-
logical change is necessary but not sufficient to produce thermo-
dynamic irreversibility.
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4.9.5 Planck’s Harmonic Oscillator and Type B processes - How does energy
get quantized ?

Consider a symplectic Harmonic Oscillator system with a Lagrange function

Lagrange function, L(t, x, v) = −1/2kx2 + 1/2mv2 +m0c
2, (4.85)

and a 1-form of Action, A = pdx− (pv − L(t, x, v)dt, (4.86)

where }k .
= p− ∂L/∂v = p−mv 6= 0. (4.87)

Then search for evolutionary vector fields such that the symplectic non zero
virtual work is of the form:

W = i(W)dA

= [−(}k)(dv − adt) + F diss(dx− vdt)]

= (F diss)dx− (}k)dv + {(}k)a− F dissv)dt. (4.88)

Consider those cases where

F dissv = βΓωv2 (4.89)

}ka = βΓωxa (4.90)

constrained to yield the Virial Equation

{(}k)a− F dissv)⇒ βΓω(xa− v2)⇒ 0. (4.91)

The Work 1-form then becomes

W = Γβ{vd(ωx)− (ωx)dv}, (4.92)

and if β is chosen to be a polynomial distribution of Holder norms, where
each term is of the form

β(p) = 1/{(ωx)p ± (v)p}2/p, (4.93)

then each term contributes an integer to the integralI
W = Γ2π =

X
(integers). (4.94)

In other words, the Virial constraint causes the 1-form of work to be of Pfaff
dimension 1, (dW = 0), but the 1-form of Work, W , is closed, but not
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exact. An "Open Question" remains: Does a Planck Distribution have a
relationship to the polynomial of Holder norms?

Such processes on a thermodynamic system are examples of Helmholtz
type B processes on symplectic manifolds. Topological fluctuations (see sec-
tion 2.6) in both kinematic position and velocity are permitted, but are tamed
by the constraint of the Virial condition to yield energy quantization.

Conclusion The radiation pressure (fluctuation in (dx− vdt))
or temperature (fluctuation in (dv− adt)) prevents change in the
orbit. Angular momentum is constant but interaction with the
environment gives a Bohr-like picture. It would appear that the
application of the Virial theorem can have both statistical and
topological significance. From a statistical average point of view,
the Virial theorem leads to Boyle’s ideal gas Law, PV = nRT .
From a topological point of view the Virial theorem appears to
be related to the discrete oscillation frequencies associated with
quantum mechanics.

4.9.6 Locally Adiabatic Processes

Each of the reversible processes must satisfy an additional topological con-
straint if the process is to be locally adiabatic:

Locally Adiabatic Processes

Adiabatic process i(VA)Q = i(VA)d(i(VA)A))⇒ 0, Q 6= 0 (4.95)
with a sufficient condition = i(VA)A⇒ 0. (4.96)

If −dB = 0, then ρVE is a characteristic process relative to the
2-form F. If the work 1-form is of Pfaff topological dimension 0, then the
process is an extremal process relative to A (see equation 4.47).

Extremal processes cannot exist on a non singular symplectic do-
main, because a non degenerate anti-symmetric matrix (the coefficients of the
2-form dA) does not have null eigenvectors on space of even dimensions . Al-
though unique extremal stationary states do not exist on the domain of Pfaff
topological dimension 4, there can exist evolutionary invariant Bernoulli-
Casimir functions, B, that generate non extremal, ”stationary”states. Such
Bernoulli processes can correspond to energy dissipative Helmholtz processes,
but they, as well as all Helmholtz processes, are reversible in the thermody-
namic sense described in section 3.2. The mechanical energy need not be
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constant, but the Bernoulli-Casimir function(s), B, are evolutionary invari-
ant(s), and may be used to describe non unique stationary state(s).

The equations, above, that define several familiar categories of processes,
are in effect constraints the Work 1-form, W , generated by a process describ-
ing the topological evolution of any physical system represented by an Action
1-form, A. The Pfaff dimension of the 1-form of virtual work, W = i(V)dA
is 1 or less for all three sub categories of Helmholtz processes. The Extremal
constraint of equation (4.74) can be used to generate the Euler equations of
hydrodynamics for a incompressible fluid. The Bernoulli-Casimir constraint
of equation (4.75) can be used to generate the equations for a barotropic
compressible fluid. The Helmholtz constraint of equation (4.77) can be used
to generate the equations for a Stokes flow. All such processes are thermo-
dynamically reversible as dQ = 0. None of these constraints on the Work
1-form, W , above will generate the Navier-Stokes equations, which require
that the topological dimension of the 1-form of virtual work must be greater
than 2.

Note that for a given 1-form of Action, A, it is possible to construct
a matrix of N-1 null (associated) vectors, and then to compute the adjoint
matrix of cofactors transposed to create the unique direction field (to within
a factor), VNullAdjoint. Evolution in the direction of VNullAdjoint does not
represent an adiabatic process path, as i(VNullAdjoint)A 6= 0. However,
for a given A, the N-1 null (associated) vectors represent locally adiabatic
processes, but they need not span a smooth hypersurface whose surface nor-
mal is proportional to a gradient field. In fact, the components of the 1-form
of Action, A, may be viewed as the normal vector to an implicit hypersur-
face, but the implicit hypersurface is not necessarily defined as the zero set
of some smooth function.

4.9.7 Reversible processes when the Pfaff topological dimension of Work is
2 or 3

Before studying irreversible processes, it is of some importance to study those
reversible processes for which the Pfaff dimension is 2 or 3. In the process
examples above, the work 1-form, W , was of Pfaff dimension 1 at most. As
such, the Helmholtz conservation of vorticity theorem is valid, and the differ-
ential 1-form of heat is closed, dQ = 0. It follows that all such processes are
thermodynamically reversible as QˆdQ = 0. However, there are processes
where the work 1-form W is of Pfaff dimension >1, and yet the process
involved is reversible. First consider Stokes processes where the Pfaff di-
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mension of W is 2:

Stokes Processes : If W = −βdU = d(βU) + Udβ, (4.97)

dW = −dβˆdU (4.98)

Q = (1− β)dU, (4.99)

dQ = −dβdU (4.100)

QˆdQ = −(1− β)dUˆdβˆdU ⇒ 0 (4.101)

Although the Pfaff topological dimension of the work 1-form is 2, as QˆdQ =
0, the Stokes process is a reversible process.

Next consider Chaotic reversible processes where the work 1-form
is of Pfaff dimension 3. The topology induced by the work 1-form is a
disconnected topology. The functions φ and χ are completely arbitrary
in this example, and can be associated with the classical thermodynamic
potentials. The contact structure ( as the Pfaff topological dimension of
Work, W = 3) can be of two types: Tight and Overtwisted: Tight contact
structures have a global Pfaff dimension equal to 3, Overtwisted contact
structures also have a 3-form which is not zero, except at certain singular
subsets. The 3-form is not global.

Tight Contact Structures
If W = φdχ− dU = d(φχ− U)− χdφ, (4.102)

dW = dφˆdχ (4.103)

Q = (W + dU) (4.104)

dQ = dW (4.105)

QˆdQ = (W + dU)ˆdW (4.106)

= −dUˆdW + dUˆdW ⇒ 0 (4.107)

As QˆdQ ⇒ 0, these specialized processes which induce a work 1-
form of Pfaff topological dimension 3 are thermodynamically reversible. The
Work 1-form generates a contact 3 manifold which has no limit cycles [61].
It will be shown below (see section 2.6.3) how such processes are related to
the classical thermodynamic potentials, for specific choices of the function
(φχ− U).

Neither of these last 2 processes conserve vorticity (think angular mo-
mentum). Yet they are candidates for investigating reconnection processes
[85].
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Of particular interest are those processes for which the work 1-form
generates an "Over-twisted Contact structure". Such structures are impor-
tant for they are the domain of limit cycles. As an example define the Holder
function as a quadratic form in terms of two independent functions, φ and χ
, as:

Definition The "Holder" variable is defined as h2 = φ2 ± χ2

A constant value for the square Holder norm is elliptic or hyperbolic
depending upon the ± sign. Next define the closed 1-form of Pfaff dimension
1, as

Definition The closed but not exact 1-form, γ, is defined as

γ = (φdχ− χdφ)/(φ2 ± χ2) = (φdχ− χdφ)/h2,(4.108)

dγ ⇒ 0. (4.109)

The closed form γ plays the role of a "differential angle variable
δθ" in the elliptic case.

Now study those processes where the work 1-form is of Pfaff dimen-
sion 3, but not globally.

Over-twisted Contact Structures
( Limit cycles )

If W = f(h)γ − dU, (4.110)

dW = ∂f/∂hdhˆγ (4.111)

WˆdW = {−∂f/∂h }dUˆdhˆγ (4.112)

Q = (W + dU), dQ = dW, (4.113)

QˆdQ = −dUˆdW + dUˆdW ⇒ 0 (4.114)

Although the Work 3-form WˆdW is not zero almost everywhere, the heat
3-form QˆdQ = 0 is zero globally, Hence the process is thermodynamically
reversible. However, the 3-form volume element created by the work 1-form
is not global and will admit defect structures. In the example above, the
work 3 — form,WˆdW, considered as a 3D - volume element, has singularities
which occur at the zeros of the function −∂f/∂h . If, for example,

f(h) = (b+ h− h3/3a2), (4.115)
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then the circle, −∂f/∂h = 0, defines a limit cycle in the elliptic case, in the
two dimensional plane defined by φ and χ :

−∂f/∂h = − ¡1− h2/a2
¢⇒ 0 (4.116)

h2 = φ2 + χ2 = a2. (4.117)

The limit cycle is stabile (attracting) if the volume element has a negative
orientation (contracting), and is unstable otherwise. To cement the ideas,
rewrite the work 1-form in terms of a more suggestive set of symbols, and
observe that the rotational term has the format of the component of angular
momentum orthogonal to the plane of rotation.

If W = i(ρV4)dA = mΓ(h)(xdy − ydx)− dU (4.118)

⇒ Γ(h){m(xV y − yV x)}dt− dU, (4.119)

= Γ(h)Lzdt− dU. (4.120)

As dγ = 0 except at the fixed point of the "rotation", the Pfaff
dimension of W has evolved from Pfaff dimension 3 to Pfaff dimension 1,
as ∂Γ/∂h⇒ 0. In the Pfaff dimension 1 state, Helmholtz theorem becomes
valid and "vorticity" is preserved. In the Pfaff dimension 3 mode, the process
does not conserve vorticity. When the system decays (or is attracted) to the
Pfaff dimension 1 state, the subsequent work done by a cyclic process is not
necessarily zero. The closed but not exact 1-form γ can contribute to a period
integral. Upon reflection, what has been described is the approach (Pfaff
dimension 3) to a limit cycle (Pfaff dimension 1). The entire process has been
done reversibly. Other forms of both the tight and the overtwisted contact
structures defined by the work 1-form, can occur and such C2 processes
can be thermodynamically irreversible. However, it will be demonstrated
below that sequential C1 processes exist for all contact structures that are
thermodynamically reversible.

4.10 A Physical System with Topological Torsion

For maximal, non equilibrium, turbulent systems in space-time, the maximal
element in the Pfaff sequence generated by A,W, or Q, is a 4-form. On the
geometric space of 4 independent variables, every 4-form is globally closed,
in the sense that its exterior differential vanishes everywhere. It follows that
every 4-form is exact and can be generated by the exterior differential of a
3-form. The exterior differential of the 3-form is related to the concept of a
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divergence of a contravariant vector field. A large fraction of the development
in this monograph will be devoted to the study of such 3-forms, and their
kernels, for it is 3-forms that form indicators of non equilibrium systems
and processes. It is a remarkable fact that all 3-forms (in general, N-1
forms) admit integrating denominators, such that the exterior differential of
a rescaled 3-form is zero almost everywhere. Space time points upon which
the integrating denominator has a zero value produce singularities defined as
topological defect structures.

When the Action for a physical system is of Pfaff dimension 4, there
exists a unique direction field, T4, defined as the Topological Torsion 4-
vector, that can be evaluated entirely in terms of those component functions
of the 1-form of Action which define the physical system. To within a factor,
this direction field∗∗ has the four components of the 3-form AˆdA, with the
following properties:

Properties of the Topological Torsion vector T4
i(T4)Ω4 = AˆdA (4.121)

W = i(T4)dA = σ A, (4.122)

U = i(T4)A = 0, (4.123)

L(T4)A = σ A, (4.124)

QˆdQ = L(T4)AˆL(T4)dA = σ2AˆdA 6= 0 (4.125)

dAˆdA = (2!) σ Ω4. (4.126)

Note that a T4 process is locally adiabatic.
Hence, by equation (4.125 ) evolution in the direction of T4 is ther-

modynamically irreversible, when σ 6= 0 and A is of Pfaff topological di-
mension 4. The kernel of this vector field is defined as the zero set under
the mapping induced by exterior differentiation. In engineering language,
the kernel of this vector field are those point sets upon which the divergence
of the vector field vanishes. The Pfaff topological dimension of the Action
1-form is 3 in the defect regions defined by the kernel of T4. The coeffi-
cient σ can be interpreted as a measure of space-time volumetric expansion
or contraction. It follows that both expansion and contraction processes (of
space-time) are related to irreversible processes. It is here that contact is

∗∗A direction field is defined by the components of a vector field which establish the
"line of action" of the vector in a projective sense. An arbitrary factor times the direction
field defines the same projective line of action, just reparameterized. In metric based
situations, the arbitrary factor can be interpreted as a renormalization factor.
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made with the phenomenological concept of "bulk" viscosity = (2!)σ. (For
symplectic systems of higher Pfaff dimension m = 2n + 2 ≥ 4, the numeric
factor becomes (m/2)!.) It is important to note that the concept of an irre-
versible process depends on the square of the coefficient, σ. It follows that
both expansion and contraction processes (of space-time) are related to irre-
versible processes. It is tempting to identify σ2 with the concept of entropy
production.

The Topological Torsion vector vanishes when the Pfaff topological
dimension of A is 2 or less. Note that the Frenet-Serret geometric torsion
of a space curve vanishes when the geometric dimension is 2 or less. It
is this analog dependence on dimension 3 or more that led to the name
"Topological Torsion" for the 3-form AˆdA. Solution uniqueness is lost
when the Topological Torsion vector is not zero. In 4D, the three form
Aˆ(dA)has been defined as the Topological Torsion 3-form. The Torsion
current depends only on the system (the Action) and not upon a process.
The divergence of this Torsion current is proportional to the measure of the
4D volume, that defines the symplectic space, and cannot be zero on the
symplectic domain. The components of the Topological Torsion vector T4
generate what is called the ”subsidiary Pfaffian system” by Forsyth [68].

For purposes of more rapid comprehension, consider a 1-form of Ac-
tion, A, with an exterior differential, dA, and a notation that admits an
electromagnetic interpretation (E = −∂A/∂t−∇φ, and B = ∇×A)††. The
explicit format of the Electromagnetic Topological Torsion 4 vector, T4 be-
comes:

T4 = −[E×A+Bφ, A ◦B] (4.127)

AˆdA = i(T4)Ω4 (4.128)

= Tx
4 dyˆdzˆdt− T y

4 dxˆdzˆdt+ T z
4 dxˆdyˆdt

−T t
4dxˆdyˆdz, (4.129)

dAˆdA = 2(E ◦B) Ω4 = KΩ4 (4.130)

= {∂T x
4 /∂x+ ∂T y

4 /∂y + ∂T z
4 /∂z + ∂T t

4/∂t} Ω4. (4.131)

When the divergence of the topological torsion vector is not zero,
σ = (E◦B) 6= 0, and A is of Pfaff dimension 4, W is of Pfaff dimension 4, and
Q is of Pfaff dimension 4. The process generated byT4 is thermodynamically

††The bold letter A represents the first 3 components of the 4 vector of potentials, with
the order in agreement with the ordering of the independent variables. The letter A
represents the 1-form of Action.
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irreversible, as

QˆdQ = L(T4)AˆL(T4)dA = σ2AˆdA 6= 0. (4.132)

The evolution of the volume element relative to the irreversible process T4
is given by the expression,

L(T4)Ω4 = i(T4)dΩ4 + d(i(T4)Ω4) (4.133)

= 0 + d(AˆdA) = 2(E ◦B) Ω4. (4.134)

Hence, the differential volume element Ω4 is expanding or contracting de-
pending on the sign and magnitude of E ◦B, a useful fact when topological
thermodynamics is applied to cosmology. The irreversible dissipation in-
duced by a T4 process can be compared to a bulk viscosity coefficient. A
cosmology on 4D can have an expanding volume element, Ω4, but with em-
bedded 3D defect structures (the galaxies) which are not "expanding".

If A is (or becomes) of Pfaff dimension 3, then dAˆdA ⇒ 0 which
implies that σ2 ⇒ 0, but AˆdA 6= 0. The differential geometric volume el-
ement Ω4 is subsequently an evolutionary invariant, and evolution in the
direction of the topological torsion vector is thermodynamically reversible.
The physical system is not in equilibrium, but the divergence free T4 evo-
lutionary process forces the Pfaff dimension of W to be zero, and the Pfaff
dimension of Q to be at most 1. Indeed, a divergence free T4 evolutionary
process has a Hamiltonian representation, and belongs to the characteristic
class of vector fields.

In the domain of Pfaff dimension 3 for the Action, A, the subsequent
continuous evolution of the system, A, relative to the process T4, proceeds
in an energy conserving manner, representing a "stationary" or "excited"
state far from equilibrium. These excited states can be interpreted as the
evolutionary topological defects in the Turbulent dissipative system of Pfaff
dimension 4. The Topological Torsion vector becomes an adiabatic, ex-
tremal, characteristic direction field in the space of geometric dimension 4,
but where the Pfaff dimension of the physical system, A, is of Pfaff topolog-
ical dimension 3.
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On a geometric domain of 4 dimensions, assume that the evolution-
ary process generated by T4 starts from an initial condition (or state) where
the Pfaff topological dimension of A is also 4. Depending on the sign of
the divergence of T4, the process follows an irreversible path for which the
divergence represents an expansion or a contraction. If the irreversible evo-
lutionary path is attracted to a region (or state) where the Pfaff topological
dimension of the 1-form of Action is 3, then E ◦B becomes (or has decayed
to) zero. The zero set of the function E ◦B defines a hypersurface in the
4 dimensional space. If the process remains trapped on this hypersurface
of Pfaff dimension 3, E ◦B remains zero, and the T4 process becomes an
extremal, adiabatic, characteristic direction field. Such extremal fields are
such that the virtual work 1-form vanishes,W = i(T4)dA = 0. The direction
field that represented an irreversible process, in domains where the divergence
goes to zero, becomes a representation for a reversible conservative extremal
Hamiltonian process. Although the extremal process is conservative in a
Hamiltonian sense, the physical system can be in a "excited" state on the
hypersurface that is far from equilibrium, for the Pfaff dimension of the 1-
form of Action is 3, and not 2. (If the path is attracted to a region where
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the function E ◦B is oscillatory, the system evolutionary path defines a limit
cycle, or what has been called a "breather".)

The fundamental claim made in this monograph is that it is these
topological defects that self organize from the dissipative irreversible evo-
lution of the Turbulent State into "stationary" states far from equilibrium.
These long lived stationary states form the stars and the galaxies of the cos-
mos at a cosmological level. They represent the long lived remnants or wakes
generated from irreversible processes in a dissipative non equilibrium macro-
scopic turbulent fluid. On another scale, these topological defects form the
excited quantum states at the microscopic level.

4.11 The Lie differential L(V ) and the Covariant differential ∇(V )
The covariant derivative of tensor analysis, as used in General Relativity,
is often defined in terms of isometric diffeomorphic processes (that preserve
the differential line element) and can be used to describe rigid body motions
and isometric bendings, but not deformations and shear processes associated
with convective fluid flow. Another definition of the covariant derivative is
based on the concept of a connection, such that the differential process acting
on a tensor produces a tensor. The definition of the covariant derivative
usually depends upon the additional structure (or constraint) of a metric or
a connection placed on a given variety, while the Lie differential does not.
As the Lie differential is not so constrained, it may be used to describe non
diffeomorphic processes for which the topology changes continuously. The
covariant derivative is avoided in this monograph.

Koszul (see p 262 in [82]) has given a set of axioms that can be used
to define a linear affine connection and a covariant derivative. The covariant
derivative axioms require that

∇(fV )ω = f ∇(V )ω, (4.135)

∇(V )fω = (∇(V )f )ω + f ∇(V )ω. (4.136)

This axiomatic representation of a covariant derivative and an affine connec-
tion should be compared to the Lie differential,

L(fV )A = f L(V )A+ df (i(V )A), (4.137)

L(V )fA = (L(V )f )A+ f L(V )A. (4.138)

Only if the last term in the expansion of the Lie differential, df (i(V )A), is
zero does the formula for the Lie differential have an equivalent representation
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as a covariant derivative in terms of a connection. Suppose that i(V )A = 0,
such that the Lie differential and the covariant differential are equivalent.

L(fV )A = f L(V )A = f ∇(V )A. (4.139)

Then it follows that

L(fV )A = f L(V )A+ df (i(V )A) (4.140)

= f L(V )A = f Q. (4.141)

But i(V )Q = f i(V )i(V )dA⇒ 0 (4.142)

where i(V )Q = 0 defines an adiabatic process. (4.143)

Theorem 2. Hence, all covariant derivatives with respect to an
affine connection have an equivalent representation as an adia-
batic process!!! Such covariant adiabatic processes need not be
thermodynamically reversible.

Suppose that the adiabatic process is such that

L(V )A = Q = 0. (4.144)

Then
dL(V )A = L(V )dA = dQ = 0, (4.145)

and it follows that the adiabatic process is reversible. However, the condition
that Q be zero is the equivalent to the condition of parallel transport:

L(V )ω ⇒∇(V )ω = 0. (4.146)

Theorem 3. The remarkable conclusion is that the concept of
parallel transport in tensor analysis is - in effect - an adiabatic,
reversible process!!!

As it is a matter of experience that not all evolutionary processes
are adiabatic, much less reversible, it seems sensible to conclude that theories
(such as general relativity) that invoke the use of a covariant derivative, and
or parallel transport, to describe evolutionary processes have allowed irre-
versible phenomena, in the words of Sir Arthur Eddington, "to slip through
the net".
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4.12 Topological Fluctuations.

4.12.1 The Cartan-Hilbert Action 1-form..

This subsection considers those physical systems that can be described by a
Lagrange function L(q,v,t) and a 1-form of Action given by:

A = L(qk,vk,t)dt+ pk·(dqk − vkdt), (4.147)

The classic Action, L(qk,vk,t)dt, is extended to included fluctuations in the
kinematic variables. It is no longer assumed that the equation of Kinematic
perfection is satisfied. Fluctuations of the topological constraint of kinematic
perfection are permitted:

Topological Fluctuations in position: ∆q = (dqk − vkdt) 6= 0.
(4.148)

When dealing with fluctuations, the geometric dimension will not
be constrained to 4 independent variables. At first glance it appears that
the domain of definition is a 3n+1 dimensional variety of independent base
variables, {qk,vk,t}. Do not assume that p is constrained to be a jet; e.g.,
pk 6= ∂L/∂vk. Instead, consider pk to be a (set of) Lagrange multiplier(s) to
be determined later. Note that the Action 1-form has the format used in the
Cartan-Hilbert invariant integral [45], except that it is not assumed that pk
is canonical; pk 6= ∂L/∂vk necessarily. Also, do not assume at this stage
that v is a kinematic velocity function, such that (dqk − vkdt) ⇒ 0. The
classical idea is to assert that topological fluctuations in kinematic velocity
are related to pressure.

For the given Action, construct the

Pfaff sequence {A, dA,AˆdA, dAˆdA...} (4.149)

in order to determine the Pfaff dimension or class of the 1-form [123]. The top
Pfaffian is defined as the non zero p-form of largest degree p in the sequence).
The top Pfaffian for the Cartan-Hilbert Action is given by the formula

Top Pfaffian 2n+2
(dA)n+1 = (n+ 1)!{Σnk=1(∂L/∂vk − pk)dv

k}ˆΩ2n+1 (4.150)

Ω2n+1 = dp1ˆ...dpnˆdq
1ˆ..dqnˆdt, (4.151)

The formula is a bit surprising in that it indicates that the Pfaff topological
dimension of the Cartan-Hilbert 1-form is 2n+2, and not the geometrical
dimension 3n+ 1. For n = 3 degrees of freedom, the top Pfaffian indicates
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that the topological of Pfaff topological dimension of the 2-form, dA is 2n+
2 = 8. The value 3n+ 1 = 10 might be expected as the 1-form was defined
initially on a space of 3n+ 1 ”independent” base variables. The implication
is that there exists an irreducible number of independent variables equal to
2n+2 = 8 which completely characterize the differential topology of the first
order system described by the Cartan-Hilbert Action. It follows that the
exact two form, dA, satisfies the equations

(dA)n+1 6= 0, but Aˆ(dA)n+1 = 0. (4.152)

The format of the top Pfaffian requires that the bracketed factor

{Σnk=1(∂L/∂vk − pk)dv
k} (4.153)

can be represented (to within a factor) by a perfect differential:

dS = (n+ 1)!{Σnk=1(∂L/∂vk − pk)dv
k} (4.154)

The result is also true for any closed addition γ added to A; e.g.,
the result is ”gauge invariant”. Addition of a closed 1-form does not change
the Pfaff dimension from even to odd. On the other hand the result is not
renormalizable, for multiplication of the Action 1-form by a function can
change the algebraic Pfaff dimension from even to odd.

On the 2n+2 domain, the components of 2n+1 form T = Aˆ(dA)n

generate what has been defined herein as the Topological Torsion vector, to
within a factor equal to the Torsion Current. The coefficients of the 2n+1
form are components of a contravariant vector density Tm defined as the
Topological Torsion vector, the same concept as defined previously, but now
extended to 2n+2 dimensions. This vector is orthogonal (transversal) to the
2n+2 components of the covector, Am. In other words,

AˆT = Aˆ(Aˆ(dA)n) = 0⇒ i(T)(A) =
P
TmAm = 0. (4.155)

This result demonstrates that the extended Topological Torsion vector rep-
resents an adiabatic process. This topological result does not depend upon
geometric ideas such as metric. In section 3.3.2 it was demonstrated, on
a space of 4 independent variables, that evolution in the direction of the
Topological Torsion vector is irreversible in a thermodynamic sense, subject
to the symplectic condition of non zero divergence, d(AˆdA) 6= 0. The same
result holds on dimension 2n+2.

The 2n+2 symplectic domain so constructed can not be compact
without boundary for it has a volume element which is exact. By Stokes
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theorem, if the boundary is empty, then the surface integral is zero, which
would require that the volume element vanishes; but that is in contradiction
to the assumption that the volume element is finite. For the 2n+2 domain
to be symplectic, the top Pfaffian can never vanish. The domain is therefore
orientable, but has two components, of opposite orientation. Examination
of the constraint that the symplectic space be of dimension 2n+2 implies
that the Lagrange multipliers, pk, cannot be used to define momenta in
the classical ”conjugate or canonical” manner. Define the non canonical
components of the momentum, }kj , as

non canonical momentum: }kj = (pj − ∂L/∂vj), (4.156)

such that the top Pfaffian can be written as

(dA)n+1 = (n+ 1)!{Σnj=1}kjdvj}ˆΩ2n+1. (4.157)

For the Cartan Hilbert Action to be of Pfaff topological dimension
2n+2, the factor {Σnj=1}kjdvj} 6= 0. It is important to note, however, that
as (dA)n+1 is a volume element of geometric dimension 2n+2, the 1-form
Σnj=1}kjdvj is exact (to within a factor, say T (qk, t, pk,Sv)):

Σnj=1}kjdvj = TdSv. (4.158)

Tentatively, this 1-form, dSv, will be defined as the Topological Entropy
production relative to fluctuations of differential position. The concept of
entropy with respect to continuous topological evolution will be discussed in
more detail in Section 2.7.

4.12.2 Thermodynamics and Topological Fluctuations of Work

Topological fluctuations are admitted when the evolutionary vector direc-
tion fields are not singly parametrized. It is historical to consider the in-
terpretations of equilibrium statistical fluctuations in terms of pressure and
temperature. These concepts are assumed to be transported to topological
fluctuations:

Position Fluctuations (pressure) : dq− vdt = ∆q 6= 0(4.159)
Velocity Fluctuations (temperature) : dv− adt = ∆v 6= 0(4.160)

These "failures" of kinematic perfection undo the topological refinements
imposed by a "kinematic particle" point of view, and place emphasis on the
continuum methods inherent in fluids and plasmas.
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For the maximal non canonical symplectic physical system of Pfaff
dimension 2n+2, consider evolutionary processes to be representable by vec-
tor fields of the form γV3n+1 = γ{v,a, f , 1}, relative to the independent
variables {q,v,p, t}. Use the Cartan magic formula definition of the ”virtual
work” 1-form, W , as W = i(γV3n+1)dA. The Work 1-form must vanish for
the case of extremal evolution, and be non zero, but closed, for the case of
symplectic evolution

First compute the 2-form, dA from the Cartan-Hilbert Action:

dA = {∂L/∂vk − pk}(∆vk)ˆdt+ {dpk − ∂L/∂xkdt}ˆ(∆qk) (4.161)

Then compute the Work 1-form

W = (γV3n+1)dA = {p− ∂L/∂v} •∆v+ {f − ∂L/∂q} •∆q (4.162)

Note that {p − ∂L/∂v} is the definition of the non canonical momentum,
}kj , and {f − ∂L/∂q} represents those components of the force that are
not conservative. When the fluctuations in velocity are zero (temperature)
and the fluctuations in position are zero (pressure), then the work 1-form will
vanish, and the process and physical system admits an extremal Hamiltonian
representation. On the other hand if the fluctuations in velocity are not
zero and the fluctuations in position are not zero, then the Work 1-form
vanishes only if the momenta (the Lagrange multipliers, p, are canonically
defined ({p − ∂L/∂v} ⇒ 0) and the Newtonian force is a gradient, {f −
∂L/∂x} ⇒ 0. These topological constraints are ubiquitously assumed in
classical conservative Hamiltonian mechanics.

When all topological fluctuations vanish, then the Pfaff dimension of
the work 1-form is also zero. This is a sufficient but not necessary condition
for equilibrium.‡‡ It is possible that when the momenta are canonical, and
the force is conservative, the equilibrium state can admit fluctuations, and
yet the Work 1-form vanishes and the Heat 1-form is exact. This result can
be used as starting point for a statistical analysis of the equilibrium state
(statistical methods are more or less ignored in this monograph).

Fluctuations in Pfaff topological dimension 2n+2 and 2n+1

When the 2-form dA is non zero, all processes acting on the Cartan Hilbert
Action, generate a work 1-form of the form given in equation (4.162). The

‡‡Inanimate is perhaps a better description of the state with zero fluctuations.
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maximum topological dimension for the Cartan-Hilbert Action is 2n+2. Sup-
pose that the 2-form dA is constructed in terms of these "2n+2 topological
coordinates". The 2-form dA is said to be non degenerate, or of maximal
rank, on the 2n + 2 dimensional space in regions where the antisymmetric
matrix representing dA has no zero eigenvalues. (Recall that closed non de-
generate 2-forms define a symplectic structure [123]). However, there may
exist singularities in the space of topological coordinates 2n+2 where the
2-form dA becomes "singular". In such 2n+2 regions the 2-form dA on the
2n+2 space becomes degenerate and admits zero eigenvalues. Such regions,
where dA is of Pfaff dimension 2n + 1, can be considered to be topological
defects or subspaces in the 2n+2 topological domain. In such subspaces, the
2-form dA, expressed in terms of the 2n+2 topological coordinates, admits
two null eigenvectors. As the eigen values of an anti-symmetric matrix of
(2n + 2) × (2n + 2) functional elements come in pairs, vectors representing
topological defects of the symplectic domain are not unique, a well known
result of the calculus of variations having envelope solutions (see section
8.7). One of these null eigen vectors (of 2n+ 2 components) is the unique
Hamiltonian-extremal field, and the other is the topological torsion vector
(of 2n+2 components and zero divergence), which is reduced to a Character-
istic vector relative to the Action in the subspace of topological defects. The
Characteristic vector is equivalent to the Topological Torsion vector, only if
the divergence of the Topological Torsion vector is zero. The second null so-
lution vector (which is adiabatic in a thermodynamic sense) can be related to
the Hamilton Jacobi theory in classical mechanics. Processes defined by the
extremal field or the characteristic field (degenerate topological torsion vec-
tor) are thermodynamically reversible. In contrast, the process generated by
the topological torsion vector with non zero divergence is thermodynamically
irreversible.

These facts can now be combined with the expression for the work
1-form given in equation (4.162). In the regions where dA is non degenerate,
the Work cannot vanish (as this would imply a null eigenvector). It follows
that the following 4 situations are NOT allowed when dA is of maximal rank.

Case 1. Canonical momentum and gradient forces

{p− ∂L/∂v} = 0 and {f − ∂L/∂q} = 0. (4.163)

Case 2. Canonical momentum and zero kinematic fluctuations in
position.

{p− ∂L/∂v} = 0 and ∆q = 0. (4.164)
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Case 3. Zero kinematic fluctuations in velocity and gradient
forces

∆v = 0 and {f − ∂L/∂q} = 0. (4.165)

Case 4. Zero kinematic fluctuations in velocity and Zero
kinematic fluctuations in position

∆v = 0 and ∆q = 0. (4.166)

Conversely, when dA generates a contact manifold of Pfaff topologi-
cal dimension 2n+1, one of the four cases above must be true. In the contact
2n+1 domain, however, there exists a unique vector field with a null eigen
value, such that the virtual work 1-form indeed vanishes: W = i(X)dA = 0.
This result serves as the basis of the d’Alembert principle. An elementary
case is based upon the assumption that Case 4 is valid. That is, there exists
a kinematic description of the process at both the first and the second order
(velocities and accelerations are singly parameterized). Another case that is
common is based on the assumption that the momentum is canonically de-
fined. Then, for the Contact extremal case to exist, and as {p−∂L/∂v} = 0,
it is necessary that the work 1-form reduces to vanishing expression

W = {f − ∂L/∂q} ◦∆q ⇒ 0 in the extremal case. (4.167)

The extremal constraint is satisfied when the bracket factor vanishes, which
is then the equivalent of the Lagrange-Euler equations of classical mechan-
ics. However, the Contact constraints are also satisfied when the force is
a gradient field, or there exist zero fluctuations in position, or the non zero
components of the force (the otherwise dissipative components) are orthog-
onal to the kinematic fluctuations in position.

Bernoulli-Hamiltonian Processes and fluctuations in Work

A Bernoulli-Hamiltonian process is not uniquely defined by the 1-form of Ac-
tion representing the physical process. Recall that the extremal direction
field in the domain of Pfaff dimension 2n+1 and the topological torsion direc-
tion field in the domain of Pfaff dimension 2n+2 are uniquely defined by the
functional format of the 1-form of Action representing the physical system.
Further recall that a Bernoulli-Hamiltonian process is defined by the Work
1-form being non zero and exact, W = i(X)dA = −dB 6= 0, where B is an
arbitrary function, often called a ”Casimir” - or somewhat inappropriately,
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a ”Hamiltonian”. In non singular regions where the 1-form A is of Pfaff
dimension 2n+2, and is non degenerate, the functions B are never constant
and never without a gradient. Although they are not constants over the do-
main, these ”potential” or ”energy” functions B are evolutionary invariants
of the Bernoulli-Hamiltonian process, X. That is, a Bernoulli function, B,
is an invariant along a given path, but can have different values for B on
neighboring paths.

Most engineers and applied scientists have a greater appreciation
for these functions when it is pointed out that they are equivalent to the
Bernoulli invariants in hydrodynamics and the thermodynamic potentials in
classical thermodynamics. The engineer would call B a Bernoulli ”constant”,
a function invariant along a streamline, but which has different values for
different neighboring streamlines: B = (P + ρgh+ ρv2/2).

To prove that the Bernoulli-Casimirs are always evolutionary invari-
ants with respect to the vector fields, X, construct the Lie differential of B
with respect to X.

L(X)B = i(X)dB + d(i(X)B) = i(X)i(X)dA+ d(i(X)B) = 0 + 0. (4.168)

Both the first and second terms vanish algebraically. However, for the clas-
sic ”Hamiltonian” defined above in terms of the Legendre transformation,
H(t, q, v, p) = {pkvk − L(t, qk, vk}, a direct computation indicates that the
Hamiltonian need not be an invariant of a symplectic process - even if the
Hamiltonian is explicitly time independent. For consider the evolutionary
equation,

L(X)H = i(X)dH = {(∂H/∂q) • v + (∂H/∂p) · f + (∂H/∂v) · a+ (∂H/∂t)}
(4.169)

or equivalently

L(X)H = {(p− ∂L/∂v) • a+ (f − ∂L/∂q) • v− (∂L/∂t)}. (4.170)

For the domain of the Cartan-Hilbert Action which is of Pfaff topological
dimension 2n+2, the first factor of the first term cannot vanish. The first
factor of the second term, when set to zero, is equivalent to the classical
Lagrange-Euler equations, and the forces are conservative gradient fields.
Suppose that (∂L/∂t) = −(∂H/∂t) = 0, and the non conservative forces are
orthogonal to the velocities, then, even in this case, if the accelerations a
are such that (p − ∂L/∂v) · a 6= 0, the ”Hamiltonian energy” H, is not an
evolutionary invariant relative to X. Yet the Bernoulli-Casimir energies are
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evolutionary invariants relative to X. A simple example of this situation is
where the mechanical (Hamiltonian) energy of a system decays to perhaps
some non zero value at a singular point of the 2n+2 domain, but the angular
momentum stays constant during the process. Numerical simulations of such
evolutionary possibilities in fluids have been studied by Carnevale [34].

Thermodynamic Potentials and Reversible Processes as Bernoulli
evolutionary invariants.

From the topological version of the first law in terms of Cartan’s magic
formula, and from the concept that thermodynamic reversibility requires
that QˆdQ = 0, it follows that for reversible processes,

QˆdQ = (W + dU)ˆdW =WˆdW + dUˆdW ⇒ 0 (4.171)

Suppose that the Work 1-form is restricted to the format of Pfaff dimension
3

Pfaff dimension 3, W = −dU + φˆdχ (4.172)

= d{−U + φχ}− χdφ, (4.173)

dW = dφˆdχ, (4.174)

WˆdW = −dUˆdW. (4.175)

Subject to these constraints it follows that the process that created the work
1-form is thermodynamically reversible:

QˆdQ = (W + dU)ˆdW =WˆdW + dUˆdW = −dUˆdW + dUˆdW = 0.
(4.176)

The functions φ and χ are completely arbitrary. The quantities {−U +φχ}
are defined as the thermodynamic potentials for specific choices of φ and χ.
For example, the classic choices for the Energy potentials are:

{−U + φχ} = −U Internal Potential. φ = 0, χ = 0,

{−U + φχ} = TS − U Helmholtz . φ = T, χ = S, (4.177)

{−U + φχ} = −(PV + U) Enthalpy. φ = −P, χ = V, (4.178)

{−U + φχ} = −(U − TS + PV ) Gibbs Potential. (4.179)
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In each case the (reversible) work 1-form is given by the formula:

W = −dU, for the Internal Potential. (4.180)

W = −d(U − TS)− SdT, for the Helmholtz Potential. (4.181)

W = −d(U + PV ) + V dP, for the Enthalpy Potential. (4.182)

W = −d(U − TS + PV )

+V dP − SdT, for the Gibbs Potential (4.183)

The Helmholtz potential is useful for reversible processes for which the tem-
perature is constant, dT = 0. The Enthalpy potential is useful for reversible
processes for which the pressure is constant, dP = 0. The Gibbs potential
is useful for reversible processes which involve constant pressure and temper-
ature, dP = 0 and dT = 0. However, note that the function pair φ and χ is
completely arbitrary.

Conclusion The importance of the thermodynamic potentials is
their relationship to reversible processes, where the work 1-form is
of Pfaff dimension 3, but the Pfaff dimension of the heat 1-form
is 2.

It is important to realize that the thermodynamic potentials so con-
structed above imply that the contact 2n + 1 = 3 dimensional structures
generated by the work 1-form are "tight" and without limit cycles (see sec-
tion 3.6.2).

4.12.3 Thermodynamic Potentials as Bernoulli evolutionary invariants.

Under the appropriate conditions of constant pressure, constant tempera-
ture, or both, each of the thermodynamic potentials above have the format
of Bernoulli functions, W = i(ρV4)dA = −dB. Under the constraints of
constant temperature or pressure, each of the Potentials is an Bernoulli in-
variant of the path generated by, ρV4, but each potential is not necessarily
a global invariant. The proof is easy:

L(ρV4)B = i(ρV4)dB = i(ρV4)(L(ρV4)(−W )) = −i(ρV4)(i(ρV4)dA) = 0
(4.184)

In other words, depending on the choice of the Bernoulli potential
function, B, representing the Work 1-form in terms of constrained topological
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fluctuations, the following evolutionary invariants are determined.

L(ρV4)BGibbs = L(ρV4)(U − TS + PV ) = 0, Gibbs (4.185)

L(ρV4)BEnthalpy = L(ρV4)(U + PV ) = 0, Enthalpy (4.186)

L(ρV4)BHelmholtz = L(ρV4)(U − TS) = 0, Helmholtz (4.187)

L(ρV4)Binternal = L(ρV4)(U) = 0, Internal (extremal). (4.188)

Hence, the empirical thermodynamic potentials, more than 100 years
old in concept, are to be recognized as the Bernoulli-Casimir evolutionary in-
variants of reversible processes that admit topological fluctuations. These
reversible processes can exist on symplectic spaces of topological dimension
2n+2, where the Work 1-form does not vanish, and is Pfaff dimension 3. The
need for recognizing the differences between mechanical energy and the ther-
modynamic energies was discussed by Stuke [230], where, without mention
of symplectic evolution, he deduces the need for ”acceleration ” potentials
in certain dissipative systems. These acceleration potentials, which can be
shown to be the equivalent of Bernoulli-Casimir functions, were used by Stuke
to construct the Enthalpy and Gibbs free energy in certain hydrodynamic ex-
amples.

The thermodynamic concepts of pressure and temperature are ex-
plicitly absent from that version of classical mechanics which has focused
attention on the extremal contact manifolds of dimension 2n+1, and which
has ignored the concept of topological differential fluctuations on symplectic
spaces of dimension 2n+2. It is suggested that the occurrence of a pressure
gradient, or a temperature gradient should be taken as the signature of a
symplectic process.

On a symplectic domain of dimension 2n+ 2, unique ubiquitous ex-
tremal fields of classical Hamiltonian mechanics do not exist. There are no
solutions to the extremal equation i(V)dA = 0, on the symplectic domain,
but there do exist non unique vector fields V that satisfy the Helmholtz
constraint equation, d(i(V)dA) = 0. In the subset of exact cases, where
i(V)dA = −dB, these vector fields generate ”Hamiltonian-like” dynamical
systems, or processes, (on the 2n+1 submanifold transversal to dB), similar
to the dynamical systems that are associated with the 2n+1 contact mani-
folds of classical State Space. The Action integral is a relative (stationary)
integral invariant with respect to such Hamiltonian dynamical processes. The
function B is a Bernoulli-Casimir evolutionary invariant, but these evolution-
ary invariants (stationary states) are not unique, not independent of gauge
conditions, not global constants over the domain, and are strongly depen-
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dent upon boundary conditions. The somewhat larger class of vector fields
that satisfy the Helmholtz condition d(i(V)dA) = 0 are defined as symplec-
tic vector fields, and as dynamical systems they define symplectic processes.
However, all such symplectic processes, exact or not, on symplectic domains
of dimension 2n+2, still represent reversible thermodynamic processes.

Remarkably, and repeated here again for emphasis, on the 2n+2
symplectic domain there exists a unique non Hamiltonian vector field which
leaves the Action integral a conformal, not stationary, invariant [169]. This
unique vector field, defined as the Torsion current, T, does not satisfy the
symplectic condition, but instead satisfies the equation, i(T)dA = ΓA as
suggested in the 1974 article [165]. Moreover, it now can be demonstrated
that this unique vector field generates dynamical systems that represent ir-
reversible processes in a thermodynamic sense. This unique vector field (to
within a factor) is generated by the formulas

Aˆ(dA)n = i(T)Ω2n+2 vol (4.189)

The symplectic space of dimension 2n+2 on which the Torsion current ex-
ists is defined as Thermodynamic Space, in order to distinguish it from the
classic State Space of dimension 2n+1. The divergence of this Torsion vec-
tor field defines a density function on the 2n+2 space. The zero sets of this
density function define smooth attractors (inertial manifolds) of dimension
2n+1 on the 2n+2 dimensional domain. The irreversible dynamical system
generated by the Torsion vector irreversibly decays to these sets of measure
zero which form the ”stationary” states of a 2n+1 contact manifold. Once in
the stationary state, the evolution can take place by a reversible Hamiltonian
process.

4.13 Entropy of Continuous Topological Evolution and Equilib-
rium Submanifolds

A remarkable achievement of a non equilibrium thermodynamics expressed
in terms of continuous topological evolution is the ability to formulate a
concept of entropy production in an analytic, non phenomenological way -
and without the use of statistics. The classic concept of entropy has
been extremely hard to define in non statistical terms, for, like potential
energy, classical mechanics does not yield a clear visual intuitive picture of
"just what is" entropy. Numerous phenomenological constructions have
been suggested (such as entropy is a measure of disorder, entropy is the
inverse of information, entropy is proportional to area...), but encoding such



Entropy of Continuous Topological Evolution and Equilibrium Submani-
folds 247

concepts is difficult. Associated with the concept of entropy is the idea of
a system in equilibrium, which at least in approximation is recognized from
experience. Cold water poured into a hot bath comes to equilibrium within
a perceptibly short time span. On the other hand, inter-change-ability of
kinetic energy and potential energy, ultimately yields a visual perception of
"energy" related to dynamics, but there seems to be no visual equivalent for
"entropy". Moreover, the currently accepted dogma is that entropy always
increases on a global scale. These concepts are hard to formulate analytically
using physical techniques that have been based upon geometric concepts. It
is the purpose of that which follows to demonstrate how a topological, not
geometric, point of view enables an analytic coding of the concept of Entropy
- without the use of statistics or a phenomenological assumption.

The topological view also gives a mathematical definition of what
is meant by an equilibrium physical system. The topological difference
between a connected and a disconnected topology is a sufficient topological
property which can be used to distinguish an equilibrium system from a
non equilibrium physical system. This concept is based on the Frobenius
unique integrability theorem, which is valid for both an equilibrium system
and an isolated system (of Pfaff topological dimension ≤ 2), but not for
non equilibrium systems (of Pfaff topological dimension ≥ 3). However,
the concept of equilibrium is more subtle. Bamberg and Sternberg [12]
suggest that a thermodynamic equilibrium state corresponds to a solution
of a Lagrangian submanifold structure to an exterior differential system (in
4D). In 4D, the Lagrangian submanifold of a symplectic manifold generated
by a 2-form, dA, is a 2 dimensional submanifold upon which the 2-form dA
vanishes. Of more interest to this article is how such a submanifold structure
may be viewed in terms of the limit set of topological fluctuations in arbitrary
dimension. The basic idea is that:

Proposition Topological Fluctuations lead to a concept of an
entropy relative to continuous topological evolution.

4.13.1 Extensions of the Cartan-Hilbert Action 1-form

This subsection considers in more detail those physical systems that can be
described by a Lagrange function L(q,v,t) and a 1-form of Action given by:

A = L(qk,vk,t)dt+ pk·(dqk − vkdt), (4.190)

The classic Action, L(qk,vk,t)dt, is extended to included topological fluctu-
ations in the kinematic variables. It is no longer assumed that the equation
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of Kinematic perfection is satisfied. That is, fluctuations of the topological
constraint of kinematic perfection are permitted:

Topological Fluctuations :

in position ∆q = (dqk − vkdt) 6= 0, (4.191)

in velocity ∆v = (dvk − akdt) 6= 0, (4.192)

in momenta ∆p = (dpk − fkdt) 6= 0. (4.193)

These topological fluctuations are not merely functions of time, but
can be fluctuations in space and perhaps other parametric variables. Note
that the topological fluctuations are not derivatives, but are differentials -
the limit process has not been explicitly stated. One particular fluctuation
problem is related to the choice of an "observers" origin. For example,
in mechanics it is often assumed that the origin is located at the center
of mass. Such an approach can lead to imprecision and fluctuations of
parameters, such as mass. The only origin that is free from such defects is
a singular barycentric system, but that cannot be defined with parameters
that are positive definite (such as mass). In the singular barycentric system
of projective systems, any point can be used as the "origin" for all other
points in an equivalent manner.

When dealing with topological fluctuations, the pre-geometric di-
mension will not be constrained to only 4 independent variables. At first
glance it appears that the domain of definition for the Cartan-Hilbert Action
1-form, above, is a 3n+1 dimensional variety of independent base variables,
{pk, qk,vk,t}. The reader is warned that p is NOT constrained to be a jet;
e.g., pk 6= ∂L/∂vk. Instead, the pk are considered to be a (set of) Lagrange
multiplier(s) to be determined later. Note that the Action 1-form has the
format used in the Cartan-Hilbert invariant integral [44], except that herein
it is not assumed that the pk are canonical; that is, pk 6= ∂L/∂vk neces-
sarily. Also, it is NOT assumed at this stage that the vector field, v, is a
kinematic velocity function, such that (dqk − vkdt) ⇒ 0. A classical infer-
ence is to assert that topological fluctuations in kinematic velocity, ∆q, are
related to pressure, and topological fluctuations in kinematic acceleration,
∆v, are related to temperature.

As explained in the previous section, the top Pfaffian for the Cartan-
Hilbert Action can be evaluated, and is given by the formula,

Top Pfaffian 2n+2
(dA)n+1 = (n+ 1)!{Σnk=1(∂L/∂vk − pk)dv

k}ˆΩ2n+1, (4.194)
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and emphasizes the fact the the topological Pfaff dimension of the Cartan-
Hilbert 1-form is 2n+2, and not the "geometrical" dimension 3n+1. From
the fact that the top Pfaffian represents a 2n+ 2 volume element,

(dA)n+1 ⇒ Ω2n+2 = dSˆdp1ˆ...dpnˆdq
1ˆ..dqnˆdt, (4.195)

such that the bracketed expression in the formula for the top Pfaffian must
reduce to an exact differential, dS :

(n+ 1)!{Σnk=1(∂L/∂vk − pk)dv
k} = Σnj=1}kjdvj ⇒ dS. (4.196)

Conclusion As the 2n+2 form represents a volume element, the
coefficient of the top Pfaffian has a representation (to within a
factor) as a perfect differential of a function, S, which is indepen-
dent from the {pk, qk, t}. The differential change of the function
S is explicitly dependent upon the differentials of velocity dvk

and the non canonical components of momentum (∂L/∂vk− pk).

Definition The change in entropy due to continuous topological
evolution is defined as dS, and is given by the expression

dS = (n+ 1)!{Σnk=1(∂L/∂vk − pk)dv
k}. (4.197)

Definition The function S whose differential is the 1-form given
in eq. ( 4.197) is defined as the entropy of continuous topological
evolution.

The even dimensional 2n+2 form represents an orientable volume
element, and once an orientation has been fixed (say +1), then as continuous
evolution is constrained to maintain the volume element and its sign, the
change in the entropy, dS, must be of one sign. So entropy of topological
evolution, if it changes globally, can be only of one sign (chosen to be positive
in the historic literature). Also, as dA is presumed to be non degenerate, then
the differential, dS, can not change sign by continuous topological evolution
on the 2n+2 dimensional space.

Conclusion Hence the fact that global changes in entropy of
topological evolution must be of one sign ≥ 0 is an artifact of
topological orientability, hence dS represents entropy production.
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Next consider subspaces of the Symplectic 2n+2 space. In particu-
lar consider a Lagrangian submanifold, which must be dimension n+1. By
definition, on the Lagrangian submanifold (of dimension n+1) of the Sym-
plectic space (of dimension 2n+2), the 2-form dA must vanish. The 2-form
can be written as:

dA = dSˆdt+ {dpk − ∂L/∂xkdt}ˆ(∆qk)⇒ 0. (4.198)

Observe that the immersion ψ of the configuration space with dif-
ferentials {dq1ˆ..dqnˆdt} into the top Pfaffian space {dSˆΩ2n+1}, defines a
Lagrangian submanifold when the pullback of the 2-form dA vanishes. The 2-
form dA has expression given by the equation above. Consider the case where
the immersion into the 3n+1 space is such that the pullback of (∆qk)⇒ 0.

ψ : (q1, .., qn, t)⇒ (S(q, p, t, v), p1, ..., pn, q
1, .., qn, v1, .., vn, t) (4.199)

Then the 2-form has a pullback realization such that

ψ∗(dA) = dSˆdt⇒ 0 for a Lagrange submanifold. (4.200)

The Pfaff topological dimension of the constrained 1-form of Action is then
2 on configuration space, and induces a connected Cartan Topology. The
2-form vanishes when the entropy is a constant:

Conclusion Equilibrium implies dSequil(q, p, t, v)⇒ dSequil(t)⇒
0.

It is also remarkable to note that if the momenta are canonically
defined, such that

{∂L/∂vk − pk}⇒ 0 ⊃ dS = {Σnk=1(∂L/∂vk − pk)dv
k}⇒ 0, (4.201)

then the entropy production, dS, vanishes.The concept of an entropy of con-
tinuous topological evolution is explicitly dependent upon the existence of
non canonical momenta.

It is remarkable that the symplectic systems of irreducible topological
dimension 2n+2 seem to resolve the Boltzmann - Loschmidt-Zermelo paradox
of why canonical Hamiltonian mechanics is not able to describe the decay to
an equilibrium state, and why the usual (extremal) methods of Hamiltonian
mechanics do not give any insight into the concept of Pressure, Temperature,
Entropy or the Gibbs free energy. It is extraordinary that answers to these
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150 year old paradoxes of physics seem to follow without recourse to statistics
if one utilizes a topological perspective. The interpretation of the fact that
the top Pfaffian (for a physical system that can be encoded by a Cartan-
Hilbert 1-form of Action) is of dimension 2n+2 and not 3n+1 is, at present,
not complete. The implication is that there must exist (3n+1)− (2n+2) =
n− 1 topological invariants in these systems.

Consider a process starting with some initial conditions in the turbu-
lent domain of Pfaff dimension 4 for A, W, and Q. If the process proceeds by
evolution such that the process path enters a region of the geometric domain
where either T ⇒ 0, or the Topological Entropy production rate vanishes by
orthogonality,

Orthogonality: {Σnj=1}kjdvj} = dSv ⇒ 0, (4.202)

or, if a domain is reached such that the momenta become canonical

Canonical Momenta: pk = ∂L/∂vk, (4.203)

it follows that the Cartan-Hilbert Action, A, decreases its topological di-
mension from 2n + 2 to 2n + 1. This 2n + 1 Contact manifold is the state
space of classical mechanics. When that Action 1-form generates a Contact
manifold, there is always a unique extremal vector field which generates a
system of first order ODE’s known as Hamilton’s equations describing the
extremal process. If at subsequent steps of the evolutionary path all of the
differentials dpk become zero, then the dimensionality of the 2n+2 manifold
becomes the configuration space manifold of dimension n+1, a LaGrangian
submanifold. If the Pfaff dimension of A is equal to 1 when A is restricted to
the submanifold, the equilibrium state has been defined in which the entropy
function, S, is a constant; e.g., dSv = 0.

The important facts are that there are two classes of processes that
can represent the topological change from a Pfaff topological dimension 2n+2
to a Pfaff topological dimension of 2n+1. The 2n+2 system supports thermo-
dynamically irreversible dissipative processes. The 2n+1 system supports
stationary reversible Hamiltonian processes. The two classes of processes
are distinguished by the property that the velocity field is orthogonal to the
non canonical momenta, or the process causes the non canonical momenta
to vanish.

If the domain of definition is constrained such that the momenta are
defined canonically, ∂L/∂vk − pk = 0, then the 2-form dA does not define
a symplectic manifold of Pfaff topological dimension 2n+2, but the 2-form
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does define Contact structure on 2n+1 with the formula for the Top Pfaffian
given by the expression.

Top Pfaffian 2n+1
Aˆ(dA)n = n!{pkvk − L(t, qk, vk)}dp1ˆ...dpnˆdq1ˆ..dqnˆdt.(4.204)

The coefficient in brackets is recognized as the Legendre transform of the La-
grangian producing the format of the classic Hamiltonian energy. It is this
2n+1 dimensional contact manifold that served as the arena for most of clas-
sical mechanics prior to 1955, especially for those theories which were built
from the calculus of variations. The 2n+1 dimensional contact manifold, or
state space, admits a unique ”extremal” evolutionary field, i(V)dA = 0, that
satisfies ”Hamilton’s equations”. The coefficient of the state space volume
is to be recognized as the Legendre transform of the physicist’s Hamiltonian
energy function.

L(t, qk, vk) = pkv
k −H(t, qk, vk, pk) (4.205)

When the constraints of canonical momenta are valid, it follows that

∂H(t, qk, vk, pk)/∂v
k = 0. (4.206)

This result is interpreted by the statement that the ”Hamiltonian” is to be
expressed in terms of the variables {t, qk, pk} only. The Top Pfaffian becomes

Aˆ(dA)n = n!{H(t, qk, pk)}dp1ˆ...dpnˆdq1ˆ..dqnˆdt. (4.207)

The 2n+1 space maintains its contact structure as long as the ”total Hamil-
tonian energy” is never zero, and the momenta are canonically defined.

If further topological evolution causes the Pfaff topological dimension
to change from 2n+2 to 2n, then it follows that the Hamiltonian energy
must vanish. That is (using the canonical constraint), reduction of the Pfaff
dimension from 2n+1 to 2n (state space to phase space) requires that the
LaGrange function be homogeneous of degree 1 in the velocities, vk:

Top Pfaffian 2n
(dA)n = {vk∂L(t, qk, vk)/∂vk − L(t, qk, vk)}⇒ 0. (4.208)

The result is remarkable in that the definition of a Finsler space is precisely
that constraint situation where the coefficient {pkvk −L(t, q, v} of the 2n+1
manifold vanishes, and the momenta are canonical. These constraint of
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canonical momentum and that the constraint that the Lagrangian be ho-
mogeneous of degree 1 in the velocities are precisely Chern’s constraints.
Chern uses these constraints to define a Finsler space [45] which admits non
Riemannian geometries (when the Lagrange function contains more than
quadratic powers of v) and spaces with torsion [28]. Note that the processes
of topological reduction described above are not equivalent to forming an
arbitrary section(s) in the form of holonomic constraints.
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5.2 About the Cover Picture

This picture demonstrates the existence of Falaco Solitons which are
rotational topological defect structures created by irreversible decay to long
lived states far from equilibrium. The Solitons are not locally stabilized,
but are globally stabilized by the tension in a string connecting the vertices
of the minimal surface dimples. The universal topological defect appears in
many different disguises:

If the dimpled surfaces are defined as 2D Branes, and the connecting
thread as a 1D string, then the Falaco Solitons are realizations of string
theory, but not at a cosmological scale.

If the dimpled surfaces are defined as quark pairs, and the connecting
thread as the confinement mechanism, then the Falaco Solitons are realiza-
tions of Quark theory, but not at a sub-microscopic scale.

The Falaco Solitons are thermodynamically long lived states far from
equilibrium.
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